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Abstract 

Survival analysis is absorbed to analysis of time to event data. To handle these outcomes, 

as well as censored observations, where the event was not observed during follow-up, survival 

analysis methods should be used. Kaplan-Meier estimation can be used to create graphs of the 

observed survival curves, while the log-rank test can be used to compare curves from different 

groups. Regression and Discriminant analysis are part of Multivariate statistics. Regression 

analysis is one such concept which explores the relationship between two or more quantifiable 

variables so that one variable can be predicted from other. Discriminant analysis uses discrete 

response and continuous predictors to classify observations into different groups, particularly 

using linear (or) quadratic classification function. The aim of the study is to analyse the survival 

data with survival techniques, multiple regression and discriminant analysis and interpret the 

outcomes in all ways. Such discriminant classifiers are used to identify customers with repaying 

capacity of loans in banking industry it is also used in clinical diagnosis for identifying specific 

diseases, based on clinical and social democratic parameters obtained from the patients. The 

study has made use of Advanced Statistical free and open software R (4.1.1) and its packages 

“survival”, “survminer”, “Surv Reg CensCov” and “survreg” are used to analyze the Data. 
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1. Introduction 

Survival Analysis is the study about survival data. Survival data include 

survival time, event and characteristics related to event. Survival curves are 

generated by Kaplan-Meier method. Traditional Kaplan-Meier method used 

for finding survival probabilities for censored and non-censored observations. 

Survival to any time point is calculated as the product of the conditional 

probabilities of surviving each time interval. The calculations are simplified 

by ignoring censored times. Cox proportional Hazard (CPH) model is well 

known for analyzing survival data because of its simplicity as it has no 

assumption regrading survival distribution. CPH helps to find out hazard 

ratio based on coefficients. These coefficients are ease to interpret and 

clinically meaningful (D. Hosmer S. Lemeshow 1989). In Parametric survival 

models, it is considered that survival time follows known distributions as 

Weibull, Exponential, Log-normal, and Log-logistic distributions. Parametric 

models may be acceleration failure time (AFT) and PH models. The AFT 

models are useful for comparison of survival times whereas the PH is 

applicable for comparison of hazards (DG. Kleinbaum, M. Klien [8]). 

Parametric models are better over PH with respect to sample size and 

relative efficiencies (A. Nardi, M. Schemper, [2]). 

Logistic Regression and Linear Discriminant Analysis are multivariate 

statistical methods which can be used for the evaluation of the association 

between various covariates and categorical outcomes. Both methodologies 

have been extensively applied in research, especially in Medical and Socio-

logical Sciences. Logistic Regression is a form of regression which is used 

when the dependent variable is dichotomous, discrete, or categorical and the 

explanatory variables are of any kind. Discriminant analysis is a similar 

classification method that is used to determine which set of variables 

discriminant between two or more naturally occurring groups and to classify 

an observation into these known groups. In both Discriminant analysis and 

Logistic regression can be used to predict the probability of a specified 

outcome using all or a subset of available variables. 

Regression analysis is performed so as to determine the correlations 

between two or more variables having cause-effect relations and to make 

predictions for the topic by using the relation. The regression using one single 
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independent variable is called univariate regression analysis while the 

analysis using more than one independent variable is called multivariate 

regression analysis (Tabachnick, [5]). Through univariate regression analysis, 

the relations between a dependent variable and independent variable are 

analyzed, and the equation representing the linear relations between the 

dependent and independent variables is formulated. The regression models 

with one dependent variable and more than one independent variable, 

however, is known as multivariate regression analysis. 

Logistic regression is used to estimate the association of one or more 

independent (predictor) variables with a binary dependent (outcome) variable 

(Patrick, 2021). Linear regression not only tests for relationships but also 

quantifies their direction and strength (Schober and Vetter, [21]). Ping Jin et 

al., [22] found that Multi-task Logistic regression (MTLR) and Cox did 

extremely well-better than the other survival models, Kaplan-Meier 

estimator and accelerated failure time model on maximizing profits. This 

suggests that MTLR and Cox are likely good choices for predicting 

Reservation Price distribution predictions, in general. 

Survival model an estimate of  tS  denoted by  tŜ  is estimated using 

Nonparametric and COX Models. The author plans to estimate, log survival 

time using multiple linear regression model with variables Dose and Clinic as 

independent variables. Discriminant analysis is used to group the observation 

into „event‟ or „censor‟ observation. 

