

Advances and Applications in Mathematical Sciences
Volume 18, Issue 8, June 2019, Pages 775-787
© 2019 Mili Publications

2010 Mathematics Subject Classification: 15-XX.

Keywords: matrix multiplication, open multi processing.

Received February 21, 2019; Accepted March 22, 2019

PARALLEL COMPUTING OF MATRIX

MULTIPLICATION IN OPEN MP SUPPORTED

CODEBLOCKS

HARI SINGH, DINESH CHANDER

and RAVINDARA BHATT

1,3Jaypee University of Information Technology

Solan, Himachal Pradesh, India

Email: hari.singh@juit.ac.in

 ravindara.bhatt@juit.ac.in

Panipat Institute of Engineering & Technology

Panipat, Haryana

Email: me.dinesh17@gmail.com

Abstract

Matrix multiplication is a very popular and widely used operation in linear algebra. It has a

number of application areas such as Graph Theory, Numerical Algorithms, Signal Processing

and Digital Control. A lot of researchers have implemented and analyzed parallel computation of

matrix multiplication in a number of parallel computing platforms such as Messaging Passing

Interface (MPI) in distributed memory architecture; Open Multiprocessing (Open MP) shared

memory architecture and Compute Unified Device Architecture (CUDA). In this paper, parallel

computation of matrix multiplication in Open MP (OMP) has been analyzed with respect to

evaluation parameters execution-time, speed-up, and efficiency. The experimental results

validate the high performance gained with parallel processing OMP as compared to the

traditional sequential execution of matrix multiplication.

1. Introduction

Though, the storage, processing speed, communication speed and, other

computer hardware and software resources are technologically advanced and

easily available, but, they fail to meet the current complex application

requirement. The parallel computation has become the need of the day.

Generally, the execution-time of a program is the amount of time taken to

execute all the instruction of the program with some average instruction

HARI SINGH, DINESH CHANDER and RAVINDARA BHATT

Advances and Applications in Mathematical Sciences, Volume 18, Issue 8, June 2019

776

execution time. With the advancement in technology, the increased processor

speed has been able to improve/decrease the execution-time. However, there

is some limitation to increasing the processor speed; it cannot be increased

indefinitely due to more power required to run the processor and

subsequently more heat generated that cannot be disposed off by the heat

sink [6].

Parallel computing is about using many processors or multi-core CPU

simultaneously to execute a program or multiple computational threads [11,

12]. Though, multi-core processors are widely available, but, the parallel

programming is not that much popular among its users to harness the

available multi-cores. Multi-core technology means more than one core inside

a single chip. This allows multiple instructions of a program to be executed in

parallel at the same time. Thread level parallelism (Multithreaded

processors) executes multiple threads on multiple-cores in parallel and

improves processor performance. A core is a part of the processor that

performs read, execute, and write operations. One significant advantage of

using Open MP is that the same source code can be used with Open MP

compliant compilers and normal compilers as the Open MP commands and

directives remain hidden to normal compilers.

Open MP is typically used for exploiting loop-level parallelism; it can be

used to establish coarse grain parallelism, potentially leading to less

overhead. The primary motivation for adopting new programming paradigms

is increased capability, efficiency and ease of programming. Adding MPI to

Open MP programs allow users to run on larger collections of processors.

Pure shared memory machines are limited in number of processors. Adding

message passing can increase number of processors that are available for a

job. Adding Open MP to MPI programs can also increase efficiency and also

increase capability. With Open MP, there is no implicit copying of data.

The following are the evaluation parameters in parallel computation of a

task.

(1) Execution time: The time difference between the starting (when

execution is started) and ending of the process (when the execution is

completed and results are obtained).

(2) Speed-up: it is the ration of execution time of a single core processor to

PARALLEL COMPUTING OF MATRIX MULTIPLICATION IN …

Advances and Applications in Mathematical Sciences, Volume 18, Issue 8, June 2019

777

the multi-core processor. The speed-up is linear if it is equal to the number of

processors. It is poor if it is less than the number of processors. Theoretically

speed-up cannot be greater than the number of processors.

(3) Efficiency: It is the ratio of speed-up to the number of processors. In a

parallel model, increasing the number of processors improves the

performance but this trend does not continue when we keep on increasing the

number of processors. After a time, adding more cores or processors becomes

inefficient. So, mathematically, higher the efficiency, more cores or processors

can be added. Theoretically, efficiency cannot exceed 100%.

The organization of the paper is as follows. Section 2 discusses the

related work of matrix multiplication on Open MP. Section 3 describes the

fork-join processing model of multithreading used in Open MP. Section 4

describes the matrix multiplication algorithm in Open MP. Section 5 presents

an experimental evaluation and results. Section 6 concludes the paper.

