

ON $g^*\alpha$ -HOMEOMORPHISM IN TOPOLOGICAL SPACES

T. DELCIA and A. PUNITHA THARANI

Department of Mathematics St. Mary's College (Autonomous) Thoothukudi, India E-mail: tdelciat@gmail.com

Abstract

This paper focuses on new class of homeomorphism called $g^*\alpha$ -homeomorphism which are stronger than homeomorphism. We also introduce $g^*\alpha c$ -homeomorphism and prove that $g^*\alpha c$ -homeomorphism form a group under the operation of composition of maps.

1. Introduction

The notion homeomorphism plays more vital role in topology. Maki [5] et al., introduced and investigated g-homeomorphism and gc-homeomorphisms. Devi [2] et al. introduced and studied sg-homeomorphism and gs-homeomorphisms.

In this paper we introduce the new class of homeomorphisms named as $g^*\alpha$ -homeomorphism and study their properties. Also, we introduce another form of homeomorphism namely $g^*\alpha c$ -homeomorphism and its properties under composition of functions are analyzed.

2. Preliminaries

Definition 2.1. A map $f : (X, \tau) \to (Y, \sigma)$ is called $g^*\alpha$ -continuous [6] if $f^{-1}(V)$ is $g^*\alpha$ -closed in (X, τ) for every closed set V in (Y, σ) .

Keywords: $g^*\alpha$ - homeomorphism, $g^*\alpha c$ - homeomorphism. Received February 25, 2020; Accepted July 25, 2020

²⁰¹⁰ Mathematics Subject Classification: 54C10, 54C08, 54C05.

Definition 2.2. A map $f : (X, \tau) \to (Y, \sigma)$ is called $g^* \alpha$ -irresolute [6] if $f^{-1}(V)$ is $g^* \alpha$ -closed in (X, τ) for every $g^* \alpha$ -closed set V in (Y, σ) .

Definition 2.3. A bijective function $f : (X, \tau) \to (Y, \sigma)$ is called *g*-homeomorphism [5] if *f* and f^{-1} are *g*-continuous.

Definition 2.4. A bijective function $f : (X, \tau) \to (Y, \sigma)$ is called *gpr*-homeomorphism [3] if f and f^{-1} are *gpr*-continuous.

Definition 2.5. A bijective function $f : (X, \tau) \to (Y, \sigma)$ is called *gsp*-homeomorphism [2] if f is *gsp*-continuous and *gsp*-open.

Definition 2.6. A bijective function $f : (X, \tau) \to (Y, \sigma)$ is called *gp*-homeomorphism [3] if *f* is *gp*-continuous and *gp*-open.

Definition 2.7. A bijective function $f : (X, \tau) \to (Y, \sigma)$ is called g^{-} homeomorphism [7] if f is g^{-} -continuous and g^{-} -open.

3. $g^*\alpha$ -Homeomorphism

We introduce the following definition.

Definition 3.1. A bijective function $f: (X, \tau) \to (Y, \sigma)$ is called $g^*\alpha$ -homeomorphism if f is both $g^*\alpha$ -continuous and $g^*\alpha$ -open function.

Example 3.2. Consider $X = Y = \{1, 2, 3, 4\}$ with topologies $\tau = \{\varphi, X, \{1\}, \{1, 3\}\}$ and $\sigma = \{\varphi, Y, \{3\}, \{2, 3\}\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be defined by f(1) = 4, f(2) = 3, f(3) = 2 and f(4) = 1. Here f is bijective, $g^*\alpha$ - continuous and $g^*\alpha$ - open. Hence f is $g^*\alpha$ - homeomorphism.

Proposition 3.3. Every homeomorphism is a $g^*\alpha$ -homeomorphism.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a homeomorphism. Then f is bijective, continuous and an open map. Since every continuous map is $g^*\alpha$ - continuous and every open map is $g^*\alpha$ - open, f is $g^*\alpha$ - homeomorphism.

The converse of the above theorem need not be true as it can be seen from the above example 3.2.

Proposition 3.4. Every g-homeomorphism is a $g^*\alpha$ -homeomorphism.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ g-be a homeomorphism. Then f is bijective, g-continuous and an g-open map. Let V be a closed set in (Y, σ) . Then $f^{-1}: (V)$ is $g^*\alpha$ -closed in (X, τ) . This implies that f is $g^*\alpha$ - continuous. Let U be an open set in (X, τ) . Then f(U) is g-open in (Y, σ) . Hence f is $g^*\alpha$ - open function. Therefore, f is $g^*\alpha$ - homeomorphism.

The converse of the above theorem need not be true as seen from the following example.