2. Survival Function and Methods 

Survival function is a key term in survival analysis, along with censoring 

and event. The concept of a survival function is essential for the 

understanding of survival analysis. The survival function is defined as the 

probability of the outcome event not occurring up to a specific point in time, 

including the point of observation (t) and is denoted by 

     tFtTPtS  1   (2.1) 

T - Random variable denoting the time to event 

 tTP  -Probability of not experience the event up to and including time t 
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 tF -Cumulative distribution function. 

The ratio of the number of events occurring during the entire study 

period to the total number of observations is termed the incidence rate. The 

hazard function is a function for calculating the instantaneous incidence rate 

at any given point in time and is denoted by  .th  

 
 

t

tTttTtP
th








|
lim

0
  (2.2) 

2.1 Parametric survival using accelerated failure time (AFT) 

model 

Let T is a random variable of survival time and X is a column vector of 

the covariates pXXX ,,, 21   the AFT model defines the relationship of 

survival function for every time  ,|, XtSTt  and the covariates as follows 

   Xt
teSXtS  0|  (2.1.1) 

where 0S  is the baseline survival function and p
t  ,,, 21   is a vector 

of regression coefficients. The factors  Xt
e  in the equation is known as the 

accelerated factor which accelerates the survival function with covariate 

.0X  The AFT model assumes that the effects of the covariate are fixed and 

multiplicative by the accelerative factor on the time scale of t. However, it 

does not assume that the model holds the constant hazards assumptions as in 

PH model. 

The relationship between covariates and the survival time can be also 

illustrated as a linear relation between the natural logarithm of survival time 

and covariate X, that is  

WXTY t  log   (2.1.2) 

Where  is the slope, 0  is an unknown scale parameter, 

 p
t  ,,, 21   is the vector of regression coefficients,  ,  is a 

scale parameter and W is a distribution error which is a random variable and 

assumed to follow a certain parametric distribution. For every distribution of 

W, there is a related parametric for T. The name for the AFT model come 
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from the distribution of T rather than the parametric distribution of .log T  

The commonly parametric distributions, which correspond to the AFT model 

are Weibull, Exponential, Log-logistic and Log-normal. However, the AFT 

models that are considered in this section are Weibull AFT model, 

Exponential AFT model, Loglogistic AFT model and Lognormal AFT model. 

The survival function of niTi ,,2,1,   is given by  

       tYtTtTtS iiii logPrloglogPrPr   

 tWXt logPr   

 



















Xt
W

t

i
log

Pr  (2.1.3) 

Table 1. The survival function and hazard functions. 

Distribution PDF CDF Survival Hazard 

Exponential te   te 1  te    
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2.2 Non-Parametric Estimator for Survival Function 

The most common non-parametric approach in the literature is the 

Kaplan-Meier (or product limit) estimator. The Kaplan -Meier estimator 

works by breaking up the estimation of  tS  into a series of steps or intervals 

based on observed event times. 
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This estimator holds for all 0t  and it depends only on two variables, 

in  and id  which are in -number in risk at time ii dt , - number of events at 

time .it  

2.3 Semi-Parametric model. Cox PH model is one type of regression 

model which is commonly used in medical research for investigating the 

association between the survival time of patients and one or more predictors 

variables. This method is used to evaluate the effect of many factors on 

survival time, and it allow to examine the specified factors influence the rate 

of particular event that occurs at a particular time. 

The general form of hazard function is written as 

    ,,, 0 xrhxth   (2.3.1) 

where 0h  reflects how hazard function changes with survival time, and 

 ,xr  characterizes how hazard function changes with covariates. Cox 

(1972) has proposed exponential function for  ,, xr  and the hazard function 

is written as 

   xehxth 0,,   (2.3.2) 

when x changed from 0x  to ,1x  the hazard ratio is  
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The model is termed Cox proportional hazard model, researchers are 

interested in the parameter , which is interpreted as changing rate of 

hazard when the covariate changed by  
01 xx   unit, the baseline hazard 

function  th0  remains unknown, so the model is called semi-parametric 

model. 
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3. Multivariate Analysis 

3.1 Regression Analysis. The regression analysis can be used to 

identify the explanatory variables that are related to a response variable, to 

describe the form of the relationships involved, and to provide an equation for 

predicting the response variable from the explanatory variables. 

On Regression methods that fall under the rubric of ordinary least 

squares (OLS) regression, including simple linear regression, polynomial 

regression, and multiple linear regression. OLS regression is the most 

common variety of statistical analysis today. Other type of regression models 

also available, including logistic regression and Poisson regression. 

