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Abstract 

The New Homotopy perturbation method is applied to solve a previously developed simple 

predator prey model with rich dynamics. Approximate analytical expressions for the prey and 

predator species populations are derived. The analytical solutions are compared with the 

numerical simulations and are found to make a very good fit.  

1. Introduction 

Mathematical modeling is an attempt to study some part (or form) of the 

real life problem in mathematical terms. It is an essential tool for 
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understanding the world. The process of translation of a real-life problem into 

a mathematical form can give a better representation and solution of certain 

problems. This process of translation is called Mathematical Modeling.  

A Lotka-Volterra model is the simplest model of predator-prey 

interactions. The model was developed independently by Lotka (1925) and 

Volterra (1926). A predator is an organism that hunts, kills and eats other 

organisms to survive. A prey is an organism which gets hunted and is taken 

as food by other organisms. The Lotka-Volterra equations, is also known as 

the predator-prey equations. These equations are a pair of first-order non-

linear differential equations, frequently used to describe the dynamics of 

biological systems in which two species interact, one as a predator and the 

other as prey. The objective of the present investigation is to find an alternate 

solution to a given differential equation using new Homotopy perturbation 

method and to analyze the mathematical model using graphs.  

2. Mathematical Formulation of the Problem 

Mathematical modeling of Predator-Prey interactions have attracted wide 

attention since the original work by Lodka-Volterra in 1920’s and there have 

been extensive studies for the Rich dynamics [1-3]. For a class of predator-

prey systems, Brauer and Soudack obtained different types of dynamics for 

which the harvesting was in prey or a predator. Xiao and Jennings further 

studied a ratio-dependent predator-prey model with a constant harvest on 

prey.  

The mathematical model developed by Bing Li et al. [6] has been 

considered in this paper. This model was not solved analytically previously. 

In this work, an approximate analytical solution is derived for the model 

using the new Homotopy perturbation method.  

In this model, if the density of the predator is below a switched value, the 

harvest has a linear harvesting rate. Otherwise, the harvesting rate is 

constant. Here, the model exhibits new dynamical features compared to those 

with a linear harvesting rate or a constant harvesting rate [1-5].  
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 PHdPcaNP
dt

dP
  (2) 

where N and P represent the prey and predator species populations, In the 

absence of the predation, r is intrinsic growth rate and K is carrying capacity. 

In the presence of the predator, a represents the rate of predation, c denotes 

the efficiency of predation and d denotes the mortality rate.  
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Initial conditions are  

00,,0 NNPPt   (3) 

3. Approximate Analytical Solution to Equations (1) to (3) Using New 

Homotopy Perturbation Method 

In order to obtain approximate analytic solutions to non-linear 

differential equations, asymptotic method such as Variational iteration 

method [7], Adomain decomposition method [8], Homotopy analysis method 

[9-11], Homotopy perturbation method [12-18] and the new approach to 

Homotopy perturbation method [19-23] are employed. When compared to all 

these methods, the new Homotopy perturbation method gives a better simple 

approximate solution in the zeroth iteration itself. The advantage of this 

method is that it does not need a small parameter in the system and hence 

has a wide application in solving non-linear differential equations.  

We shall derive the solution of equations (1) to (3) using New Homotopy 

perturbation method.  

Construct the Homotopy for equation (1) as follows:  
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Construct the Homotopy for equation (2) as follows:  

For P less than or equal to 0P   

  0p-1 0 
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For P greater than 0P   

  000p-1 0 
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dt
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dt
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 (6) 

where  

 2
210 pNpNNN  (7) 

 2
210 pPpPPP  (8) 

Solving the above equations using initial approximations we get,  

For P less than or equal to 0P   
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For P greater than 0P  
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4. Numerical Simulation 

The equations (1) to (3) are also solved numerically. The initial value 

problem has been solved numerically by using in MATLAB software in this 

paper. The obtained analytical results are compared with the numerical 

simulation.  
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Figure 1(a), (b) and (c). Plot of the prey species population (N) and Plot 

of the predator species population (P) versus time t for cases: P less than or 

equal to 0P  and P greater than 0P  respectively; for parameter values 

.1.0,8.0,4.0,1.0,01.0,8.0,1.0 00  PNKrdca   

 