2. Related Work

This section relates the work done by various researchers for matrix

multiplication in Open MP domain. Study and evaluation of execution time of

matrix multiplication is performed using Open MP on a single, dual and

multi-core processor. Open MP standard exploits parallelism in a shared

memory architecture with its multi-threading. A speed-up of around 3.6 was

obtained for various matrix sizes with Open MP [1].

In another paper, the authors compared the various HPC techniques,

such as MPI, Open MP, Hybrid Open MP and Pthread for matrix

multiplication of two matrices of size ranging from 16x 16 to 8192x8192 and

multi-processors ranging from 2-64 processors. The techniques are compared

on the performance of parallel model with respect to execution-time, speed-up

and efficiency. It was observed that the performance of parallel models (MPI,

Hybrid Open MP and Open MP) remains almost comparable to the sequential

model for smaller sizes of matrix. This is due to the fact that the parallel

model requires initializing some libraries and executing extra code to manage

the parallel code. Further, the performance of Open MP is low as compared to

the MPI and Hybrid Open MP parallel models for similar number of multi-

core processors or the size of input matrices. The effect of the compilers on

HARI SINGH, DINESH CHANDER and RAVINDARA BHATT

Advances and Applications in Mathematical Sciences, Volume 18, Issue 8, June 2019

778

the Open MP performance is also observed with gcc (4.2) 64 cores and gcc

(6.1) 8 cores for the parameter- execution-time. The performance of 64 cores

is found better [2].

A related work showed the performance (Execution-time and Speed-up)

gain achieved using Open MP parallel programming model over the

sequential programming on dual-core and quad-core processors processor

architectures for Merge Sort and Floyd’s algorithm [3].

In another paper, the authors identified the areas where multithreading

in Open MP causes performance bottlenecks that causes thread serialization,

such as critical sections, barriers, imbalanced amount of work in the parallel

region, etc. Approaches such as synchronization, thread management, task

scheduling and memory access are discussed to reduce execution-time and

other overheads to improve performance. As a program that spends much

time in bottlenecks or serialization looses a significant speed-up that could

have been achieved through parallelization. A matrix multiplication program

in Open MP has been used for it [4].

In some research papers, matrix multiplication on dual-core 2.0 GHz

processor with two threads on Open MP was analyzed for parameters speed-

up, efficiency and execution time. The experimental results show better

performance of the parallel model than the serial model. It was also observed

that parallelism should be adopted beyond a certain problem size [5, 7, 8, 10].

In another paper, the authors proposed a manual data distribution

approach in Open MP in contrast to the automatic data distribution approach

of Open MP for computing matrix addition and multiplication. The proposed

approach is found better than the default Open MP parallel model and the

sequential model [9].

In this paper, a parallel matrix multiplication in Open MP is run on a quad-

core processor in order to further validate the performance gain achieved

using parallel processing over the traditional sequential processing. We have

tried to omit instructions that force sequential region in program execution.

Here, the input is auto generated as opposed to the user supplied input [1].

Random generator function rand () causes sequential read [5] and malloc ()

call to dynamic memory allocation also causes sequential execution [6]. Other

papers do not clearly specify the input and computing approaches used [2, 4,

7].

PARALLEL COMPUTING OF MATRIX MULTIPLICATION IN …

Advances and Applications in Mathematical Sciences, Volume 18, Issue 8, June 2019

779

3. Fork-Join Processing Model in Open MP

The Open MP operates on fork-and join model of parallel execution. All

Open MP programs start as a single process called a master thread. Master

thread executes sequentially until a parallel region is encountered. At this

point, the master threads forks into a number of parallel region threads. The

instructions in the parallel region are then executed by this team of worker

threads. At the end of parallel region, the threads synchronize and join to

become the single master thread again. The whole idea is presented in Figure

3.1.

In the matrix multiplication algorithm, presented in section 4, matrices

reading and their multiplication is done in a parallel region. Two matrices

  A and    B are read in parallel and a third matrix that would store

the multiplication result of the two input matrices is initialized to 0. These

tasks are performed in loops. For large size input matrices, two loops for

reading  A and  B and one loop for initializing    ,0C there is a

need to specify the chunk size. Similarly, the matrix multiplication also

requires a number of iterations. The chunk size in Open MP divides the

iterations into chunks and these chunks are assigned to the available threads

in circular order. If no chunk size is specified then Open MP divides

iterations into chunks of equal size (chunk size = Number of

iterations/Number of threads). It distributes at most one chunk to each

thread.

