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Abstract 

This paper gives the construction of quantum codes by using ( )+−
~

21 -constacyclic codes 

over  +  ~  with =
~2~  with the help of a well defined gray map. A family of quantum 

error-correcting codes obtained from Calderbank-Shor-Steane (CSS) construction is applied to 

( )+−
~

21 -constacyclic codes over .
~

 +   Finally, the parameters of associated quantum 

error-correcting codes are derived. Some examples of quantum codes of arbitrary length are also 

obtained as an application of obtained results. 

1. Introduction 

Quantum error-correction plays a crucial role in quantum computation 

and communication. The most efficient way to control decoherence is by using 

quantum error-correcting codes. Rapid development has been observed in 

recent years in the field of quantum error-correction. In [7], Ashraf and 

Mohammad designed a method to obtain the self-orthogonal codes over the 

field 3F  by constructing a Gray map of linear and cyclic codes over a finite 

semi-local non-chain ring 33 vFF +  with .12 =v  The necessary and sufficient 

condition is also provided for the cyclic codes over the ring considered ring 

that contains its dual. This work was further extended over the commutative 
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non-chain ring pp vFF +  with vv =2  in [6] and some main results are 

described on the linear and cyclic codes which are used to obtain the quantum 

codes over this ring. iL  and uX  [9], studied the construction of q-ary 

quantum maximal distance separable (MDS) codes having parameters 

 qnn 3,4, −  with 14 2 + qn  by using Hermitian self-orthogonal codes 

over the field .2q
F  In [1], Steane presented a method for finding the good 

quantum error-correcting codes. Classical codes are used to get the codes for 

up to 16 information qubits with the correction of small number of errors. Kai 

and Zhu [13], considered the self-orthogonal codes over the finite field 4F  

which are used to derive the quantum codes. A method to obtain the 

Hermitian selforthogonal is also provided over 4F  as the gray map of linear 

codes over .44 uFF +  In [11], the authors introduced the concept of Gray 

images from pp vFF +  to 2p
F  and obtained the ( )v21− -constacyclic codes of 

length n and determines their dual codes. BCH codes that contains dual 1 

codes are used to derive the quantum stabilizer codes in [10]. Further, it has 

been proved that a BCH code of length n contain its dual only if its designed 

distance is ( )no  and the convex is derived in case of narrow-sense codes. 

Results are provided to make it possible to detemine the parameters of 

quantum BCH codes in terms of their design parameters. In [2], Calderbank, 

et al. transformed the problem of obtaining the quantum error-correcting 

codes onto the problem of deriving the additive codes over the field ( )4GF  

which are self-orthogonal with respect to a certain trace inner product. A 

table of lower and upper bounds on these codes is provided of length up to 30 

qubits. Qian et al. in [5] described a new method of finding the self-

orthogonal codes over the finite field 2F  and on the basis of this method, 

quantum error-correcting codes are constructed from the cyclic codes over 

.22 uFF +  In [4], a new method is used to construct the quantum error-

correcting codes from the cyclic codes over the ring .22 vFF +  Moreover, in [3] 

construction of some non-binary quantum codes from u-constacyclic codes 

over pp uFF +  is given by Gao and Wang. Recently, Ashraf and Mohammad 

gave the construction of quantum codes using cyclic codes over the ring 
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 vuFp ,  where vuuvvvu === ,,1 32  in [8]. Using classical cyclic codes 

many good quantum codes are being constructed. 

In this paper, quantum codes obtained through ( )+−
~

21 -constacyclic 

codes over .
~

 +   Section 1, describes the preliminaries consists of 

fundamental properties. Section 2, incorporates Gray map from  +   to 

2
  and the development of said codes are presented in Section 3, which is 

illustrated using examples in Section 4. 

2. Preliminaries 

The ring 

 ( ) ,
~

1,,
~

2,
~

,1,,1,0
~

−−=+=  R  

( ) ,
~

11,,
~

2,
~

21,
~

1 −+−+++   

where  is an odd prime and =
~~2  is semi-local, commutative, non-chain 

ring consisting of 2  elements, characteristic , where ( ) +−
~

21  is a unit of 

R. 