Example 3.5. Consider $X = Y = \{1, 2, 3\}$ with topologies $\tau = \{\varphi, X, \{1\}, \{1, 2\}\}$ and $\sigma = \{\varphi, Y, \{1\}, \{1, 3\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is $g^*\alpha$ -homeomorphism but not g-homeomorphism, Since for the closed set $\{2\}$ in $Y, f^{-1}(\{2\}) = \{2\}$ is not g-closed in X.

Proposition 3.6. Every $g^{-homeomorphism}$ is a $g^*\alpha$ -homeomorphism.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ g^{\wedge} -be a homeomorphism. Then f is bijective, g^{\wedge} -continuous and an g^{\wedge} -open map. Let V be a closed set in (Y, σ) . As every g^{\wedge} -closed set is $g^*\alpha$ - closed, $f^{-1}(V)$ is $g^*\alpha$ - closed in (X, τ) . This implies that f is $g^*\alpha$ - continuous. Let U be an open set in (X, τ) . Then f(U)is g^{\wedge} -open in (Y, σ) . since every g^{\wedge} -open set is $g^*\alpha$ - pen, f(U) is $g^*\alpha$ - open in (X, τ) . Therefore, f is $g^*\alpha$ - homeomorphism.

The converse of the above theorem need not be true as seen from the following example.

Example 3.7. Consider $X = Y = \{1, 2, 3, 4\}$ with topologies $\tau = \{\varphi, X, \{3\}, \{4\}, \{3, 4\}\}$ and $\sigma = \{\varphi, Y, \{1\}, \{3, 4\}, \{1, 3, 4\}\}$. Let

 $f:(X, \tau) \to (Y, \sigma)$ be defined as f(1) = 2, f(2) = 3, f(3) = 1 and f(4) = 4. Here f is $g^*\alpha$ -homeomorphism but not $g^{-homeomorphism}$, since for the closed set $f^{-1}(\{1, 2\}) = \{1, 3\}$ is not $g^{-closed}$ in X.

Theorem 3.8. Every $g^*\alpha$ -homeomorphism is a gsp-homeomorphism.

Every $g^*\alpha$ -homeomorphism is a gp-homeomorphism.

Every $g^*\alpha$ -homeomorphism is a gpr-homeomorphism.

Proof. Proof follows from the fact every $g^*\alpha$ - continuous function is gsp, gp, gpr-continuous function and every $g^*\alpha$ - open function is (gsp-open, gp- open, gpr-open). Hence f is gsp, gp, gpr-homeomorphism.

The reverse implications are not true which can be seen from the following example.

Example 3.9. Consider $X = Y = \{1, 2, 3, 4\}$ with topologies $\tau = \{\varphi, X, \{3, 4\}\}$ and $\sigma = \{\varphi, Y, \{1\}, \{2\}, \{1, 2\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined as f(1) = 3, f(2) = 4, f(3) = 1 and f(4) = 2. Here f is gsp-homeomorphism but not $g^*\alpha$ - homeomorphism. Since for the closed set $\{1\}$ in $(Y, \sigma), f^{-1}(\{1\}) = \{3\}$ is gsp-closed but not $g^*\alpha$ - closed in (X, τ) .

Example 3.10. Consider $X = Y = \{1, 2, 3, 4\}$ with topologies $\tau = \{\varphi, X, \{3, 4\}\}$ and $\sigma = \{\varphi, Y, \{1, 2, 3\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is gp-homeomorphism but not $g^*\alpha$ - homeomorphism. Since for the closed set $\{4\}$ in (Y, σ) , $f^{-1}(\{4\}) = \{4\}$ is is gp-closed but not $g^*\alpha$ - closed in (X, τ) .

Example 3.11. Consider $X = Y = \{1, 2, 3, 4\}$ with topologies $\tau = \{\varphi, X, \{3, 4\}, \{2, 3, 4\}\}$ and $\sigma = \{\varphi, Y, \{1, 3\}, \{4\}, \{1, 3, 4\}\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be defined as f(1) = 4, f(2) = 3, f(3) = 1 and f(4) = 2. Then f is *gpr*-homeomorphism but not $g^*\alpha$ -homeomorphism. Since for the image of open set $\{3, 4\}$ in $(X, \tau), f(\{3, 4\}) = \{1, 2\}$ is not $g^*\alpha$ -open in (Y, σ) .

Remark 3.12. The composition of two $g^*\alpha$ -homeomorphisms need not be $g^*\alpha$ -homeomorphism. This can be proved by the following example.