Figure 3.1. Fork-Join Processing Model in Open MP.

4. Open MP parallel Matrix Multiplication Algorithm

The following parallel matrix multiplication algorithm is implemented in

Code Blocks 13.12, having support for Open MP.

HARI SINGH, DINESH CHANDER and RAVINDARA BHATT

Advances and Applications in Mathematical Sciences, Volume 18, Issue 8, June 2019

780

Algorithm: Open MP parallel Matrix Multiplication

1. Start with int main (intargc, char *argv[]). Declare Matrix

A[NRA][NCA], B[NCA][NCB], C[NRA][NCB], nthreads and Chunk_Size.

NRA, NCA, NCB stands for the number of rows in Matrix A, number of

columns in Matrix A and number of columns in Matrix B, respectively.

These are macro defined variables. Initialize Chunk_Size.

2. Start parallel region explicitly

#pragma omp parallel shared(A,B,C,nthreads, Chunk_Size) private(tid,i,j,k).

{

tid = omp_get_thread_num();

 if (tid == 0)

 {

nthreads = omp_get_num_threads();

 }

Where A,B,C represents matrices; nthreads keeps a count on the number of

threads in use with the help of a thread identifier variable tid.

1. Initialize matrices in parallel

 #pragma omp for schedule (static, chunk)

 for (i=0; i<NRA; i++)

 for (j=0; j<NCA; j++)

 a[i][j]= i+j;

 #pragma omp for schedule (static, chunk)

 for (i=0; i<NCA; i++)

 for (j=0; j<NCB; j++)

 b[i][j]= i*j;

 #pragma omp for schedule (static, chunk)

 for (i=0; i<NRA; i++)

PARALLEL COMPUTING OF MATRIX MULTIPLICATION IN …

Advances and Applications in Mathematical Sciences, Volume 18, Issue 8, June 2019

781

 for (j=0; j<NCB; j++)

 c[i][j]= 0;

2. Perform matrix multiplication in parallel

 #pragma omp for schedule (static, chunk)

 for (i=0; i<NRA; i++)

 {

 for(j=0; j<NCB; j++)

 for (k=0; k<NCA; k++)

 c[i][j]= C[i][j]+a[i][k] * b[k][j];

 }

3. End parallel region created in Step 1 with a closing bracket

}

4. Get the output matrix printed

 for (i=0; i<NRA; i++)

 {

 for (j=0; j<NCB; j++)

 printf("%4.2f ", c[i][j]);

 printf("\n");

 }

 }

5. Experimental Evaluation and Results

The parallel matrix multiplication program was run on a machine with

processor: Intel(R) Core(TM) i5-6500 CPU@ 3.20 GHz, Memory 8GB RAM,

Operating System – Windows 10, 64-bit. This processor has 4-cores and and

by-default 4-threads. However, we have taken up to 10 threads to analyze

the execution time.

HARI SINGH, DINESH CHANDER and RAVINDARA BHATT

Advances and Applications in Mathematical Sciences, Volume 18, Issue 8, June 2019

782

The parallel matrix multiplication program in CodeBlocks 13.12, having

support for Open MP, was run for square output matrix of sizes of (5x5) 25,

(10x10) 100, (20x20) 400, (50x50) 2500, (100x100) 10000, (200x200) 40000,

(250x250) 62500, (275x275) 75625, (500x500) 250000, (1000x1000) 1000000,

(2000x2000) 4000000, (4000x4000) 16000000. However, it is not mandatory

to take only square matrices. As per the matrix multiplication requirement,

the number of columns of the first matrix should be equal to the number of

rows of the second matrix. Any input matrices    yxA and    yxB that

validates the matrix multiplication rules can be taken. –gomp.dll and –

pthreads-3C.dll libraries are included in the configuration process in Code

Blocks.

5.1. Parallel vs sequential execution with varying data size

During this experimental run chunk size was varies with values Chunk

Size (CS)= 10, 20, 30, 40, and 50 keeping the number of threads up to 50.

Apart from running the program for these different CS values, one sequential

version of the program without OMP support was also run. It was observed

that the parallel version in OMP is beneficial if the problem size is

significantly large, the benefit of parallel processing cannot be achieved. This

thing is evident from the Table 5.1 and Figure 5.1. There is no significant

gain in execution time up to an output matrix size of 10000. The observations

for running the parallel program with different chunk sizes do not make any

noticeable difference in execution time.

Speed-up represents the difference in execution time of a single-core and

multi-core processors.