The two maximal ideals of the ring are precisely 

,
~
   

and 

.
~

1 −  

It is discernible that −
~

1,
~

RR  are isomorphic with .  Chinese 

Remainder Theorem allows us to express R as .
~

1
~

 − R  

Also, every element +
~

 of this ring can be uniquely expressed as 

( ) ( ) ( ) ( )−++=+
~

1
~~

 for all .,    

A nonempty subset  of 
mR  is a linear code over R of length m. If  is an 
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R-submodule of mR  and the elements of  are codewords. Let  be a code 

over R of length m and its polynomial representation be ( ),T  that is, 

( ) ( )












= −

−

=

  110

1

0

,,,| m

m

i

i
iT   

Let   and  are the maps from mR  to mR  defined as 

( ) ( ),,,,,,, 201110 −−− = mmm   

( ) ( ),,,,,,, 201110 −−− −= mmm   

( ) ( ),,,,,,, 201110 −−− = mmm   

respectively. Then  is a cyclic, negacyclic and -constacyclic if 

( ) ( ) = ,  and ( )  =  respectively. A code  over R of length m is 

cyclic, negacyclic and -constacyclicif and only if ( )T  is an ideal of 

    1,1 +− mm yRyR   and   −myR   respectively. 

For the arbitrary elements ( )110 ,,, −= m  and 

( )110 ,,, −= m  of R, the inner product is defined as 

( ).111100 −− +++= mm  

If ,0=  then  and  are orthogonal. If  is a linear code over R of 

length m, then the dual code of  is defined as 

 .allfor0:  ==⊥ mR  

which is also a linear code over the ring R of length m. A code  is said to be 

self orthogonal if ⊥  and said to be self dual if .⊥=   

3. Gray Map Over R 

The hamming weight ( )Hw  for any codeword ( )110 ,,, −= m  

mR  is defined as the number of non-zero components in 

( ).,,, 110 −= m  The minimum weight of a code , that is, ( )Hw  is 
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the least weight among all of its non zero codewords. The Hamming distance 

between two codes ( )110 ,,, −= m  and ( )110 ˆ,,ˆ,ˆˆ −= m  of ,mR  

denoted by ( ) ( )−= ˆˆ, HH wd  and is defined as 

( )   .ˆ|ˆ, iiH id =  

Minimum distance of , denoted by Hd  and is given by minimum 

distance between the different pairs of codewords of the linear code . For 

any codeword ( ) ,,,, 110
m

m R= −  the lee weight is defined as 

( ) ( )
−

=
=

1

0

m

i iLL ww  and lee distance of ( )− ˆ  is given by 

( ) ( ) ( ).ˆˆˆ,
1

0
−

=
−=−=

m

i iiLLL wwd  

Minimum lee distance of  is denoted by Ld  and is given by minimum lee 

distance of different pairs of codewords of the linear code . 

The map R:  to 2
  as 

( ) ( ),,
~

21121 +=+  

with R+ 21
~

 is the gray map and can be extended from mmR 2
→   as 

( ) ( ),,,,,,,,, 1112221111321

−−


− +++= mmm   

where iii +=
~

 for all .10 − mi  

Proposition 3.1. The Gray map  is a linear and distance preserving 

isometry map from ( )L
m dR ,  to ( ).,2

H
m d  

Throughout the text, the code E is considered to be a linear code of length 

m over R. 

Proposition 3.2. For a linear self orthogonal code E so is ( ).E  

Proof. Consider a self orthogonal code E and E 21,  with 

11
~
+= 1  and ,

~
222 +=  where .,,, 2121    
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By self orthogonality of 21,   we have ,0. 21 =  that is, 

( ) ,012212121 =+++  it follow that 212121 +=  

.012 =+  Now, applying  on 21,   we have 

( ) ( ) ( ) ( ) ( ) ,02,,. 2112212122211121 =+++=++=   

which implies ( )E  is self orthogonal. 