For most of this will be predicting the response variable from a set of 

predictor variables using OLS. Regression fit models of the form 

niXXY kikii ,,2,1;ˆˆˆˆ
110     (3.1.1) 

where n is the number of observations and k is the number of predictors 

variables. iŶ  is the predicted value of the dependent variable for observation 

i. jiX  is the jth predictors value for ith observation. 0̂  is the intercept. j̂  is 

the regression coefficient for the jth predictor. 

Our goal is to select parameter (intercept and slopes) that minimize the 

difference between actual response values and those predicted by the model. 

Specifically, model parameters are selected to minimize the sum of squared 

residuals:  

     
 
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i

i

1

2   (3.1.2) 

To properly interpret the coefficient of the OLS model satisfy a number of 

statistical assumptions: 

 NORMALITY- for fixed values of the independent variables, the 

dependent variable is normally distributed. 
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 INDEPENDENCE- the iY  values are independent of each other. 

 LINEARITY- the dependent variable is linearly related to the 

independent variables. 

 HOMOSCEDASTICITY- the variance of the dependent variable does 

not vary with the levels of the independent variables. (Constant 

variance). 

If violate these assumptions, our statistical significance tests and 

confidence intervals may not be accurate. 

3.2 Discriminant Analysis. Discriminant analysis is used to predict the 

probability of belonging to a given Class or Category based on one (or) 

multiple predictor variables. It works with continuous and (or) categorical 

predictors variables. 

Linear discriminant analysis and the related Fisher‟s linear discriminant 

are methods used in statistics, pattern recognition and machine learning to 

find a linear combination of features which characterizes or separates two or 

more classes of objects or events. The resulting combination may be used as a 

linear classifier, or, more commonly, for dimensionality reduction before later 

classification. 

3.3 Logistic Regression. Logistic Regression is a classification 

algorithm. It is used to predict a binary outcome (1 / 0, Yes / No, True / False) 

given a set of independent variables. To represent binary/categorical outcome, 

we use dummy variables. Researcher can also think of logistic regression as a 

special case of linear regression when the outcome variable is categorical, 

where we are using log of odds as dependent variable. In simple words, it 

predicts the probability of occurrence of an event by fitting data to a logit 

function. 

The logistic regression method assumes that: 

 The outcome is a binary or dichotomous variable like yes vs no, positive 

vs negative. 

 There is a linear relationship between the logit of the outcome and each 

predictor variables. Recall that the logit function is  pitlog   
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p
 where p is the probabilities of the outcome. 

 There is no influential values (extreme values or outliers) in the 

continuous predictors 

 There is no high inter correlations (i.e. multicollinearity) among the 

predictors. 

To improve the accuracy of model, make sure that these assumptions hold 

true for the data. Both Logistic regression and Discriminant analysis can be 

used for binary classification tasks. 

4. Application to the two methadone treatment clinics for heroin 

Addicts (ADDICTS) 

Retention of patients in methadone treatment was studied in a cohort of 

238 heroin addicts who entered maintenance programs between February 

1986 and August 1987. This Australian study by Caplehorn et al. (1991), in 

which two methadone treatment clinics for heroin addicts were compared and 

is used to assess patient time remaining under Methodone treatment. A 

patient survival time was determined as the time, in days, until the person 

dropped out of the clinic or was censored. The two clinics differed according to 

their live-in policies for patients. This data is downloaded from 

http://web1.sph.emory.edu/dkleinb/surv3.htm. 

Table 2. Summary of data set. 

Variable Description  Codes (Values, Percentage)  

ID Study ID  1-238  

Days. 

Survival 

The Time until the 

patient dropped out 

of the clinic or was 

censored  

Days  

Status Indicates whether the 

patient dropped out 

of the clinic or was 

censored  

1 = Dropped out (150, 63%)  

0 = Censored (88, 37%)  
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Prison Whether the patient 

has a prison record or 

not  

1= prison record (81, 127)  

0= otherwise (69, 111)  

Clinic Whether the patient 

taken treatment in 

Clinic 1 or Clinic 2  

0=clinic 1 (122, 163)  

1=clinic 2 (28, 75)  

Dose Maximum methadone 

dose  

mg/day  

The Addicts data sets contains censored observations. The researcher 

aims to analyze the Addicts data in three different ways. 

 Model 1 contains all observations with censoring. 

