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Abstract 

Let  EVG ,  be a simple connected graph. We introduced Ascending Bi-Pendant 

Domination Decomposition of Graphs and is defined as a collection  nGGGG ,,,, 321   of 

subgraphs of G such that every edge of G is exactly once in ,iG  each iG  is connected and 

  .1,1 niiGipe   In this paper, we introduce Ascending Bi-Pendant Domination 

Decomposition Polynomial of a graph. Also, we have found that Ascending Bi-Pendant 

Domination Decomposition Polynomial for pP  and .pC   

1. Introduction 

Let  EVG ,  be a simple connected graph. All the graphs considered 

here are finite and undirected. A vertex of degree zero is called an isolated 

vertex and a vertex of degree one is called a pendant vertex. An edge incident 

with a pendant vertex is called a pendant edge. Pendant Domination in some 
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Generalised Graphs was introduced by Nayaka S. R. Puttaswamy and S. 

Purushothama [8]. Ascending Domination Decomposition of Subdivision of 

Graphs was introduced by K. Lakshmiprabha and K. Nagarajan [6]. We 

introduced the concept of Ascending Pendant Domination Decomposition in 

[2] and extended this concept for special graphs in [4]. In this paper, we 

obtained Ascending Bi-Pendant Domination Decomposition Polynomial for 

pP  and .pC   

Definition 1.1. If nGGGG ,,,, 321   are connected edge disjoint 

subgraphs of G with          ,321 nGEGEGEGEGE   then 

 nGGGG ,,,, 321   is said to be decomposition of G.  

Definition 1.2. A subset S of vertices in a graph G is called a Dominating 

Set if every vertex Vv   is either in S or adjacent to some vertex in S. The 

least cardinality of a dominating set in G is called the domination number of 

G and is usually denoted by  .G   

Definition 1.3. A Dominating set S in G is called a Pendant Dominating 

Set if S  contains at least one pendant vertex. The minimum cardinality of a 

Pendant Dominating Set is called the pendant domination number denoted 

by  .Gpe   

Definition 1.4. A Pendant Dominating set S in G is called a Bi-Pendant 

Dominating Set if SV \  also contains pendant vertex. The minimum 

cardinality of a Bi-Pendant Dominating Set is called the bi-pendant 

domination number denoted by  .Gbpe  

Definition 1.5. Let  111 , EVG   and  222 , EVG   be two graphs. The 

tensor product 21 GGG   is defined as a graph with vertex set .21 VV   

Edge set is defined as follows: If  111 , vuw   and  222 , vuw   are two 

vertices of G with 1Vui   and  2,1,2  iVvi  then  GEww 21  if and 

only if 121 Euu   and .221 Evv   

Definition 1.6 [2]. A Decomposition  nGGG ,,, 21   of G is said to be 

Ascending Pendant Domination Decomposition (APDD) if  
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(i) Each iG  is connected  

(ii)   .1,1 niiGipe    

Definition 1.7 [5]. A Decomposition  nGGG ,,, 21   of G is said to be 

Ascending Bi-Pendant Domination Decomposition (ABPDD) if  

(i) Each iG  is connected  

(ii)     .11,11   niGG ibpeibpe  

2. Main Results 

Definition 2.1. Let G be a graph which admits ABPDD into n-parts. For 

each ,,,2,1 ni   let   ibpe GG ,M  be the family of connected subgraphs 

with  ibpe G  and       .,, ibpeibpe GGGGm  M  Then ABPDD 

polynomial of a graph G is defined as  

    
 







n

i

G
ibpe

ibpexGGmxGM

1

,,  

Remark 2.2. 1. The constant term and the coefficient of x in ABPDD 

polynomial of any graph G are zero.  

Theorem 2.3. If the path pP  admits ABPDD into n-parts, then  

    






1

433,

nk

ki

i
p xipxPM  

Proof. Let G be the path pP  graph.  

Suppose that the path pP  admits ABPDD into n-parts.  

