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Abstract 

The present paper deals with some properties of Riemannian curvature tensor, Weyl 

curvature tensor, m-projective curvature tensor with respect to generalized Tanaka-Webster 

connection in a Lorentzian Para-Sasakian manifold. 

1. Introduction 

The Tanaka-Webster connection was introduced by Tanno [13] as a 

generalization of the well-known connection defined at the end of the 1970’s 

by Tanaka in [12] and independently by Webster in [15]. This connection 

coincides with the Tanaka-Webster Connection if the associated CR-structure 

is integrable. Tanaka-Webster connection is defined as the canonical affine 

connection on a non-degenerate, pseudo-Harmitian CR-manifold. for a real 

hypersurface in a Kähler manifold with almost contact structure  ,,,, g  

Cho adapted Tanno’s g-Tanaka-Webster connection for a non-zero real 

number k. In 2017, Ghosh and De [5] studied the g-Tanaka-Webster 

connection associated to a Kenmotsu structure. With the help of g-Tanaka-

Webster connection they characterized Kenmotsu manifolds and found 

important curvature properties of this connection on Kenmotsu manifolds. On 
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the other hand, the notion of a Lorentzian Para-Sasakian manifold was 

introduced by Matsumoto [6]. Mihai and Rosca [8] defined the same notion 

independently and they found several important results on this manifold. In 

addition to this, LP-Sasakian manifolds had been studied by Matsumoto and 

Mihai [7] and De [3] and Shaikh [11]. In 1971, Pokhariyal and Mishra [10] 

defined a tensor field W  on a Riemannian manifold known as m-projective 

curvature tensor which is given below 

   
 

      QXZYgYZXSXZYS
n

ZYXRZYXW ,,,
12

1
,,,, 


   

  QYZXg   (1.1) 

where SR,  and Q are the Riemannian curvature tensor of type (1, 3), the 

Ricci tensor of type  2,0  and the Ricci operator defined by 

   YXSXYQg ,,   respectively. 

In 2010, Chaubey and Ojha [2] studied the properties of the m-projective 

curvature tensor in Riemannian and Kenmotsu manifolds and they proved 

that the m-projective curvature tensor in an -Einstein Kenmotsu manifold is 

irrotational if and only if it is locally isometric to the hyperbolic space 

 .1nH  Later, Devi and Singh [4] found important results of m-projective 

curvature tensor on Kenmotsu manifold. Ayar and Chaubey investigated the 

properties of the -cosymplectic manifolds with m-projective curvature 

tensor. Meanwhile, they obtained some connections between different 

curvature tensors viz, m-projective curvature tensor Weyl-projective 

curvature tensor which is given as follows [9]: 

        .,,
1

1
,,,, YZXSXZYS

n
ZYXRZYXW 


   (1.2) 

2. Preliminary 

An n-dimensional differentiable manifold nM  is called an Lorentzian 

Para-Sasakian manifold [6], [7] if it admits a (1, 1) tensor field , a contra 

variant vector field , a 1-form  and a Lorentzian metric g which satisfy 

  ,1  (2.1) 
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  XXX2  (2.2) 

       ,,, YXYXgYXg   (2.3) 

(i)    ,, XXg   (ii) ,XDX   (2.4) 

            ,2,  YXXYYXgYDX  (2.5) 

where D denotes the operator of covariant differentiation with respect to the 

Lorentzian metric g. 

In a Lorentzian Para-Sasakian manifold, the following relations hold: 

(i) ,0  (ii)   ,0 X  (2.6) 

.1 nrank  (2.7) 

If we put 

   YXgYX  ,,  (2.8) 

for any vector fields X and Y, then the tensor field  YX ,  is a symmetric 

 2,0  tensor field [7]. And since the vector field  is closed in a Lorentzian 

Para Sasakian manifold, we have [7], [3] 

(i)      ,, YXYDX   (ii)   0,  X  (2.9) 

for any vector fields X and Y. A Lorentzian Para Sasakian manifold nM  is 

said to be -Einstein if Ricci tensor S is of the form 

       YXbYXagYXS  ,,  (2.10) 

for any vector fields YX ,  where ba,  are functions on .nM  Also, in an n-

dimensional Lorentzian Para-Sasakian manifold nM  with structure 

 g,,,   the following relations hold [7], [3]: 

