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Abstract 

A Nordhau-Gaddum type relation is the one associated with some parameter of a graph 

and its complement. Nordhaus-Gaddum type relations have been studied since 1956. The most 

famous relation is the upper bound for the sum of the chromatic numbers of a graph and its 

complement. In this work, the Nordhaus-Gaddum type difference relation for the first Zagreb 

index, the Nordhaus-Gaddum type sum relation with the help of Cangul index, the Nordhaus-

Gaddum type sum relation for the second Zagreb index and total irregularity index are studied. 

Further, Nordhaus-Gaddum type relations for omega invariant are also found out. 
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1. Introduction 

A good amount of research in graph theory deals with graph invariants. 

Vertex degrees, edge degrees, radius, diameter, eccentricity, independence 

number, girth, chromatic number, domination number etc. are some of the 

most frequently used graph invariants. There are also topological graph 

indices with several applications in chemistry, physics, pharmacology, and 

electronic engineering and network sciences. In 1956, Nordhaus and Gaddum 

used a clever method of associating a graph with its complement. Let G be a 

graph. Let its complement be .G  Both the graphs G and G are simple 

undirected graphs having the same vertex set. However, G  has an edge if 

and only if G  does not have it. Nordhaus and Gaddum obtained relations for 

the chromatic number of G [9]. Such a relation helps to obtain information on 

one of G and G  by using the known information on the other. Since then, 

many authors used the same method for many other graph parameters in 

over 300 papers. In [3], Aouchiche and Hansen gave a beautiful survey of all 

Nordhaus-Gaddum type results up to 2013. 

Several authors obtained Nordhaus-Gaddum type identities or 

inequalities for some topological graph indices. Let  
  


GVv GudGM 2

1  

and  
  


GEuv GG vuddGM .2  Here,  GM1  is the first Zagreb index and 

 GM2  is the second Zagreb index. They were defined by Gutman and 

Trinajstic in [8]. In [4], such relations for first and second Zagreb indices are 

obtained. In [12], reciprocal relations for some molecular topological indices 

are obtained. In [4], as exact statements for    GMGM 11   and 

   GMGM 22   could not be given, some upper bounds were obtained. In 

this paper, we supply exact statement for    GMGM 11   and also for Above 

the first G, a bar is required. By means of a new function 
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Let  GF  be the forgotten index of the graph G. It is also known as the 
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third Zagreb Index. It is defined as  
  


GVv G

vdGF .3  We provide in this 

paper, a nice relation for    GFGF   in terms of nm,  and  .1 GM  For 

irregularity indices Bell and total irregularity, it is easy to see that 

   GBGB   and    GIrrGIrr tt   where 
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See [1, 2, 7, 11]. Finally in this paper, we obtain three Nordhaus-Gaddum 

type relations for        GGGG  ,   and    GG   where  is a 

recently defined topological graph invariant having many practical uses, see 

[5, 6]. 

2. Main Results 

Let the order and size of a graph G be n and m, respectively. For 

convenience, we shall denote the order and size of its complement above nG,  

and m, there are bars required. For a vertex v of a graph G, let vdG  denote 

the degree of v in G. Let  G  be the maximum degree and  G  be the 

minimum degree of a graph G. Let  G'  be the second maximum degree. 

In [4], upper bounds for the Nordhaus-Gaddum type sum formulae 

   GMGM 11   and    GMGM 22   were obtained as 
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The first inequality turns to be equality if and only if G is regular or .3P  

When G and G  are both connected, Zhou and Trinajsti’c improved the 

upper bound for the first Zagreb index as 

    .834 23
11  nnnGMGM  

We now obtain an exact formula for the difference    .11 GMGM   
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Hence we proved 

Theorem 1.        .41 2
11 mnnnGMGM   

For a simple connected graph G, we define the Cangul index denoted by 

 GC  as, 
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.  

 GC  can have other expressions such as, 
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1   as the degree sequence of G. 

Next, we shall obtain an exact formula for the sum    GMGM 22   by 

means of the index  .GC  

Theorem 2. 
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where  GC  is the Cangul index and       ka
k

a
d

a
dddD ,,, 11

1   is the degree 

sequence of G. 

Proof.    
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Note that we have given the additive Nordhaus-Gaddum type for the second 

Zagreb index  GM2  in terms of the index  .GC  Hence we need to 

investigate  GC  a little bit further. First let 
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Hence      .21 GCGCGC   

Lemma 3. For a path graph nP  with ,4n  we have 

      ,32
22

1  nnPC n  

  842  nPC n  

and hence 

      .21
22

 nnPC n  

Proof. As the degree sequence  nPD  of nP  is 

      ,2,1 22  n
nPD  

we have 
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Lemma 4. Let nC  be the cyclic graph with .3n  Then 

  ,22 2
1 nnCC n   

  02 nCC  

and hence 

  .22 2 nnCC n   

Proof.   nn
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  and   02 nCC  as the degree 

sequence of nC  is   .2 n  

The following three results can be proven similarly. 

Lemma 5. For ,4n  let nS  be the star on n vertices. Then 
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Lemma 6. For ,3n  let nK  be the complete graph on n vertices. Then 

 
 

.
2

1
3

1



nn

KC n  

  02 nKC  

and hence 

 
 

.
2

1
3




nn
KC n  

Lemma 7. For ,1 sr  let srT ,  be the tadpole graph obtained by 

adding a path sP  to a vertex on a cycle rC  having sr   vertices. Then 

     322,1  srsrTC sr  

    138,2  srTC sr  

and 

      .112,  srsrTC sr  

Next we obtain the additive Nordhaus-Gaddum type relation for the 

forgotten index  
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Theorem 8.             .31611 1
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The regularity of a graph is a well-known and useful property. If all vertex 

degrees in a graph are equal, then we call the graph regular. A graph which 

is not regular is called irregular. There are several topological indices like 

Albertson, sigma, Bell, total irregularity indices to determine the irregularity 

degree of graph. For the Bell index    
  


GVv G n

m
vdGB .

2 2
 It is well-

known that    .GBGB   We now prove a similar result for the total 

irregularity index 
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Then we have. 

Theorem 9. For any simple graph G, we have 

   .GIrrGIrr tt   

Proof. 
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3. Nordhaus-Gaddum type Relations for Omega Invariant 

Probably, the most popular graph invariant is the Euler characteristic, 

known since 18th century. Recently, a new topological graph invariant named 

as omega invariant has been defined by Delen and Cangul [5] by 

   .2 nmD   
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If       
aaa

D ,,2,1 21   is a realizable degree sequence, then the omega 

invariant of D is defined by 
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For more details of the omega invariant and its properties and applications, 

see [5, 6]. 

Our aim is to give some Nordhaus-Gaddum type results for omega 

invariant. Actually we shall give three such relations as below: 

Theorem 10.      .5 nnGG  

Proof. 
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4. Conclusion 

Graph invariants uniquely represent graphs. With the proper definition 

of the complement of a graph, it is worth exploring the relation of an 

invariant of a graph with the same invariant of its complement. In this 

exploration, the relation between a graph and its complement, bounds of 

invariants etc. could be studied. Nordhaus-Gaddum type relations are coming 

under this area of study. A more generalized definition of graph complement 

is available in [10]. Nordhaus-Gaddum type relations associated with sum, 

difference, product etc. could be further explored with the generalized graph 

complements. 
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