4. Quantum Codes Through ( )+−
~

21 -Constacyclic Codes Over R 

For a linear code E, 

 |1
ma = E  for some mb    such that ( ) ,

~
E+ ba  

and 

 |2
mba += E  such that ( ) ,

~
E+ ba  

are -ary codes such that 

( ) ( ),
~

mod,
~

1 1 =− EE  

and 

( ) ( ).
~

1mod,
~

2 −= EE  

Therefore, 1E  and 2E  are the linear  11,, dkm  and  22,, dkm  codes 

over   respectively. Moreover, 

( ) ( ) ,
~~

1 21 EEE −=  

and  

.21 EEE =  

Further, ( )E  is a -ary linear  ( )2121 ,min,,2 ddkkm +  code. 

Theorem 4.1. The code E is ( )+−
~

21 -constacyclic if and only if 1E  is 

negacyclic and 2E  is cyclic over .  
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Proof. For any ( ) ,,, 1110 E= −maaaa   and ( ) .,, 2110 E= −mbbbb   

For an arbitrary element ( ) ( ) ,
~~

1 iii ba  +−=  where  ii ba  ,  for 

.1,,1,0 −= mi   

Let ( ) .,, 110 E= −m  

For ( )+−
~

21 -constacyclic code E, 

( ) ( ) )2,01,
~

21 −− +−= mm   

(( ) ( ) ( ) ( ) 01111
~

1,
~

2
~

1
~

21
~~

21 −+−+−++−= −−−− mmmm baba  

( ) )220
~~

1,,
~

−− +−+ mm bab   

( ) ( ) ( ),
~~

1 ba  +−=  

which is in E. Therefore, 1E  and 2E  are negacyclic and cyclic codes over   

respectively with length m. Again, if 1E  and 2E  are negacyclic and cyclic 

code over ,  respectively, with length m, then for any 

( ) E= −110 ,,, m  where ( ) ,
~~

1 iii ba  +−=  and  ii ba  ,  for 

.1,,1,0 −= mi   

If 1E  is a negacyclic code and 2E  is a cyclic code over the ring   of 

length m, then ( ) ( ) ., 21 EE  ba   

So, ( ) ( ) ( ) ,
~~

1 E+− ba   where ( ) ( ) ( ) ( ) ( ).
~~

1 ba  +−=  Thus, 

( ) E.  Hence, E is a ( )+−
~

21 -constacyclic code. 

Lemma 4.2. For a ( )+−
~

21 -constacyclic code E 

( ) ( ) ( ) ( ) ( ) ( ) ,
~~

1~,
~

1 2121  gggg +−=−=E  

with 
( ( )) ( ( )),21 degdeg2  ggmp −−

=E  where polynomials ( )ig  generates 

.2,1, =iiE  

Proof. Since 1E  is negacyclic and 2E  is cyclic code over   with length 

m, so 
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( ) ,111 += 
mg  E  

( ) .122 −= 
mg  E  

Further, ( ) .
~~

1 21 EEE −=  Thus,  ( ) ( ) ( ) ( ) ( ),
~~

1| 21  ffgg +−==E  

where ( ) ( ) ., 2211 EE   ff  Therefore, 

( ) ( ) ( ) 21
~~

1 gg +−E  

( ) ( ) ( ) 21
~

,
~

1 gg −=  

  ( ) .
~

21 +−−= mR   

Conversely, for any ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,
~~

1
~~

1 212211  ggghgh +−+−  

implies ( ) ( ) ( ) ( ) ( )   ( ) ,
~

21
~~

1 2211 +−−+− mRghgh   where ( ),1 g  

( )   ( ) ,
~

212 +−− mRg   there exists ( ) ( )    21 , rr  such that 

( ) ( ) ( ) ( ),
~

1
~

1 11  rg −=−  

( ) ( ).
~~

22  rg =  

So, ( ) ( ) ( ) ( ) ( ) ( ) ,
~~

1
~~

1 2121 E−=+−  gggg  and hence 

( ) ( ) ( ) ( ) ( ) ( ) .
~~

1
~~

1 2121  gggg −=+−=E  Since, ,21 EEE =  so 

( ( ( )) ( ( ))).21 degdeg2  ggmp −−
=E  

Theorem 4.3. Dual of ( )+−
~

21 -constacyclic code is of similar length 

( )+−
~

21 -constacyclic code. 