 Model 2 contain observation with event i.e., those patients depart from 

Clinic and 

 Model 3 represents the data contains drop out from the study. 

Models 2 and 3 does not contain any censoring observations. 

Model 1 contains 238 Patients‟ observations that also includes censoring. 

At the time, the study is terminated, 88 are continue in the clinic after the 

study or dead or drop out. Researcher consider the 88 drop out as censored. 

Table 3. KM survival probability for Addicts data. 

Time Risk set Survival 

probability 

Std. error LCI 95% UCI 95% 

7 236 0.9960 0.0042 0.9875 1.0000 

13 235 0.9920 0.0060 0.9799 1.0000 

. . . . . . 

. . . . . . 

. . . . . . 

489 95 0.5090 0.0345 0.4452 0.5810 

496 94 0.5030 0.0346 0.4398 0.5760 
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. . . . . . 

. . . . . . 

. . . . . . 

878 13 0.1700 0.0367 0.1116 0.2600 

892 10 0.1530 0.0368 0.0958 0.2450 

899 9 0.1360 0.0364 0.0807 0.2300 

At the end of the Seventh day, risk set in the Addict data contains 236 

patients, because 2 were censored. The survival probability at 7th day after 

taken treatment is 0.9960. In 878th day of treatment, 13 patients were at risk 

set and the survival probability is 0.17. 

 

Figure 1. Non-Parametric Survival and Hazard Plots: Model 1. 

The Figure 1 shows that KM curve of point estimation for addict data 

(Model 1), the estimate obtained are invariably expressed in graphical form. 

The graph plotted between estimated survival probabilities (on Y axis) and 

time past after entry into the study in days (on X axis) consists of vertical and 

horizontal lines. The survival curve is drawn as a step function. The 

estimated median survival time for Model 1 is 504 days. 

In Table 4 shows that KM survival probability for Model 2 (patients 

depart from Clinic). The median survival time is 280 days. 

Table 4. KM survival probability for Model 2 in Addicts data. 

Time Risk set Survival 

probability 

Std. error LCI 95% UCI 95% 
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7 150 0.9933 0.0066 0.9804 1.0000 

13 149 0.9867 0.0094 0.9685 1.0000 

. . . . . . 

. . . . . . 

. . . . . . 

280 76 0.5000 0.0408 0.4261 0.5868 

. . . . . . 

. . . . . . 

. . . . . . 

892 2 0.0067 0.0066 0.0009 0.0470 

899 1 0.0000 - - - 

 

Figure 2. Non-Parametric Survival and Hazard Plots: Model 2 (patients 

depart from Clinic). 

Figure 2 shows that the survival and hazard curve for patients depart 

from Clinic Addicts data without censoring and also horizontal vertical line 

for figure shows that median survival time 280 days. 

In Model 3 (Patient drop out from the study), KM survival probability 

shows in Table 5. 50% of patient surviving longer than at 532 days. In Figure 

3 also confirms about the median survival time. 
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Table 5. KM survival probability for Model 3 in Addicts data. 

Time Risk set Survival 

probability 

Std. error LCI 95% UCI 95% 

2 88 0.9773 0.0159 0.9466 1.0000 

28 86 0.9545 0.0222 0.9120 0.9991 

53 84 0.9318 0.0269 0.8806 0.9860 

. . . . . . 

. . . . . . 

.  . . . . 

532 45 0.5000 0.0533 0.4057 0.6162 

. . . . . . 

. . . . . . 

.  . . . . 

1052 2 0.0114 0.0113 0.0016 0.0798 

1076 1 0.0000 0.0000 0.0000 0.0000 

 

Figure 3. Non-Parametric Survival and Hazard Plots: Model 3 (Patient drop 

out from the study). 
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Table 6. Comparison of the survival probability for the three models to 

ADDICT data.  

Survival Probability 

Time Model 1 Model 2  Model 3 

7 0.9960 0.9933 0.9773 

13 0.9920 0.9867 0.9773 

. . . . 

. . . . 

. . . . 

275 06680 0.5067 0.7614 

280 0.6630 0.5000 0.7614 

. . . . 

. . . . 

. . .  

892 0.1530 0.0067 0.0909 

899 0.1360 0.000 0.0909 

From the Table 6, it is observed that the survival probability is 0.66 for 

overall observation (Model 1), 0.50 in Model 2 and 0.76 in Model 3 at 280 

days. In the same time, Model 2 patient only survives 50%. 

