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Abstract 

This paper focuses on new class of homeomorphism called -g homeomorphism which are 

stronger than homeomorphism. We also introduce -cg  homeomorphism and prove that 

-cg  homeomorphism form a group under the operation of composition of maps. 

1. Introduction 

The notion homeomorphism plays more vital role in topology. Maki [5] et 

al., introduced and investigated g-homeomorphism and gc-homeomorphisms. 

Devi [2] et al. introduced and studied sg-homeomorphism and gs-

homeomorphisms. 

In this paper we introduce the new class of homeomorphisms named as 

-g homeomorphism and study their properties. Also, we introduce another 

form of homeomorphism namely -cg  homeomorphism and its properties 

under composition of functions are analyzed. 

2. Preliminaries 

Definition 2.1. A map ( ) ( )→ ,,: YXf  is called -g continuous [6] if  

( )Vf 1−  is -g closed in ( ),X  for every closed set V in ( )., Y  
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Definition 2.2. A map ( ) ( )→ ,,: YXf  is called -g irresolute [6] if 

( )Vf 1−  is -g closed in ( ),X  for every -g closed set V in ( )., Y  

Definition 2.3. A bijective function ( ) ( )→ ,,: YXf  is called g-

homeomorphism [5] if f and 1−f  are g-continuous. 

Definition 2.4. A bijective function ( ) ( )→ ,,: YXf  is called gpr-

homeomorphism [3] if f and 1−f  are gpr-continuous. 

Definition 2.5. A bijective function ( ) ( )→ ,,: YXf  is called gsp-

homeomorphism [2] if f is gsp-continuous and gsp-open. 

Definition 2.6. A bijective function ( ) ( )→ ,,: YXf  is called gp-

homeomorphism [3] if f is gp-continuous and gp-open. 

Definition 2.7. A bijective function ( ) ( )→ ,,: YXf  is called g^-

homeomorphism [7] if f is g^-continuous and g^-open. 

3. -g Homeomorphism 

We introduce the following definition. 

Definition 3.1. A bijective function ( ) ( )→ ,,: YXf  is called 

-g homeomorphism if f is both -g continuous and -g open function. 

Example 3.2. Consider  4,3,2,1== YX  with topologies 

    3,1,1,, X=  and     .3,2,3,, Y=  Let ( ) ( )→ ,,: YXf  be 

defined by ( ) ( ) ( ) 23,32,41 === fff  and ( ) .14 =f  Here f is bijective, 

-g continuous and -g open. Hence f is -g homeomorphism. 

Proposition 3.3. Every homeomorphism is a -g homeomorphism. 

Proof. Let ( ) ( )→ ,,: YXf  be a homeomorphism. Then f is bijective, 

continuous and an open map. Since every continuous map is -g continuous 

and every open map is -g open, f is -g homeomorphism. 
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The converse of the above theorem need not be true as it can be seen from 

the above example 3.2. 

Proposition 3.4. Every g-homeomorphism is a -g homeomorphism. 

Proof. Let ( ) ( )→ ,,: YXf  g-be a homeomorphism. Then f is 

bijective, g-continuous and an g-open map. Let V be a closed set in ( )., Y  

Then ( )Vf :1−  is -g closed in ( )., X  This implies that f is 

-g continuous. Let U be an open set in ( )., X  Then ( )Uf  is g-open in 

( )., Y  Hence f is -g open function. Therefore, f is -g homeomorphism. 

The converse of the above theorem need not be true as seen from the 

following example. 

Example 3.5. Consider  3,2,1== YX  with topologies 

    2,1,1,, X=  and     .3,1,1,, Y=  Let ( ) ( )→ ,,: YXf  be 

the identity function. Then f is -g homeomorphism but not g-

homeomorphism, Since for the closed set {2} in  ( )  22, 1 =−fY  is not g-

closed in X. 

Proposition 3.6. Every g^-homeomorphism is a -g homeomorphism. 

Proof. Let ( ) ( )→ ,,: YXf  g^-be a homeomorphism. Then f is 

bijective, g^-continuous and an g^-open map. Let V be a closed set in ( )., Y   

As every g^-closed set is -g closed, ( )Vf 1−  is -g closed in ( )., X  This 

implies that f is -g continuous. Let U be an open set in ( )., X  Then ( )Uf  

is g^-open in ( )., Y  since every g^-open set is -g pen, ( )Uf  is -g open 

in ( )., X  Therefore, f is -g homeomorphism. 