Proof. The proof hold trivially because ( )+−
~

21  is a self unit element, 

that is,  

( ) ,
~

21
~

21 1
+−=+−

−
 

and dual code is ( )+−
~

21 -constacyclic code. 

Lemma 4. 4. For a ( )+−
~

21 -constacyclic code, the dual code 
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1. ( ) ⊥⊥⊥ −= 21
~~

1 EEE  

2. ( ) ( ) ( ) ( ) ( ) ( ) ⊥ +−=−= 1121
~~

1
~

,
~

1 ggggE  

3. 
( ( )) ( ) ( ) 21 degdeg ggp +⊥ =E  

where polynomials ( )
1g  and ( )

2g  are reciprocal of 
( )

( )


1

1

g

m +
 and 

( )
( )



2

1

g

m −
 

respectively. 

Lemma 4.5 [2]. If E is a cyclic or negacyclic code over the ring   with 

generator polynomial ( ).g  Then, E contains its dual if and only if 

( ( ) ( )),mod0  − ggTxn  where .1T  

Theorem 4.6. For a ( )+−
~

21 -constacyclic codes 

( ) ( ) ( ) EEE −= ⊥,
~

,
~

1 21  gg  if and only if ( ( ) ( )) + 11mod01 ggm  

for 1E  and ( ( ) ( )) − 22mod01 ggm  for .2E  

Proof. First consider ( ( ) ( )) + 11mod01 ggm  for ,1E  and  

( ( ) ( )) − 22mod01 ggm  for .2E  Then by lemma 4.5, 11 EE ⊥  and 

21 EE ⊥  and therefore ( ) ( ) 11
~

1
~

1 EE −− ⊥  and 22
~~
EE  ⊥  which implies 

that ( ) ( ) .
~~

1
~~

1 2121 EEEE −− ⊥⊥  Thus, ( ) ( ) ( ) *
21

~~
1 gg +−   

( ) ( ) ( ) 21
~~

1 gg +−  and hence, .EE ⊥  

Conversely, consider ,EE ⊥  then ( ) ( ) ,
~~

1
~~

1 2111 EEEE −− ⊥⊥  

that implies ( ) ( ) 11
~

1
~

1 EE −− ⊥  and .
~~

22 EE  ⊥  Hence 11 EE ⊥  and 

,21 EE ⊥  and by Theorem 4.3, we have ( ( ) ( )) + 11mod01 ggm  for 1E  

and ( ( ) ( )) + 22mod01 ggm  for .2E  □ 

Corollary 4.7. For a ( )+−
~

21 -constacyclic code ( ) 21
~~

1 EEE −=  

where 1E  and 2E  are linear codes. Then EE ⊥  if and only if 11 EE ⊥  and 

.22 EE ⊥  
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Proof. As ( ) ,
~~

1 11
⊥⊥⊥ −= EEE  so, EE ⊥  implies ( ) ⊥⊥ − 11

~~
1 EE  

( ) ( ) 21
~~

1 EE −  and hence ( ) ( ) ( ) ( ) 2211
~~

,
~

1
~

1 EEEE −− ⊥⊥  which 

implies, ., 2211 EEEE  ⊥⊥  

Conversely, for 2211 , EEEE  ⊥⊥  this ( ) ( ) ( ) ⊥⊥ −− 211
~

,
~

1
~

1 EEE  

( ) 2
~
E  holds. So, ( ) ( ) ( ) ( ) 2121

~~
1

~~
1 EEEE −− ⊥⊥  and therefore, 

E.E ⊥  □ 

Lemma 4.8 [2] (CSS Construction). Let E be a linear code over Z  having 

parameters  .,, dkm  Then, a quantum code with parameters 

 − dmkm ,2,  can be obtained if .EE ⊥  

Construction of quantum codes is provided by using Lemma 4.8 and 

Corollary 4.7 as: 

Theorem 4.9. For a ( )+−
~

21 -constacyclic code E there exists a 

quantum  − Ldmkm ,22,2  code with dimension of ( )E  is k and Ld  is 

minimum Lee distance of linear code is E. 

