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Abstract 

In this article, a new subclass of meromorphic functions is introduced using 

( )-, qp Ruscheweyh derivative and we discuss the properties like convolution, closure, convex 

combinations and neighborhood for the functions belonging to this subclass. 

1. Introduction 

The quantum calculus has been broadly studied and has applications in 

several fields of mathematics, physics and engineering. Further, motivated 

and inspired by these applications, many mathematicians and physicist have 

developed the theory of post quantum calculus, an extension of the quantum 

calculus and is designated as ( )-, qp calculus. The recent interest in the 

subject is due to the fact that the post quantum calculus has popped in such 

diverse fields as quantum algebra, number theory etc. 

The ( )-, qp derivative of a function f [3] defined as  
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which are regular in punctured open unit disc  0−=    
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Now we define a ( )-, qp derivative operator ( )( )  →:,
, zfmn
qp  as 
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  10,0,  qUmn   and .qp   (1.2) 

Where m
qp,  represent ( )-, qp Ruscheweyh derivative operator and is given 

by 
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we define a new derivative operator ( )zfn
qp,  as 

( ) ( ( ))
( )

  ( )


=

− +
−

==

1

,
1

,,, ,
1

r

r
r

n
qp

nn
n

n
qpqp

nnn
qp nzarqp

z
zfzDqpzf   

where n
qp,  represent ( )-, qp Salagean differential operator and is given by 
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Remark 1.2. 

(1) When 1,0 == pn  and −→ 1q  in (1.2), we get Ruscheweyh 

derivative of ( )zf  [5]. 

(2) When ,1,0 == pn  then mn
qp

,
,  is reduced to the class 

q  introduced 

by Bakhtiar Ahmad and Muhammad Arif [2]. 

(3) When 1,0 == pm  and −→ 1q  in (1.2), we obtain Salagean 

derivative operator [6]. 

Now, we define a subclass ( )mnqp ,,,   of regular meromorphic function 

on   as follows. 

Definition 1.3. Let f  as in (1.1)  0, Umn   and  )1,0  is 

said to belong to the class ( )mnqp ,,,   of meromorphic starlike of order , 

if it obeys the inequality 
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Theorem 1.4. Let f  as in (1.1);  0, Umn   and  ),1,0  then 

( )mnf qp ,,,    if and only if 
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Proof. Suppose that ( )mnf qp ,,,    then by the definition (1.3), we 

have 
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which is equivalent to 
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Letting ,1−→z  we get 
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on simplification we get, 
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Conversely, suppose that f  as in (1.1) and the inequality (1.4) holds 

for all  Dz  we will prove that ( )mnf qp ,,,    for ,10   

 0 ,n U  i.e., we need to prove that 
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,0  by (1.4). 

This completes the proof.   

Corollary 1.5. If ( ) ( ),,,, mnzf qp    then 

  ( )

( )    
 )



=


+++

−


1 ,,

,
.1,0,

21

12

r qpqp
nn

qp
r

mmqppq
a  

Theorem 1.6. If ( ) ( ) ,,,2,1,,,, =  jmnzf qpj   where 
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qp
nn

qp
ca

rm

rmrqprpq
 

so, it is sufficient to prove that 
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(   )    

( )   


=
+−

+++

1
,,

,,,

!1!1

!1

r

rr
qpqp

qp
n

qp
nn

qp
ca

rm

rmrqprpq
 

(   )    

( )   


=


+−

+++


1
,,

,,,
1

!1!1

!1

r

rr
qpqp

qp
n

qp
nn

qp
ca

rm

rmrqprpq
 

( ) (   )

( ) (   )


=
+−

+−


1
,

,

1

1

r
qp

qp
rr rpq

rpq
ca  

from (1.5); 

( )   

(   )    
.

!1

!1!1

,,,

,,

qp
n

qp
nn

qp

qpqp
rr

rmrqprpq

rm
ca

+++

+−
  

Hence, it suffices to show that 

( )    

(   )    

( ) (   )

( ) (   )+−

+−


+++

+−

qp

qp

qp
n

qp
nn

qp

qpqp

rpq

rpq

rmrqprpq

rm

,

,

,,,

,,

1

1

!1

!1!1
 

(   )       ( )    

( )     (   )    
.