     

Figure 4. KM survival curves for Model 1, 2 and 3. 
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The above Figure 4 shows that KM curve of point estimation for Addict 

data (Model 1, 2 and 3), the estimate obtained are invariably expressed in 

graphical form. The estimated median survival time for Model 1, Model 2 and 

Model 3 are 504 days, 280 days and 532 days respectively. The Patient depart 

from the study is earlier when compared to dropout. 

Semiparametric Cox model Estimation of hazard were analysed for all 

the three models and observed the significant covariates for survival time. 

The following Table shows the covariates, Hazard ratio and its corresponding 

p-value for all models. 

Table 7. Estimation of Hazard ratio and p-value for three models. 

  Dose clinic 2 

Model 1 HR 0.9663  0.3864  

P-value  < 0.01**  < 0.01**  

Model 2 HR 0.97907  1.31576  

P-value  <0.01**  0.1958  

Model 3 HR 0.9689  0.4368  

P-value  < 0.01**  < 0.01**  

Note: ** has denote significant at 1% level. 

From the above Table 7, it is observed that the covariates dose and Clinic 

are highly significant in Models 1 and 3 but the covariate Clinic is not 

significant in Model 2. Hazard for a patient taking treatment in clinic 2 is 

higher when compared to clinic 1. 

Table 8. AIC values for different parametric models. 

Parametric Models Model 2 Model 3 

AIC (Exponential) 2051.881 1265.884 

AIC (Weibull) 2029.729 1238.502 

AIC (Log-logistic) 2056.763 1267.656 

AIC (Lognormal) 2060.190 1294.293 
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Weibull model is the best parametric model for both Model 2 and 3 

because its AIC value is less compared to other models. 

Table 9. Hazard Ratio and Event Time Ratio using Weibull distribution. 

 Model 2 Model 3 

Dose Clinic2 Dose Clinic 2 

HR 0.9792 1.3133 0.9784 0.5457 

ETR 1.0149 0.8253 1.0127 1.4169 

In Model 2, hazard for a patient taking treatment in clinic 2 is higher 

when compared to clinic 1 but it is less in model 3, the same way of 

interpretation also observed in Weibull AFT model. 

When using survival methods for addicts data, the researcher observed 

Dose and clinic are significant variables for survival time. Using Multivariate 

analysis, Discriminant and Logistic Analysis, the researcher taken censored 

indicator (binary 1/0) as dependent variable and Dose and Clinic are 

predictors. Confusion Matrix for Discriminant and Logistic Analysis given 

below Table 10. In Both Multivariate Analysis, 71% of the observations are 

correctly classified, only 29% are misclassified. 

Table 10. Confusion Matrix for Discriminant and Logistic Analysis. 

Discriminant Logistic 

Predicted 0 1 0 1 

0 47 28 39 20 

1 41 122 49 130 

Total 88 150 88 150 



MULTIVARIATE STATISTICS TO SURVIVAL DATA 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 10, August 2022 

6097 

 

Figure 5. Classification plot for discriminant function. 

The Addicts dataset has a binary response (outcome, dependent) variable 

called status. There are Three predictor variables in the data, but taking only 

two variable Dose and Clinics in the Heroin addict data to estimates the 

logistic regression model. Below Table shows the coefficients, their standard 

errors, the z-statistic (sometimes called a Wald z-statistic), and the associated 

p-values. Identified the variables Dose and Clinic 2 are statistically 

significant because their P-values are less than 0.05. 

Table 11. Summary of the logistic regression model. 

 Estimate Std. error Z P-value 

Intercept 2.6673 0.6638 4.018 < 0.01** 

Dose -0.0263 0.0105 -2.510 <0.05* 

Factor 

(clinic2) 

-1.5424 0.3049 -5.058 < 0.01** 

Note: 1)** has denote significant at 1% level. 2) * has denote significant 

at 5% level. 

In the classification analysis also identified the covariates Dose and Clinic 

are significantly related with censor variable. 

Finally, researcher analyse Addicts data as two different data i.e., patient 

depart (Model 2) and drop out (Model 3) with the help of Multiple Linear 
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Regression. It is observed that, In Model 2, the variable Dose is significant 

but Clinic is not statistically significant. In Model 3, both variables are 

significant and then contribution to log(time) is positive for both predictors. 

Table 12. Summary estimation of Model 2 and 3. 