5. Examples 

Several examples are discussed in this section to illustrate the codes 

obtained through ( )+−
~

21 -constacyclic codes. 

Example 5.1. In ( ) ( ) ( ) ( ) ( ) ( )424211, 339
7 −−−−−=− Z  and 

( ) ( ) ( ) ( ) ( ).534211 339 −−+++=+   For a E be a ( )+
~

26 -

constacyclic codes over the ring R of length 9. Let ( ) 23
1 −= th   and 

( ) 11 += th   then ( ) ( ) ( )) ( )1
~

2
~

1 3 ++−−= h  is generator polynomial of 

E. Since ( ) ( ) 1| 9
11 −  hh  and ( ) ( ) ,1| 9

22 +  hh  hen due to Theorem 4.6 

.EE ⊥  Further ( )E  is a  3,14,18  linear code. Theorem 4.9, implies that 

parameters of quantum code are   .3,10,18 7  
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Example 5.2. In ( ) ( ) ( ) ( ) ( )11611, 234220
7 ++++++−=− Z  

( ) ( ) ( ) 20234234234 16613441443  ++++++++++++  

and ( ) ( ) ( )( )16313614131 23423422 ++++++++++++=+   

( ) ( ).14661664 234234 ++++++++   For a +
~

26 -constacyclic 

code E over R with length 20. 

Let ( ) ( )61 += h  and ( ) ( ),132
2 ++= h  then ( ) ( ) ( )6

~
1 ++= g  

( ) ( )13
~

1 2 +++   is generator polynomial of E. Since ( ) ( ) 1| 20
11 −  hh  

and ( ) ( ) ,1| 20
22 −  hh  then due to Theorem 4.6, .EE ⊥  Further, ( )E  is a 

 3,37,40  linear code. Theorem 4.9, implies that parameters of quantum 

code are   .3,34,40 7  

Example 5.3. In ( ) ( ) ( ) ( ) ( )11011011, 2218
11  ++++++=− k  

( ) ( )1101 3636 ++++   and ( ) ( ) ( )161511 22218 +++++=+   

( ) ( ).1615 3636 ++++   For a ( )+
~

210 -constacyclic code E over R with 

length 20. 

Let ( ) ( )1102
1 ++= h  and ( ) ( ),162

2 ++= h  then 

( ) ( ) ( ) ( ) ( )16
~

1110
~

1 22 ++++++= g  is generator polynomial of E. 

Since ( ) ( ) 1| 18
11 −  hh  and ( ) ( ) ,1| 18

22 +  hh  then due to Theorem 4.6, 

.EE ⊥  Further, ( )E  is a  3,32,36  linear code. Theorem 4.9, implies that 

parameters of quantum code are   .3,28,36 11  

Example 5.4. In ( ) ( ) ( ) ( ) ( )11011011, 2218
11 +++++−=−   

( ) ( )1101 3632 ++++   and ( ) ( ) ( )161511 22218 ++++=+   

( ) ( ).1615 3632 ++++   For a ( )+
~

210 -constacyclic code E over R with 

length 20. 

Let ( ) ( )136
1 ++= h  and ( ) ( ),12

2 += h  then ( ) ( )( )1
~

1 36 +++= g  

( ) ( )1
~

1 2 +−+   is generator polynomial of E. Since ( ) ( ) 1| 18
11 −  hh  and 
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( ) ( ) 1| 18
22 +  hh  then due to Theorem 4.6, .EE ⊥  Further, ( )E  is a 

 4,28,36  linear code. Theorem 4.9, implies that parameters of quantum 

code are   .4,20,36 11  
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