             YZXgXZYgZYXRZYXRg  ,,,,,,,  (2.11) 

      ,,,, XYYXgYXR   (2.12) 

      ,,, YXXYYXR   (2.13) 
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     ,1, XnXS   (2.14) 

         ,1,, YXnYXSYXS   (2.15) 

for any vector fields .,, ZYX  The generalized Tanaka-Webster connection 

[14]  for a Lorentzian Para- Sasakian manifold nM  is defined by 

       ,YXDYYDYDY XXXX   (2.16) 

for all vector fields X and Y. By virtue of (2.4) (ii), (2.8) and (2.9) (i), the 

equation (2.16) can be written as 

      ., YXXYYXgYDY XX   (2.17) 

3. Curvature Tensor of Lorentzian Para-Sasakian Manifolds with 

Respect to Generalized Tanaka-Webster Connection 

Putting Y  in (2.17) and using (2.1), (2.6) (i), we have 

.XDXX   (3.1) 

Using (2.4) (ii) in (3.1) we get .2 XX   Now 

     .YYY XXX   (3.2) 

From (2.17) and (3.2) we get 

     ., YXgYDY XX   (3.3) 

With the help of (2.8) and (2.9), from the above equation, it follows that 

   .,2 YXgYX   Again 

         .,,,, ZYgZYgZYgZYg XXXX   (3.4) 

Finally using (2.17) in (3.4), yields 

       .,2, ZYgXZYgX   (3.5) 

Theorem 3.1. The generalized Tanaka-Webster connection  associated 

to the Levi-Civita connection is just one affine connection, which is not metric 

and its torsion is of the form 

      .2,
~

XYYXYXT   (3.6) 
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Proof. We see in (3.5) that the generalized Tanaka-Webster connection is 

not metric connection. 

Now the torsion tensor T
~

 of  is given by 

   .,
~

YXXYYXT YX   

Using (2.17) in the previous relation we get (3.6). 

The curvature tensor K of nM  with respect to the generalized Tanaka- 

Webster connection  is defined by 

    .,, , ZZZZYXK YXXYYX   

Then, in a Lorentzian Para Sasakian manifold, we have 

        YZXgXZYgZYXRZYXK  ,3,3,,,,  

        ZYgXZXgY ,3,3  

        .YZXXZY   (3.7) 

Suppose that ZYX ,,  are orthogonal to . Then the equation (3.7) 

becomes 

        .,3,3,,,, YZXgXZYgZYXRZYXK   (3.8) 

From the equation (3.8), we get 

         ZYZYgZYSZYS  3,3,,
~

 (3.9) 

where S
~

 and S are the Ricci tensors of the connections  and D respectively. 

Contracting Y and Z in (3.9), we obtain 

 13~  nrr  (3.10) 

where rr ,~  are the scalar curvatures of the connections  and D respectively. 

From (3.9) yields 

  YYQYYQ 33
~

 (3.11) 

where    .,
~

,
~

ZYQgZYS   
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Let R'  and K'  be the curvature tensors of  4,0  type given by 

    UZYXRgUZYXR ,,,,,,'   (3.12) 

and 

    .,,,,,,' UZYXKgUZYXK   (3.13) 

Theorem 3.2. In a Lorentzian Para-Sasakian manifold, curvature tensor 

with respect to the generalized Tanaka-Webster connection  has the following 

properties: 

(a)       ,0,,,,,,  YXZKXZYKZYXK  

(b)     ,0,,,',,,'  UZXYKUZYXK  

(c)     ,0,,,',,,'  ZUYXKUZYXK  

(d)     .0,,,',,,'  YXUZKUZYXK  (3.14) 

Proof. By using (3.8) and first Bianchi identity 

      0,,,,,,  YXZRXZYRZYXR  

with respect to Riemannian connection D, we obtain (3.14) (a). 

By virtue of equations (3.8), (3.12) and (3.13) we have 

       UXgZYgUZYXRUZYXK ,,3,,,,',,,'   

   .,,3 UYgZXg   (3.15) 

Now interchanging X and Y in (3.15) and using the equation (3.8), we get 

(3.14) (b). Immediately we obtain the equations (3.14) (c) and (3.14) (d). 