Speed-up=Execution time single-core / Execution time multi-core

The Speed-up is evaluated in Table 5.1, 2nd last column, and is also

shown in the Figure 5.2. Here, Speed-up is calculated by taking various

problem sizes for a single-core and multi-core processor. The maximum

Speed-up of 2.30 is obtained for an output matrix size of 4000x4000. The

average Speed-up is 1.605. The results show that the Speed-up > 1 in all

cases, that shows a gain in execution time using a multi-core processor.

Theoretically, a Speed-up<1 shows a poor parallelism and Speed-up can

never exceed the number of processor value.

PARALLEL COMPUTING OF MATRIX MULTIPLICATION IN …

Advances and Applications in Mathematical Sciences, Volume 18, Issue 8, June 2019

783

Efficiency shows the performance of the system by adding more cores or

processors to the system. Sometimes it is not efficient to add more processors.

It shows the amount of speed or performance gained on adding more cores or

processors.

Efficiency= (Speed-up/Number of cores or processors)*100

The efficiency is evaluated in Table 5.1, last column, and is also shown in the

Figure 5.3. Here, Efficiency is calculated by taking various problem sizes for

a single-core and multi-core processor. The average efficiency is

approximately 40.15%. The maximum efficiency is gained for an output

matrix size of 4000x4000, it is 57.51 %. However, efficiency rate almost

stabilizes after a matrix size of 1000x1000.

5.2. Parallel execution with varying data size and number of threads

The parallel matrix multiplication program for different number of

threads was observed in OMP for a fixed chunk size = 10. The number of

threads (nt) was kept/controlled as 4, 10, 25, 50 for the output matrix sizes of

25, 100, 400, 2500, 10000, 40000, 62500, 75625, 250000, 1000000, 4000000,

and 16000000. It was observed that there is no considerable difference in

execution time up to an output matrix size of 250x250, but as the matrix size

is increased to 275x275 then a slightly better performance is seen with

.4nt The decreasing order of performance is with 10,25,50  ntntnt

and .4nt Due to the limitation of memory size with the computer taken in

the experiment, results could not be produced for output matrix of higher

order. The system started crashing for a matrix size of 4000x4000; results for

the matrix size of 2000x2000 and 4000x4000 were taken with much difficulty.

This observation is shown in Table 5.2 and Figure 5.4.

Table 5.1. Execution time analysis of a parallel matrix multiplication program in

OMP for different chunk sizes and a serial program without OMP.
Output

matrix size

Execution Time (Seconds) with OMP Execution Time (Seconds)

without OMP

Speed-up

(at CS=10)

Efficiency

(at CS=10)

CS=10 CS=20 CS=30 CS=40 CS=50 Sequential Program

5x5 0.11 0.082 0.064 0.068 0.079 0.119 1.08 27.04

10x10 0.124 0.108 0.072 0.1 0.08 0.133 1.07 26.81

20x20 0.148 0.144 0.124 0.133 0.125 0.177 1.19 29.89

50x50 0.446 0.523 0.441 0.428 0.461 0.54 1.21 30.26

100x100 1.217 1.163 1.225 1.219 1.258 1.5 1.23 30.81

200x200 4.082 4.096 4.137 4.144 3.976 6.357 1.56 38.93

250x250 6.376 6.371 6.461 6.389 6.4 10.232 1.60 40.11

275x275 7.452 7.074 7.417 6.982 7.45 12.313 1.65 41.30

500x500 28.34 28.02 27.15 25.85 24.26 56.589 1.99 49.91

1000x1000 87.39 86.26 84.14 82.37 80.76 185.473 2.12 53.05

2000x2000 1275.28 1267.45 1252.36 1231.75 1208.56 2865.752 2.24 56.17

4000x4000 4127.43 4076.57 4002.37 3994.76 3878.47 9495.964 2.30 57.51

HARI SINGH, DINESH CHANDER and RAVINDARA BHATT

Advances and Applications in Mathematical Sciences, Volume 18, Issue 8, June 2019

784

Figure 5.4. Execution time analysis of a parallel matrix multiplication

program in OMP for different number of threads.

Figure 5.2. Speed-up evaluation for a single-core vs Core(TM) i5-6500 CPU.

PARALLEL COMPUTING OF MATRIX MULTIPLICATION IN …

Advances and Applications in Mathematical Sciences, Volume 18, Issue 8, June 2019

785

Figure 5.3. Efficiency evaluation for a single-core vs Core(TM) i5-6500 CPU.

Table 5.2. Execution time analysis of a parallel matrix multiplication

program in OMP for different number of threads.