Figure 2(a) and (b). Plot of the prey species population (N) versus time t 

for parameter values ,1.0,8.0,1.0,01.0,8.0,1.0 00  PNrdca  

.4.0K  
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Figure 3(a) and (b). Plot of the predator species population (P) versus 

time t for cases: P less than or equal to 0P  and P greater than 0P  

respectively; for parameter values ,1.0,8.0,01.0,3.0  rcdK  

.1.0,8.0,03.0,1.0,8.0 00  PNmpn   

 

Figure 4(a) and (b). Plot of the predator species population (P) versus 

time t for cases: P less than or equal to 0P  and P greater than 0P  

respectively; for parameter values ,1.0,01.0,1.0,3.0  rdaK  

.1.0,8.0,03.0,1.0,8.0 00  PNmpn  
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Figure 5(a) and (b). Plot of the predator species population (P) versus 

time t for cases: P less than or equal to 0P  and P greater than 0P  

respectively; for parameter values ,8.0,1.0,8.0,1.0,3.0  nrcaK  

.1.0,8.0,03.0,1.0 00  PNmp   

 

Figure 6(a) and (b). Plot of the predator species population (P) versus 

time t for cases: P less than or equal to 0P  and P greater than 0P  

respectively; for parameter values ,01.0,8.0,1.0,3.0  dcaK  

.1.0,8.0,03.0,1.0,8.0 00  PNmpn   
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Figure 7(a) and (b). Plot of the predator species population (P) versus 

time t for cases: P less than or equal to 0P  and P greater than 0P  

respectively; for parameter values ,01.0,8.0,1.0,3.0  dcaK  

.1.0,8.0,1.0,8.0,1.0 00  PNpnr   

 

Figure 8(a) and (b). Plot of the predator species population (P) versus 

time t for cases: P less than or equal to 0P  and P greater than 0P  

respectively; for parameter values ,1.0,01.0,8.0,1.0  rdca  

.1.0,8.0,1.0,8.0,03.0 00  PNPnm   

Table 1. Comparison between analytical values and numerical values in 

Figure 1.  

Value of N 

Value of t Numerical value Analytical value Absolute deviation 

percentage 

0 0.8 0.8 0 

0.2 0.7829671 0.7825922 0.047885217 

0.4 0.7670012 0.7655632 0.187492839 

0.6 0.7520101 0.7489047 0.412952228 

0.8 0.7379117 0.7326087 0.718655885 

1 0.7246329 0.7166673 1.099252193 

Average percentage of deviation 0.41104 
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Table 2. Comparison between analytical values and numerical values in 

Figure 2(b). 

Value of P 

Value of t Numerical value Analytical value Absolute deviation 

percentage 

0 0.1 0.1 0 

0.2 0.09 0.0951 0.097646455 

0.4 0.0898 0.0901 0.231713349 

0.6 0.08.47 0.0850 0.404587091 

0.8 0.0794 0.0799 0.619802427 

1 0.0741 0.0747 0.882427994 

Average percentage of deviation 0.372696 

5. Results and Discussion 

The equations (9)-(12) represent the simple approximate analytical 

solution to the prey predator model with rich dynamics. The derived 

analytical expressions are compared with the numerical solutions obtained 

using MATLAB in Figure 1. The percentage error is given in tables 1 and 2. 

From the tables it is evident that the percentage error is a very minimum, 

hence we may say that the derived solution is an approximate analytical 

solution to equations (1) to (3). From Figure 2, we observe that the prey 

species population varies inversely with the rate of predation and the 

intrinsic growth rate, but directly with the carrying capacity. Further, from 

Figures 3 to 8, we may conclude that predator species population varies 

directly with the rate of predation, efficiency of predation and the carrying 

capacity, but inversely with the mortality rate and the intrinsic growth rate.  

6. Conclusion 

In this paper, time dependent approximate analytical expressions for 

prey species population and predator species population are reported. The 

New Homotopy perturbation method is used to obtain the solution. The 
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analytical results make a very good fit with the numerical results. The 

obtained analytical results will help the researchers to interpret the effect of 

the different parameters over the prey and predator species population.  
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