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Abstract

Let G=(V,E) be a simple connected graph. We introduced Ascending Bi-Pendant
Domination Decomposition of Graphs and is defined as a collection {Gj, Gg, Gs, ..., G} of
subgraphs of G such that every edge of G is exactly once in G;, each G; is connected and
Ype(G))=i+1,1<i<n 1In this paper, we introduce Ascending Bi-Pendant Domination

Decomposition Polynomial of a graph. Also, we have found that Ascending Bi-Pendant

Domination Decomposition Polynomial for Pp and Cp.

1. Introduction

Let G = (V, E) be a simple connected graph. All the graphs considered

here are finite and undirected. A vertex of degree zero is called an isolated
vertex and a vertex of degree one is called a pendant vertex. An edge incident

with a pendant vertex is called a pendant edge. Pendant Domination in some
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Generalised Graphs was introduced by Nayaka S. R. Puttaswamy and S.
Purushothama [8]. Ascending Domination Decomposition of Subdivision of
Graphs was introduced by K. Lakshmiprabha and K. Nagarajan [6]. We
introduced the concept of Ascending Pendant Domination Decomposition in
[2] and extended this concept for special graphs in [4]. In this paper, we
obtained Ascending Bi-Pendant Domination Decomposition Polynomial for
P, and C,,.

Definition 1.1. If Gy, Gy, Gs, ..., G,, are connected edge disjoint
subgraphs of G with E(G)= E(G,)U E(Gy)U E(G3)U...U E(G,,), then
(Gy, Gy, Gs, ..., G,) is said to be decomposition of G.

Definition 1.2. A subset S of vertices in a graph G is called a Dominating
Set if every vertex v € V is either in S or adjacent to some vertex in S. The
least cardinality of a dominating set in G is called the domination number of
G and is usually denoted by v(G).

Definition 1.3. A Dominating set S in G is called a Pendant Dominating

Set if (S) contains at least one pendant vertex. The minimum cardinality of a

Pendant Dominating Set is called the pendant domination number denoted
by Ype(G)‘
Definition 1.4. A Pendant Dominating set S in G is called a Bi-Pendant

Dominating Set if (V' \'S) also contains pendant vertex. The minimum

cardinality of a Bi-Pendant Dominating Set is called the bi-pendant
domination number denoted by vp,.(G).

Definition 1.5. Let G; = (W}, E;) and Gy = (V5, E5) be two graphs. The
tensor product G = Gy A Gy is defined as a graph with vertex set V] x Vj,.
Edge set is defined as follows: If w; = (1, v;) and wy = (uy, v9) are two
vertices of G with u; € V] and v; € Vo, (i =1, 2) then wjwy € E(G) if and
only if wjug € E; and vjvg € Es.

Definition 1.6 [2]. A Decomposition (Gj, G, ..., G,) of G is said to be
Ascending Pendant Domination Decomposition (APDD) if
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(1) Each G; is connected
(ii) ype(Gi) =i+1,1<i<n

Definition 1.7 [5]. A Decomposition (G;, Gg, ..., G,) of G is said to be
Ascending Bi-Pendant Domination Decomposition (ABPDD) if

() Each G; is connected
(i) Yope(Gi1) = TopelGi) +1,1 < i <n—1.
2. Main Results

Definition 2.1. Let G be a graph which admits ABPDD into n-parts. For
each i =1, 2,..., n, let M(G, vppe(G;)) be the family of connected subgraphs

with  15,0(G;)  and  m(G, vppe(Gi)) = | M(G, Yppe(Gi)) | Then ABPDD
polynomial of a graph G is defined as

MG, x) = zm(G, »pre(Gi))xybpe(Gi)
=1

Remark 2.2. 1. The constant term and the coefficient of x in ABPDD

polynomial of any graph G are zero.

Theorem 2.3. If the path P, admits ABPDD into n-parts, then
k+n-1 '
M(Py, x) =3 ) (p - (3i - 4)'
i=k
Proof. Let G be the path P, graph.
Suppose that the path P, admits ABPDD into n-parts.
Then vppe(Git1) = YopelGi) +1,1<i <n —1.

Hence if vppe(Gy) =k, k>3, then vppe(Ga) =k +1, vppe(Gs) = k +2...
and Yppe(Gp) = k +n —1.

For each i =k, k+1,...,k+n—1, let M(P,, v4,(G;)) be the family of

Advances and Applications in Mathematical Sciences, Volume 21, Issue 4, February 2022



2194 V. BRISHNI, V. MAHESWARI and K. PALANI
connected subgraphs with vy, (G)) =k +i-1 and m(Pp,, vppe(G;))
= | M(Pp, YopelGi)) |
Fori=1,
M(P,, k) = {H : H is connected subgraph of P, with y;,,(H) = k}
The only possible subgraphsin M(P,, k) are Py,_y, Py;,_3 and Py,_o.