Output matrix size Execution time (seconds) with OMP

 nt=4 nt=10 nt=25 nt=50

5x5 0.079 0.078 0.078 0.078

10x10 0.08 0.08 0.082 0.081

20x20 0.125 0.124 0.125 0.125

50x50 0.461 0.454 0.451 0.449

100x100 1.258 1.121 1.078 0.992

200x200 3.976 3.276 3.082 2.882

250x250 6.4 6.012 5.8 5.376

275x275 7.45 7.163 6.763 6.452

500x500 24.26 22.539 20.373 17.34

1000x1000 80.76 76.647 71.243 64.39

2000x2000 1208.56 1178.549 1109.564 1012.28

4000x4000 3878.47 3767.645 3665.352 3441.43

HARI SINGH, DINESH CHANDER and RAVINDARA BHATT

Advances and Applications in Mathematical Sciences, Volume 18, Issue 8, June 2019

786

Figure 5.4. Execution time analysis of a parallel matrix multiplication

program in OMP for different number of threads.

6. Conclusion and future scopes

The parallel programming in OMP is beneficial only when the input

problem size is significantly larger. For smaller size problems, it is better to

go with sequential programming. OMP encourages the parallel execution of

the program and efficiently utilizes the multi-core processors in the present

generation CPUs. The work discussed in this paper does not observe fully the

pattern of execution times with high values of chunk sizes and number of

threads. It is due to the unavailability of the high configuration machines.

Similarly, Speed-up and Efficiency are computed on a single-processor and

one multi-core processor. Speed-up and efficiency need to be observed in a

variety of multi-processors. We would like to extend the analysis with various

multi-processor machines, such as having 8-cores, 16-cores, etc. We would

also like to test the execution times on various other complex programs and

on different voluminous data.

References

 [1] Yogesh Singh Rathore and Dharaminder Kumar, Performance evaluation of matrix

multiplication using Open MP for single dual and multi-core machines, IOSR Journal of

Engineering 4(1) (2014), 56-59.

 [2] Ali A. Alabboud, Sazlinah Hasan, Nor Asilawati Abdul Hamid and Ammar Y. Tuama,

Performance evaluation of MPI approaches and Pthread in Multi-core systems, Journal of

Engineering and Applied Sciences 12(3) (2017), 609-616.

PARALLEL COMPUTING OF MATRIX MULTIPLICATION IN …

Advances and Applications in Mathematical Sciences, Volume 18, Issue 8, June 2019

787

 [3] Baydaa Mohammed Saeed Mustafa and Waseem Ahmed, Parallel algorithm performance

analysis using Open MP for multi-core machines, International Journal of Advanced

Computer Technology 4(5) (2015), 28-32.

 [4] Vibha Rajput and Alok Katiyar, Proactive bottleneck performance analysis in parallel

computing using Open MP, Int. J. Adv. Stud. Comp. Sci. Engg. 2(5) (2013), 46-53.

 [5] Yajnaseni Dash, Sanjay Kumar and V. K. Patle, Evaluation of performance on Open MP

parallel platform based on problem size, International Journal of Modern Education and

Computer Science 6 (2016), 35-40.

 [6] Alina Kiessling, An Introduction to Parallel Programming with OpenMP, 2009,

https://www.roe.ac.uk/ifa/postgrad/pedagogy/2009_kiessling.pdf

 [7] S. N. Sheshappa, Maximize execution performance analysis of parallel algorithm over

sequential using Open MP, International Research Journal of Engineering and

Technology 3(9) (2016), 438-442.

 [8] C. K. Balaji and S. Kartheeswaran, Analyzing the matrix multiplication performance in

shared memory processor under multi-core architecture using Open MP, International

Journal of Pure and Applied Mathematics 119(15) (2018), 3249-3256.

 [9] Mohammed Faiz Aboalmaaly, Ali Abdul Razzaq Khudher, Hala A. Albaroodi and

Sureshwaran Ramadass, Performance analysis between explicit schedulinmg and implicit

scheduling of parallel array-based domain decomposition using Open MP, Journal of

Engineering Science and Technology 9(5) (2014), 522-532.

 [10] Ashwini M. Bhugal, Parallel computing using Open MP, International Journal of

Computer Science and Mobile Computing 6(2) (2017), 90-94.

 [11] M. Mathews and J. P. Abraham, Automatic code parallelization with open mp task

constructs. In 2016 International Conference on Information Science (ICIS) (pp. 233-238).

(2016, August), IEEE.

 [12] H. J. Plum, A. Krechel, S. Gries, B. Metsch, F. Nick, M. A. Schweitzer and K. Stüben,

Parallel algebraic multigrid, In Scientific Computing and Algorithms in Industrial

Simulations (pp. 121-134). Springer, Cham. (2017).

https://www.roe.ac.uk/ifa/postgrad/pedagogy/2009_kiessling.pdf