Example 3.13. Consider $X = Y = \{1, 2, 3, 4\}$ with topologies $\tau = \{\varphi, X, \{3\}, \{1, 3, 4\}\}$ and $\sigma = \{\varphi, Y, \{1\}, \{1, 2, 4\}\}$ and $\eta = \{\varphi, Z, \{1, 3, 4\}\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(1) = 3, f(2) = 2, f(3) = 1, f(4) = 4 and $g : (Y, \sigma) \rightarrow (Z, \eta)$ by g(1) = 4, g(2) = 3, g(3) = 2. Here f and g are $g^*\alpha$ -homeomorphisms. But their composition $g \circ f : (X, \tau) \rightarrow (Z, \eta)$ is not $g^*\alpha$ -homeomorphism as the open set $\{1, 3, 4\}$ in (X, τ) is not $g^*\alpha$ -open in (Z, η) .

Theorem 3.14. Assume that $f : X \to Y$ is bijective and $g^*\alpha$ - continuous. Then the below facts are true.

- (i) f is $g^*\alpha$ open
- (ii) f is $g^*\alpha$ -homeomorphism
- (iii) f is $g^*\alpha$ -closed.
- **Proof.** (a) \Rightarrow (b)

Let f be a $g^*\alpha$ - open map. By hypothesis, f is bijective and $g^*\alpha$ - continuous. Hence f is $g^*\alpha$ - homeomorphism.

(b) \Rightarrow (c)

Let f be a $g^*\alpha$ -homeomorphism. Let V be a closed set in (X, τ) . Then $X \setminus V$ is open in (X, τ) . Since f is $g^*\alpha$ -open, $f(X \setminus V) = Y \setminus f(V)$ which is $g^*\alpha$ -open in (Y, σ) . This implies that f(V) is $g^*\alpha$ -closed in (Y, σ) . Hence f is $g^*\alpha$ -closed.

(c) \Rightarrow (a)

Let V be open in (X, τ) . Then V^c is closed in (X, τ) . By (c), f(V) is $g^*\alpha$ -closed in (Y, σ) . But $f(V^c) = (f(V))^c$. This implies that $(f(V))^c$ is $g^*\alpha$ -closed in (Y, σ) and so f(V) is $g^*\alpha$ -open in (Y, σ) . This proves (a).

4. $g^*\alpha c$ -Homeomorphism

Definition 4.1. A bijective function $f: (X, \tau) \to (Y, \sigma)$ is called $g^*\alpha c$ -homeomorphism if f is $g^*\alpha$ -irresolute and its inverse f^{-1} is also $g^*\alpha$ -irresolute.

Theorem 4.2. Every $g^*\alpha c$ -homeomorphism is a $g^*\alpha$ -homeomorphism.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be $g^*\alpha$ -homeomorphism. Since every $g^*\alpha$ -irresolute map is $g^*\alpha$ -continuous, by the hypothesis f is $g^*\alpha$ -homeomorphism. The converse is not true.

Example 4.3. Consider $X = Y = \{1, 2, 3\}$ with topologies $\tau = \{\varphi, X, \{1, 3\}\}$ and $\sigma = \{\varphi, Y, \{2\}\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(1) = 2, f(2) = 3, f(3) = 1. Here f is $g^*\alpha$ -homeomorphism but not $g^*\alpha c$ -homeomorphism, since $\{1, 2\}$ is $g^*\alpha$ -closed in (Y, σ) but $f^{-1}(\{1, 2\}) = \{1, 3\}$ is not $g^*\alpha$ -closed in (X, τ) .

Theorem 4.4. Every $g^*\alpha c$ -homeomorphism is a gsp-homeomorphism (resp gp-homeomorphism and gpr-homeomorphism).

Proof. We know that each $g^*\alpha c$ -homeomorphism is a $g^*\alpha$ -homeomorphism and each $g^*\alpha$ -homeomorphism is a gsp-homeomorphism (resp. gp-homeomorphism and gpr-homeomorphism).

Converses need not be true in general.

Example 4.5. Let $X = Y = \{1, 2, 3, 4\}$ with $\tau = \{\varphi, X, \{1, 4\}\}$ and $\sigma = \{\varphi, Y, \{1, 3, 4\}\}$.

Define $f: (X, \tau) \to (Y, \sigma)$ by f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 1. Here f is gsp-homeomorphism but not $g^*\alpha c$ -homeomorphism, since for the $g^*\alpha$ -closed set $\{2\}$ in (Y, σ) , $f^{-1}(\{2\}) = \{1\}$ is gsp-closed but not $g^*\alpha$ -closed in (X, τ) .