!1!1!1

!1!1!1

,,
2

,,,
2

,,
2

,,,
2

,

qp
n

qp
nn

qpqpqp

qpqpqpqp
n

qp
nn

qp

rmrqprpqrm

rmrpqrmrqprpq

+++++−

+−−+++
  

Theorem 1.9. Let ( )zf  be given by (1.1) and ( ) 


=
+=

1

1
r

r
rzc

z
zh  are both 

belongs to the class ( ),,,, mnqp   then 

( ) ( ) ( )


=

 ++=

1

,
22 ,,,

1

r

qp
r

re mnzca
z

z   

where 

( )   ( )

( )     ( )  
.

!21221

1!212
1

,
2

,,
2

,
2

qpqpqp
nn

qp

mmqppq

pq

−++++

+−
−=  

Proof. To prove that ( ) ( ),,,, mnz qp    we need to determine the 

greatest , so that 
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(   )    

( )    
( )



=

+
+−

+++

1

22

,,

,,,
1

!1!1

!1

r

rr
qpqp

qp
n

qp
nn

qp
ca

rm

rmrqprpq
 

As ( ) ( ) ( ),,,, , mnzhzf qp    we have 

(   )    

( )    


=
















+−

+++

1

2

2

,,

,,,
1

!1!1

!1

r

r
qpqp

qp
n

qp
nn

qp
a

rm

rmrqprpq
 (1.6) 

(   )    

( )    


=
















+−

+++

1

2

2

,,

,,,
1

!1!1

!1

r

r
qpqp

qp
n

qp
nn

qp
c

rm

rmrqprpq
 (1.7) 

summing (1.6) and (1.7), we obtain 

(   )    

( )    
( )



=

+














+−

+++

1

22

2

,,

,,,
1

!1!1

!1

2

1

r

rr
qpqp

qp
n

qp
nn

qp
ca

rm

rmrqprpq
 

but ( ) ( ),,,, mnz qp    if and only if 

(   )    

( )    
( )



=

+
+−

+++

1

22

,,

,,,
1

!1!1

!1

r

rr
qpqp

qp
n

qp
nn

qp
ca

rm

rmrqprpq
 

which is possible only if 

(   )    

( )     !1!1

!1

,,

,,,

qpqp

qp
n

qp
nn

qp

rm

rmrqprpq

+−

+++
 

(   )    

( )    

2

,,

,,,

!1!1

!1

2

1















+−

+++


qpqp

qp
n

qp
nn

qp

rm

rmrqprpq
 

 

( )    

(   )    
( )r

rmrqprpq

rm

rpq
qp

n
qp

nn
qp

qpqp

qp

=
+++

+−


+

−

!1

!1!121

,,
2

,

,,
2

,

 

where ( )r  is a non-increasing function of attains a maximum at 1=r  and 
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the maximum value ( )
( )  

( )     qpqp
nn

qp

mmqppq ,,
2

,
2

21

!212
1

+++

−
=  hence 

( )  

( )     qpqp
nn

qp

mmqppqpq
,,

2

,
2

21

!2121

+++

−


+

−
 

on simplification, we get 

( )   ( )

( )     ( )  
.

!21221

1!212
1

,
2

,,
2

,
2

qpqpqp
nn

qp

mmqppq

pq

−++++

+−
−   

Definition 1.10. Let ,f  then the -neighbourhood of f is defined as 

( ) ( )  ) .1,0,
1

;

11 












−+== 



=



=



r

rr

r

r
r garandzg

z
zggfN   

Definition 1.11. Let ,f  then f is said to belong to the class 

( ),,,, mnqp   if ( ),,,, mng qp    satisfying 

( )
( )

 ).1,0,,11 −−   z
zg

zf
 

Theorem 1.12. Let ( ) ( ),,,, mnzg qp    and 

( )    

( )       ( )−−+++

+++
−=

1221

21
1

,,,

,,

qpqpqp
nn

qpqp
nn

mmqppq

mmpqqp
  

then ( ) ( ).,,, mngN qpp    

Proof. Let ( ) ( ),gNzf   then by the definition (1.10); 

1 r rr
r a g



=
−    which implies that .

1


=
−

r rr ga  

As ( ) ( ),,,, mnzg qp    by the corollary (1.5), 
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  ( )

( )    
.

21

12

1 ,,

,




=
+++

−


r qpqp
nn

qp
r

mmpqqp
g  

Hence 

( )
( )






=



=

−

−

−

1

1

1

1

r

r

r

rr

g

ga

zg

zf
 

( )    

( )       ( )
.1

1221

21

,,,

,,
−=

−−+++

+++


qpqpqp
nn

qpqp
nn

mmqppq

mmpqqp
 

Thus, by the definition (1.11); ( ).,,, mnf qp     
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