The converse of the above theorem need not be true as seen from the 

following example. 

Example 3.7. Consider  4,3,2,1== YX  with topologies 

      4,3,4,3,, X=  and       .4,3,1,4,3,1,, Y=  Let 
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( ) ( )→ ,,: YXf  be defined as ( ) ( ) ( ) 13,32,21 === fff  and ( ) .44 =f  

Here f is -g homeomorphism but not g^-homeomorphism, since for the 

closed set  ( )  3,12,11 =−f  is not g^-closed in X. 

Theorem 3.8. Every -g homeomorphism is a gsp-homeomorphism. 

Every -g homeomorphism is a gp-homeomorphism. 

Every -g homeomorphism is a gpr-homeomorphism. 

Proof. Proof follows from the fact every -g continuous function is gsp, 

gp, gpr-continuous function and every -g open function is (gsp-open, gp-

open, gpr-open). Hence f is gsp, gp, gpr-homeomorphism. 

The reverse implications are not true which can be seen from the 

following example. 

Example 3.9. Consider  4,3,2,1== YX  with topologies 

  4,3,, X=  and       .2,1,2,1,, Y=  Let ( ) ( )→ ,,: YXf  be 

defined as ( ) ( ) ( ) 13,42,31 === fff  and ( ) .24 =f  Here f is gsp-

homeomorphism but not -g homeomorphism. Since for the closed set {1} in 

( )  ( )  31,, 1 = −fY  is gsp-closed but not -g closed in ( )., X  

Example 3.10. Consider  4,3,2,1== YX  with topologies 

  4,3,, X=  and   .3,2,1,, Y=  Let ( ) ( )→ ,,: YXf  be the 

identity function. Then f is gp-homeomorphism but not 

-g homeomorphism. Since for the closed set {4} in ( )  ( )  44,, 1 = −fY  is 

is gp-closed but not -g closed in ( )., X  

Example 3.11. Consider  4,3,2,1== YX  with topologies 

    4,3,2,4,3,, X=  and       .4,3,1,4,3,1,, Y=  Let 

( ) ( )→ ,,: YXf  be defined as ( ) ( ) ( ) 13,32,41 === fff  and ( ) .24 =f   

Then f is gpr-homeomorphism but not -g homeomorphism. Since for the 

image of open set {3, 4} in ( )  ( )  2,14,3,, = fX  is not -g open in ( )., Y  



ON -g HOMEOMORPHISM IN TOPOLOGICAL SPACES 

Advances and Applications in Mathematical Sciences, Volume 20, Issue 8, June 2021 

1437 

Remark 3.12. The composition of two -g homeomorphisms need not be 

-g homeomorphism. This can be proved by the following example. 

Example 3.13. Consider  4,3,2,1== YX  with topologies 

    4,3,1,3,, X=  and     4,2,1,1,, Y=  and   .4,3,1,, Z=  

Define ( ) ( )→ ,,: YXf  by ( ) ( ) ( ) ( ) 44,13,22,31 ==== ffff  and  

( ) ( )→ ,,: ZYg  by ( ) ( ) ( ) .23,32,41 === ggg  Here f and g are 

-g homeomorphisms. But their composition ( ) ( )→ ,,: ZXfg   is not 

-g homeomorphism as the open set {1, 3, 4} in ( ),X  is not -g open in 

( )., Z  

Theorem 3.14. Assume that YXf →:  is bijective and -g continuous. 

Then the below facts are true. 

(i) f is -g open 

(ii) f is -g homeomorphism 

(iii) f is -g closed. 

Proof. (a)  (b) 

Let f be a -g open map. By hypothesis, f is bijective and 

-g continuous. Hence f is -g homeomorphism. 

(b)  (c) 

Let f be a -g homeomorphism. Let V be a closed set in ( )., X  Then 

VX \  is open in ( )., X  Since f is -g open, ( ) ( )VfYVXf \\ =  which is 

-g open in ( )., Y  This implies that ( )Vf  is -g closed in ( )., Y  Hence f 

is -g closed. 

(c)  (a) 

Let V be open in ( )., X  Then cV  is closed in ( )., X  By ( ) ( )Vfc ,  is 

-g closed in ( )., Y  But ( ) ( )( ) .
cc VfVf =  This implies that ( )( )cVf  is 

-g closed in ( ),Y  and so ( )Vf  is -g open in ( )., Y  This proves (a). 
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4. -cg  Homeomorphism 

Definition 4.1. A bijective function ( ) ( )→ ,,: YXf  is called 

-cg  homeomorphism if f is -g irresolute and its inverse 1−f  is also 

-g irresolute. 