Lemma 3.1. Let nM  be an n-dimensional Lorentzian Para-Sasakian 

manifold with the generalized Tanaka-Webster connection . Then, we have 

   ,,,,,  YXRYXK  (3.16) 

   ,0,,  YXK  (3.17) 

    ,,
~

XSXS  (3.18) 

for all ., nTMYX   



SOME CURVATURE PROPERTIES ON LORENTZIAN … 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022 

3197 

4. Weyl Projective Curvature Tensor of Lorentzian Para-Sasakian 

Manifolds with Respect to Generalized Tanaka-Webster Connection 

Analogous to the definition given in (1.2), the Weyl projective curvature 

tensor W
~

 of type (1, 3) in a Lorentzian Para-Sasakian manifold nM  with 

respect to generalized Tanaka Webster connection  is given by 

         .,
~

,
~

1

1
,,,,

~
YZXSXZYS

n
ZYXKZYXW 


  (4.1) 

By making use of (1.2), (3.2), (3.8) in (4.1), we have 

        YZXgXZYgZYXWZYXW  ,3,3,,,,
~

 

    YZXgXZYg
n

,3,3
1

1



  

        .33 YZXXZY   (4.2) 

From (4.2), we have, the Weyl projective curvature tensor with respect to 

generalized Tanaka-Webster connection  satisfies the following algebraic 

properties 

    ,0,,
~

,,
~

 ZXYWZYXW  

and 

      0,,
~

,,
~

,,
~

 YXZWZXYWZYXW  

for vector fields ZYX ,,  on .nM  

Theorem 4.1. An n-dimensional Lorentzian Para-Sasakian manifold is 

-Weyl projectively at with respect to generalized Tanaka-Webster connection if 

and only if the manifold is also -Weyl projectively flat with respect to the 

Riemannian connection. 

Proof. Putting Z  in (4.2) and using (2.1), (2.4) (i) it follows that 

   .,,,,
~

 YXWYXW  (4.3) 

Hence proofs the theorem. 
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5. m-Projective Curvature Tensor on Lorentzian Para-Sasakian 

Manifolds 

Analogous to the (1.1), the m-projective curvature tensor W
~

 in a 

Lorentzian Para-Sasakian manifold nM  with respect to generalized Tanaka-

Webster connection . 

   
 

    YZXSXZYS
n

ZYXKZYXW ,
~

,
~

12

1
,,,,

~



  

    .
~

,
~

, YQZXgXQZYg   (5.1) 

Theorem 5.1. An n-dimensional Lorentzian Para-Sasakian manifold 

nM  is m-projectively at with respect to generalized Tanaka-Webster 

connection if and only if the manifold has constant scalar curvature 

.122  nn  

Proof. Let .0
~

W  From the equation (5.1) we have 

 
 

    YZXSXZYS
n

ZYXK ,
~

,
~

12

1
,, 


  

                .
~

,
~

, YQZXgXQZYg   (5.2) 

With the help of (3.2), (3.3) and (3.5), the equation (5.2) becomes 

     
 

  XZYS
n

YZXgXZYgZYXR ,
12

1
,3,3,,


  

       YZXSXZYXZYg ,3,3   

       QXZYGYZXYZXg ,3,3   

       QYZXgXZYgXZYg ,,3,3   

      .,3,3  YZXgYZXg  (5.3) 

Replacing Z by  in (5.3) and then using (2.1), (2.4) (i), (2.6) (i) and (2.13), 

we obtain 

           .2 QYXQXYYXXYn   
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Again putting Y  in the above relation and using (2.1), we have 

    XXnQX 2  

 

         .,2, YXYXgnYXS   (5.4) 

Let  neee ,,, 21   be an orthonormal basis of the tangent space at each 

point of the manifold .nM  By putting  ieYX   in the above relation 

(5.4) and taking the summation over ,1, nii   we get 

.122  nnr  

This completes the proof. 

6. Conclusion 

Starting from generalized Tanaka-Webster connection on Lorentzian 

Para-Sasakian manifolds, we derived the Riemannian curvature of this 

connection and obtained some properties of the different curvature tensors 

viz, Weyl projective curvature tensor, m-projective curvature tensor. 
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