 Model 2 Model 3 

Estimate P-value Estimate P-value 

Intercept 4.147 < 0.01** 3.427 < 0.01** 

Dose 0.024 < 0.001** 0.027 < 0.01** 

Clinic 2 -0.277 0.164 0.465 <0.05* 

Note: 1) ** has denote significant at 1% level. 2) * has denote significant 

at 5% level. 

From the above table, it is observed that increase in Dose results in 

increase in the log(time). This increase is comparatively less in Clinic1 in 

Model 2 compare to Model 3. 

 

Figure 6. Diagnostic plots for Model 2 and 3. 

The above graph shows that the Model 2 and 3 satisfies the assumptions 

for Multiple linear regression. 

Durbin-Watson Test is used to test the presence of autocorrelation in a 

time series data. 
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Table 13. Durbin-Watson Test. 

 Lag Autocorrelation D-W Statistic P-value 

Model 2 1 0.2402 1.5013 <0.01** 

Model 3 1 0.0870 1.8104 0.342 

From the above Table it is observed that P-value (<0.01) for Model 2 is 

significant but Model 3, it is not significant in Durbin-Watson Test. So, the 

Model 3 suggests a lack of auto correlation and conversely an independence of 

errors. The lag value (1 is this case) indicates that each observation is being 

compared with the one next to it in the data set. Although, appropriate for 

the time dependent data, the test is less applicable for data that is not 

clustered in the fashion. Homoscedasticity (Non constant variance score test) 

the score tests are significant for the Model 2 and 3. All the assumption for 

simple regression also apply for multiple regression with one addition. If two 

of the independent variables are highly related, this leads to a problem called 

Multicollinearity. Variance inflation factor (VIF), VIF scores should be close 

to 1 but under 5 is fine and 10+ indicates that the variable is not needed and 

can be removed from the model. All the values in this analysis have scores 

close to 1 for Model 2 and 3. 

 

Figure 7. Influence plot for model 2 and 3. 

The above plot shows that the observations 175 and 123 are outliers, 229 

and 156 are influential observation and observed no high leverage point in 

Model 2. In model 3, it shows that 217 and 143 are outliers, 112 have high 

leverage and 115 is influential observation. 
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Table 14. Time values are listed according to covariates for the two models 2 

and 3. 

Dose 

Model 2 Model 3 

Clinic 1 Clinic 2 Clinic 1 Clinic 2 

25mg 87 66 96 153 

50mg 159 121 189 301 

75mg 290 220 371 591 

The Patient who is taking treatment in Clinic 1 and Dose 50mg/day will 

be expected to depart at 159 days but it is 121 days for patient taking 

treatment in Clinic 2. It is understood that the survival time for Clinic 1 is 

higher than Clinic 2 in Model 2 but it is contradicted in Model 3. R software is 

immensely useful to generate suitable graphical plots that ease the 

comparison and makes inferences more lucid. 

5. Summary and Conclusion 

In this study, the researcher aims to analyze the Addicts data in three 

different ways. Model 1 contains all observations with censoring, Model 2 

contain observation with event i.e., those patients depart from Clinic and 

Model 3 represents the data contains drop out from the study. Models 2 and 3 

does not contain any censoring observations. Comparison of survival 

probability in the three models and corresponding Survival Curves are 

obtained using Nonparametric estimation. Among all Parametric survival 

models, it is observed that Weibull model is fitted for ADDICTS data because 

its AIC value is less compared to other models. Semiparametric Cox model 

estimation of hazard were analysed for all the three models and observed 

Dose and Clinic are the significant covariates for survival time. Multiple 

regression used for modelling the log survival time and the discriminant 

analysis for identifying the censored observations. When using Multivariate 

analysis like Logistic regression and Discriminant Analysis were used for 

Model 1 in ADDICTS data, 71% of the observations are correctly classified, 

only 29% are misclassified in both methods. The covariates Dose and Clinic 

are significant to the censor indicator (1/0) in Logistic Regression. Multiple 

linear regression method used for Model 2 and 3 and the predictor variables 
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are statistically significant for Model 2 and 3. The Patient who is taking 

treatment in Clinic 1 and Dose 50mg/day will be expected to depart at 159 

days but it is 121 days for patient taking treatment in Clinic 2. It is 

understood that the survival time for Clinic 1 is higher than Clinic 2 in Model 

2 but it is contradicting in Model 3. From Cox and Regression Models, we 

arrive at the same interpretation. Using Survival Models, classification 

techniques and multiple linear regression for ADDICTS data results with the 

same significant covariates, namely the „Dose‟ and „Clinic‟. 
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