Hence | M(P,, k)| = Total number of graphs Ps,_4’s in P, + Total

number of graphs Py;,_s’sin P, + Total number of graphs Psj,_g’s in P,
| M(Py, k) |=p-(Bk-4-1)+p-(Bk-3-1)+p-(8k-2-1)
=3(p - (3k - 4))
Therefore, m(P,, k) = 3(p — (3k — 4)).
For i = 2,
M(P,, k +1) = {H : H is connected subgraph of P, with vy;,,(H) = k + 1}
The only possible subgraphs in M(P,, k + 1) are Py, 1, Py, and Py,,;.

Hence | M(P,, k +1)| = Total number of graphs Ps;_;’s in P, + Total

number of graphs Ps;’sin P, + Total number of graphs P;j,.1’s in P,
| M(Py, B +1)|=p-(Bk-1-1)+p-(Bk-1)+p—-(8k+1-1)
=3(p -8k —4)

Therefore, m(P,, k +1) = 3(p — (3k - 1)).

For i = 3, m(P,, k +2) = 3(p — (3k + 2)).

Continuing in this way,

For i = n,

M(P,, k+n—1) = {H : H is connected subgraph of P, with v, (H)
=k+n-1}
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The only possible subgraphs in M(P,, k+n—1) are Psi(3p-7)
P31 (3n-6) and Pspi(35-5)-

Hence | M(P,, k +n —1) | = Total number of graphs P3j.(3,-7)’s in P, +

Total number of graphs Psp (3,-6)’s in P, + Total number of graphs
Py, (3n-5)"sin P,

| M(Py, k+n-1)|=p-@Bk+(Bn-7)-1)+p—-(8k+(3n-6)-1)
+p-Bk+(Bn-5)-1)=3(p-(Bk+3n-"17)
Therefore, m(P,, k +n —1) = 3(p — (3k + 3n - 7)).

Now,

M(G, x) = Zm(G, pre(Gi)) xybpe(Gi)
i=1

n G
M(Pp’ x) = Zm(P ’ 'pre(Gi))bepe( 2
i=1

G
= Py, 1pe(GL) D) (B, el G) ™ )
e Gn
+ m(Py, YppelGy) 7 )
= m(P,, k)« + m(P,, k + a4t m(P,, k +n — 1)xfnt
=3(p-Bk-4)x* +3(p -3k -1)x" + ...+ 3(p - Bk + 3n — 7)) &1
k+n-1 )
=3 > (p-(Gi-4)s
i=k
Hence the theorem.

Theorem 2.3. If the Cycle C,, admits ABPDD into n-parts, then
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kin-1
M(C,, x) =3 prl
i=k

Proof. Let G be the C,, graph.
Suppose that the cycle C), admits ABPDD into n-parts.
Then ybpe(Gi+1) = ybpe(Gi) +1,1<i<n-1.

Hence if vppe(Gy) =k, k>3, then vppe(Ga) =k +1, vppe(Gs) = k +2...
and Yppe(G,) = k +n —1.

For each i =k, k+1,..., k+n—1, let M(Cp, Yppe(G;)) be the family of
connected subgraphs with yp,.(G;)) =k +i-1 and m(Cp, Yppe(G;))
= | M(Cp, ppelGi)) |

For i =1,

M(Cp, k) = {H : H is connected subgraph of C, with y,,(H) = k}

The only possible subgraphs in M(C,,, k) are Psp_4, Py,_3 and Py,_o.

Hence | M(Cp, k)| = Total number of graphs Py 4’s in C, + Total

number of graphs Ps;_3’sin C,, + Total number of graphs P;;,_s’s in C,.
| M(Cp, k) |=p+p+p
- 3p
Therefore, m(C,, k) = 3p.
For i = 2,
M(Cp, k) = {H : H is connected subgraph of C, with v, (H) = k + 1}
The only possible subgraphs in M(C,,, k + 1) are Py, ;, Py, and Pyp,,;.

Hence | M(Cp, k +1)| = Total number of graphs Ps;_;’s in C, + Total

number of graphs Ps;,’sin C,, + Total number of graphs Ps;1’s in C,.
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| M(Cp, k+1)|=p+p+p
- 3p
Therefore, m(C,, k +1) = 3p.
For i = 3, m(C,, k +2) = 3p.

Continuing in this way,

For i = n,

M(Cp, k+n—1)={H : H is connected subgraph of C, with y;,,(H)
=k+n-1}

The only possible subgraphs in M(C,, k+n—1) are P (3,-7)

P31 (3n-6) and Psp(35-5)-

Hence |M(C,, k+n—1)| = Total number of graphs Psp3,-7)’s in
Cp + Total number of graphs Ps; (3,-6)’s in C,, + Total number of graphs

Pspy(3n-5)'sin Cp.
|M(Cp, k+n-1)|=p+p+p

Therefore, m(C,, k +n —1) = 3p.

Now,

M(G, x) = Zm(G, pre(Gi)) bepe(Gi)
=1

M(Cpy %) = D m(Cp, 1apelGi) "
i=1

= m(Cp Ve G) " D) (€, 7ol G 7P

+ m(C > Yop e(Gn )) xbre (Gn)
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= m(C,, k)« + m(C,, k + D+ m(C,, k +n - 1)xf*nt

= 3px® + 3pxFtl 4+ .+ gpakinl
k+n-1 )
e
i=k

Hence the theorem.
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