Theorem 4.2. Every -cg  homeomorphism is a -g homeomorphism. 

Proof. Let ( ) ( )→ ,,: YXf  be -cg  homeomorphism. Since every 

-g irresolute map is -g continuous, by the hypothesis f is 

-g homeomorphism. The converse is not true. 

Example 4.3. Consider  3,2,1== YX  with topologies 

  3,1,, X=  and   .2,, Y=  Define ( ) ( )→ ,,: YXf  by 

( ) ( ) ( ) .13,32,21 === fff  Here f is -g homeomorphism but not 

-cg  homeomorphism, since {1, 2} is -g closed in ( ),Y  but 

 ( )  3,12,11 =−f  is not -g closed in ( )., X  

Theorem 4.4. Every -cg  homeomorphism is a gsp-homeomorphism 

(resp gp-homeomorphism and gpr-homeomorphism). 

Proof. We know that each -cg  homeomorphism is a 

-g homeomorphism and each -g homeomorphism is a gsp-

homeomorphism (resp. gp-homeomorphism and gpr-homeomorphism). 

Converses need not be true in general. 

Example 4.5. Let  4,3,2,1== YX  with   4,1,, X=  and 

  .4,3,1,, Y=  

Define ( ) ( )→ ,,: YXf  by ( ) ( ) ( ) ( ) .14,43,32,21 ==== ffff  Here 

f is gsp-homeomorphism but not -cg  homeomorphism, since for the 

-g closed set {2} in ( )  ( )  12,, 1 = −fY  is gsp-closed but not -g closed in 

( )., X  
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Example 4.6. Let  4,3,2,1== YX  with     ,3,2,1,, X=  

 3,2,1  and     .4,3,1,3,, Y=  Define ( ) ( )→ ,,: YXf  be identity 

mapping. Here f is gp-homeomorphism but not -cg  homeomorphism, since 

for the -g closed set {1} in ( )  ( )  11,, 1 = −fY  is gp-closed but not 

-g closed in ( )., X  

Example 4.7. Let  3,2,1== YX  with       3,1,2,1,1,, X=  

and     .3,1,1,, Y=  Define ( ) ( )→ ,,: YXf  be identity mapping. 

Here f is gpr-homeomorphism but not -cg  homeomorphism, since for the 

-g closed set {1, 2} in ( )  ( )  2,12,1,, 1 = −fY  is gp-closed but not 

-g closed in ( )., X  

Theorem 4.8. The composition of two -cg  homeomorphism is a 

-cg  homeomorphism. 

Proof. Let V be a -g open set in ( )., Z  Now 

( ) ( ) ( ( )) ( )UfVgfVfg 1111 −−−−
==  where ( ).1 VgU −=  By hypothesis, U is 

-g open in ( ),Y  and by hypothesis ( )Uf 1−  is -g open in ( )., X  

Therefore fg   is -g irresolute. Also for an -g open set S in ( ),, X  we 

have ( ) ( ) ( )( ) ( )TgSfgSfg ==  where ( ).SfT =  By hypothesis ( )Sf  is 

-g open in ( ),Y  and again by hypothesis ( )( )Sfg  is -g open in ( ),Z   

(ie) ( ) ( )Sfg   is -g open in ( ),Z  and therefore ( ) ( )Vfg
1−  

-g irresolute. Hence fg   is -cg  homeomorphism. 

Theorem 4.9. The set ( ) ,- Xhg  is a group under composition of 

functions. 

Proof. Define a binary operation ( ) ( ) →  ,-,-: XhcgXhcg  

( ) ,- Xhcg  by fggf =   for all ( )  ,-, Xhcggf  and  is the usual 

operation of composition of functions. Then by Theorem 4.8, 
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( ).,-   Xhcgfg   As the composition of functions is associative and the 

identity function ( ) ( )→ ,,: XXI  belonging to -cg   ( ),Xh  serves as 

the identity. If ( ),X,h-   cgf  then ( ) − ,-1 Xhcgf  such that 

Iffff == −−  11  and so inverse exists for each element of ( ).,-  Xhcg  

Therefore ( ) ,- Xhcg  is a group under composition of functions. 
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