Then     .11,11   niGG ibpeibpe  

Hence if   ,3,1  kkGbpe  then     2,1 32  kGkG bpebpe  

and   .1 nkGnbpe   

For each ,1,,1,  nkkki   let   ibpep GP ,M  be the family of 
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connected subgraphs with   1 ikGibpe  and   ibpep GPm ,  

   ., ibpep GP  M  

For ,1i   

     kHPHHkP bpepp  withofsubgraphconnectedis:,M  

The only possible subgraphsin  kPp,M  are 3343 ,  kk PP  and .23 kP   

Hence   kPp,M  Total number of graphs 43 kP ’s in pP  Total 

number of graphs 33 kP ’s in pP  Total number of graphs 23 kP ’s in .pP   

       123133143,  kpkpkpkPpM  

  433  kp  

Therefore,     .433,  kpkPm p   

For ,2i  

     1withofsubgraphconnectedis:1,  kHPHHkP bpeppM  

The only possible subgraphs in  1, kPpM  are kk PP 313 ,  and .13 kP  

Hence    1, kPpM  Total number of graphs 13 kP ’s in pP  Total 

number of graphs kP3 ’s in pP  Total number of graphs 13 kP ’s in .pP   

       113131131,  kpkpkpkPpM  

  433  kp  

Therefore,     .1331,  kpkPm p  

For     .2332,,3  kpkPmi p  

Continuing in this way,  

For ,ni   

    HPHHnkP bpepp  withofsubgraphconnectedis:1,M  

1 nk  
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The only possible subgraphs in  1,  nkPpM  are  ,733  nkP  

 633  nkP  and  .533  nkP   

Hence    1, nkPpM  Total number of graphs  733  nkP ’s in pP  

Total number of graphs  633  nkP ’s in pP  Total number of graphs 

 533  nkP ’s in .pP  

       163317331,  nkpnkpnkPpM  

     73331533  nkpnkp  

Therefore,     .73331,  nkpnkPm p  

Now,  

    
 







n

i

G
ibpe
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,,  

    
 
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
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1

,,  

  
 
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 


 21

21 ,,
G

bpep
G

bpep
bpebpe xGPmxGPm  

  
 nbpe G

nbpep xGPm


 ,  

      11 1,1,,   nk
p

k
p

k
p xnkPmxkPmxkPm   

         11 7333133433   nkkk xnkpxkpxkp   

  






1
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nk

ki

ixip  

Hence the theorem.  

Theorem 2.3. If the Cycle pC  admits ABPDD into n-parts, then  
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  






1

3,
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ki

i
p pxxCM  

Proof. Let G be the pC  graph.  

Suppose that the cycle pC  admits ABPDD into n-parts.  

Then     .11,11   niGG ibpeibpe   

Hence if   ,3,1  kkGbpe  then     2,1 32  kGkG bpebpe  

and   .1 nkGnbpe   

For each ,1,,1,  nkkki   let   ibpep GC ,M  be the family of 

connected subgraphs with   1 ikGibpe  and   ibpep GCm ,  

   ., ibpep GC  M  

For ,1i   

     kHCHHkC bpepp  withofsubgraphconnectedis:,M  

The only possible subgraphs in  kCp,M  are 3343 ,  kk PP  and .23 kP   

Hence   kCp,M  Total number of graphs 43 kP ’s in pC  Total 

number of graphs 33 kP ’s in pC  Total number of graphs 23 kP ’s in .pC   

  pppkCp ,M  

p3  

Therefore,   .3, pkCm p   

For ,2i   

     1withofsubgraphconnectedis:,  kHCHHkC bpeppM  

The only possible subgraphs in  1, kCpM  are kk PP 313 ,  and .13 kP   

Hence    1, kCpM  Total number of graphs 13 kP ’s in pC  Total 

number of graphs kP3 ’s in pC  Total number of graphs 13 kP ’s in .pC   
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  pppkCp  1,M  

p3  

Therefore,   .31, pkCm p    

For   .32,,3 pkCmi p    

Continuing in this way,  

For ,ni    

    HCHHnkC bpepp  withofsubgraphconnectedis:1,M  

1 nk  

The only possible subgraphs in  1,  nkCpM  are  ,733  nkP  

 633  nkP  and  .533  nkP   

Hence    1, nkCpM  Total number of graphs  733  nkP ’s in 

pC  Total number of graphs  633  nkP ’s in pC  Total number of graphs 

 533  nkP ’s in .pC   

  pppnkCp  1,M  

p3   

Therefore,   .31, pnkCm p    

Now,  
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G
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G
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  
 nbpe G

nbpep xGCm


 ,  
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      11 1,1,,   nk
p

k
p

k
p xnkCmxkCmxkCm   

11 333   nkkk pxpxpx   








1

3

nk

ki

ipx  

Hence the theorem.  
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