Example 4.6. Let $X = Y = \{1, 2, 3, 4\}$ with $\tau = \{\varphi, X, \{1\}, \{2, 3\}, \{1, 2, 3\}\}$ and $\sigma = \{\varphi, Y, \{3\}, \{1, 3, 4\}\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ be identity mapping. Here f is gp-homeomorphism but not $g^*\alpha c$ -homeomorphism, since for the $g^*\alpha$ -closed set $\{1\}$ in $(Y, \sigma), f^{-1}(\{1\}) = \{1\}$ is gp-closed but not $g^*\alpha$ -closed in (X, τ) .

Example 4.7. Let $X = Y = \{1, 2, 3\}$ with $\tau = \{\varphi, X, \{1\}, \{1, 2\}, \{1, 3\}\}$ and $\sigma = \{\varphi, Y, \{1\}, \{1, 3\}\}$. Define $f : (X, \tau) \to (Y, \sigma)$ be identity mapping. Here f is gpr-homeomorphism but not $g^*\alpha c$ -homeomorphism, since for the $g^*\alpha$ -closed set $\{1, 2\}$ in $(Y, \sigma), f^{-1}(\{1, 2\}) = \{1, 2\}$ is gp-closed but not $g^*\alpha$ -closed in (X, τ) .

Theorem 4.8. The composition of two $g^*\alpha c$ -homeomorphism is a $g^*\alpha c$ -homeomorphism.

Proof. Let V be a $g^*\alpha$ -open set in (Z, η) . Now $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V)) = f^{-1}(U)$ where $U = g^{-1}(V)$. By hypothesis, U is $g^*\alpha$ -open in (Y, σ) and by hypothesis $f^{-1}(U)$ is $g^*\alpha$ -open in (X, τ) . Therefore $g \circ f$ is $g^*\alpha$ -irresolute. Also for an $g^*\alpha$ -open set S in (X, τ) , we have $(g \circ f)(S) = g(f(S)) = g(T)$ where T = f(S). By hypothesis f(S) is $g^*\alpha$ -open in (Y, σ) and again by hypothesis g(f(S)) is $g^*\alpha$ -open in (Z, η) (ie) $(g \circ f)(S)$ is $g^*\alpha$ -open in (Z, η) and therefore $(g \circ f)^{-1}(V)$ $g^*\alpha$ -irresolute. Hence $g \circ f$ is $g^*\alpha c$ -homeomorphism.

Theorem 4.9. The set $g^*\alpha \cdot h(X, \tau)$ is a group under composition of functions.

Proof. Define a binary operation $*: g^* \alpha c \cdot h(X, \tau) \times g^* \alpha c \cdot h(X, \tau) \rightarrow g^* \alpha c \cdot h(X, \tau)$ by $f * g = g \circ f$ for all $f, g \in g^* \alpha c \cdot h(X, \tau)$ and \circ is the usual operation of composition of functions. Then by Theorem 4.8,

 $g \circ f \in g^* \alpha c \cdot h(X, \tau)$. As the composition of functions is associative and the identity function $I : (X, \tau) \to (X, \tau)$ belonging to $g^* \alpha c \cdot h(X, \tau)$ serves as the identity. If $f \in g^* \alpha c \cdot h(X, \tau)$, then $f^{-1} \in g^* \alpha c \cdot h(X, \tau)$ such that $f \circ f^{-1} = f^{-1} \circ f = I$ and so inverse exists for each element of $g^* \alpha c \cdot h(X, \tau)$. Therefore $g^* \alpha c \cdot h(X, \tau)$ is a group under composition of functions.

References

- [1] Arockia Rani and K. Balachandran, On regular generalized continuous maps in topological spaces, Kyungpook Maths. J. 37 (1997), 305-317.
- [2] R. Devi, H. Maki and K. Balachandran, Semi Generalized homeomorphism and generalized semi homeomorphism in topological Spaces, Indian Jour. Pure Appl. Math. 14 (1993), 41-54.
- [3] J. Dontchev, On generalizing semi-pre-open sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 16, 35-48.
- [4] Y. Gnanambal, On generalized preregular closed sets in topological spaces, Indian J. Pure App. Math. 28 (1997), 351-360.
- [5] Maki, P. Sundaram and K. Balachandran, On generalized homeomorphisms in topological spaces, Bull. Fukuoka Univ. Ed. Part III 40 (1991), 13-21.
- [6] A. Punitha Tharani and T. Delcia, g^{*}α-closed sets in topological spaces, IJMA 8(10) (2017), 71-80.
- [7] M. K. R. S. Veerakumar, g⁻-closed sets in topological spaces, Bulletin Allahabad Math. Soc. 18 (2003), 99-112.