INTEGRAL SOLUTIONS OF CUBIC DIOPHANTINE EQUATION WITH FIVE UNKNOWNS SIMPLE FORM

FOR COEFFICIENTS $x^3 + y^3 = 13(z + w)p^2$

D. MAHESWARI¹, S. DEVIBALA² and M. A. GOPALAN³

^{1,3}Department of Mathematics

Shrimati Indira Gandhi College

Trichy - 620002, India

E-mail: matmahes@gmail.com

mayilgopalan@gmail.com

²Department of Mathematics

Sri Meenakshi Govt.

Arts College for Women (A), Madurai, India

E-mail: devibala27@yahoo.com

Abstract

The homogeneous cubic equation with five unknowns $x^3 + y^3 = 13(z + w)p^2$ is analyzed for its non-zero distinct integral points through employing linear transformations. A few interesting properties among the solutions and special numbers are presented.

Notation

$$t_{m,n} = n \left[1 + \frac{(n-1)(m-2)}{2} \right]$$

$$\Pr_n = n(n+1)$$

1. Introduction

The theory of Diophantine equations offers a rich variety of fascinating problems. In particular cubic equations, homogeneous or non-homogeneous, have aroused the interest of numerous Mathematicians since antiquity [1, 2].

2020 Mathematics Subject Classification: 11S23.

Keywords: Integer points, cubic Diophantine equation with five unknowns.

Received March 24, 2022; Accepted April 9, 2022

For illustration one may refer [3-10]. This paper concerns with the problem of determining non-trivial integral solutions of the non-homogeneous cubic equation with five unknowns $x^3 + y^3 = 13(z + w)p^2$. A few interesting relations between the solutions and the special numbers are presented.

2. Method of Analysis

The cubic Diophantine equation with five unknowns studied for its non-zero distinct integer solutions is given by

$$x^3 + y^3 = 13(z+w)p^2 (1)$$

Introducing the linear transformations

$$x = u + v, y = u - v, z = u + d, w = u - d$$
 (2)

in (1), we get

$$u^2 + 3v^2 = 13p^2 (3)$$

Now, we solve (3) through different methods and thus obtain different patterns of solutions to (1).

Pattern I

Assume
$$p = p(a,b) = a^2 + 3b^2$$
 (4)

where a and b are non-zero distinct integers.

Write 13 as
$$(1 + i2\sqrt{3})(1 + i2\sqrt{3})$$
 (5)

Using (4) and (5) in (3) and applying the method of factorization, it is written as the system of double equations as

$$u + i\sqrt{3}v = (1 + i2\sqrt{3})(a + i\sqrt{3}b)^2$$

$$u + i\sqrt{3}v = (1 + i2\sqrt{3})(a - i\sqrt{3}b)^2$$

Equating the real and imaginary parts in either of the above equation we have,

$$u = u(a, b) = a^2 - 3b^2 - 12ab$$

$$v = v(a, b) = 2a^2 - 6b^2 + 2ab$$

In view of (2), the corresponding solutions of (1) are given by

$$x = x(a, b) = 3a^2 - 9b^2 - 10ab$$

$$y = y(a, b) = -a^2 + 3b^2 - 14ab$$

$$z = z(a, b, d) = a^2 - 3b^2 - 12ab + d$$

$$w = w(a, b, d) = a^2 - 3b^2 - 12ab - d$$

$$p = p(a, b) = a^2 + 3b^2$$

Properties.

A few interesting properties observed are as follows:

$$x(a, 1) + y(a, 1) - t_{6, a} \equiv -6 \pmod{23}$$

$$z(a, 1, 1) + w(a, 1, 1) - t_{6,a} \equiv -6 \pmod{24}$$

$$x(a, 1) + p(a, 1) - t_{10,a} \equiv -6 \pmod{7}$$

$$x(a, a) + z(a, a, 1) + w(a, a, 1) + t_{90, a} \equiv 0 \pmod{43}$$

$$y(a, a) + p(a, a) + t_{18,a} \equiv 0 \pmod{17}$$

Pattern II

Rewrite (3) as
$$u^2 + 3v^2 = 13p^2 * 1$$
 (6)

Write 1 as
$$1 = \frac{(1 + i\sqrt{3})(1 - i\sqrt{3})}{4}$$
 (7)

Applying a similar analysis presented as in pattern I and performing a few calculations, the corresponding non-zero distinct integral solutions of (1) are given by

$$x = x(A, B) = -4A^2 + 12B^2 - 56AB$$

$$y = y(A, B) = -16A^2 + 48B^2 - 16AB$$

$$z = z(A, B, d) = -10A^{2} + 30B^{2} - 36AB + d$$

$$w = w(A, B, d) = -10A^{2} + 30B^{2} - 36AB - d$$

$$p = p(A, B) = 4A^{2} + 12B^{2}$$

Properties.

$$x(A, 1) + y(A, 1) + t_{42, A} \equiv 60 \pmod{91}$$

$$z(A, 1, 1) + w(A, 1, 1) - 5p(A, 1) + t_{82, A} \equiv 0 \pmod{171}$$

$$x(1, B) + y(1, B) - t_{122, B} \equiv -7 \pmod{13}$$

$$x(A, A) + p(A, A) + t_{66, A} \equiv 0 \pmod{31}$$

$$y(A, A) + p(A, A) - 32 \Pr_A \equiv 0 \pmod{32}$$

Pattern III

Instead of (7) write 1 as

$$1 = \frac{(1 + i4\sqrt{3})(1 - i4\sqrt{3})}{7^2} \tag{8}$$

For this choice, the corresponding integer solutions are found to be

$$x = x(a, b) = -119a^{2} + 357b^{2} - 574ab$$

$$y = y(a, b) = -203a^{2} + 609b^{2} + 70ab$$

$$z = z(a, b, d) = -161a^{2} + 483b^{2} - 252ab + d$$

$$w = w(a, b, d) = -161a^{2} + 483b^{2} - 252ab - d$$

$$p = p(a, b) = 49a^{2} + 147b^{2}$$

Properties.

$$x(a, 1) + y(a, 1) + t_{646, a} \equiv 141 \pmod{825}$$

$$z(a, 1, 1) + w(a, 1, 1) + 322 \Pr_a \equiv 56 \pmod{182}$$

$$x(a, a) + y(a, a) - t_{282a} \equiv 0 \pmod{139}$$

$$x(a, a) + p(a, a) + 10t_{30, a} \equiv 0 \pmod{130}$$

$$y(a, a) + p(a, a) - 336t_{6,a} \equiv 0 \pmod{336}$$

Pattern IV

Instead of (7) write 1 as

$$1 = \frac{(1+i15\sqrt{3})(1-i15\sqrt{3})}{26^2} \tag{9}$$

For this choice, the corresponding integer solutions are found to be

$$x = x(a, b) = -1872a^2 + 5616b^2 - 7280ab$$

$$y = y(a, b) = -2756a^2 + 8268b^2 + 1976ab$$

$$z = z(a, b, d) = -2314a^2 + 6942b^2 - 2652ab + d$$

$$w = w(a, b, d) = -2314a^2 + 6942b^2 - 2652ab - d$$

$$p = p(a, b) = 676a^2 + 2028b^2$$

Properties.

$$x(a,1) - y(a, 1) - 221t_{10,a} \equiv -2652 \pmod{8593}$$

$$z(a, 1, 1) - w(a, 1, 1) + p(a, 1) - 13t_{106a} \equiv 41 \pmod{663}$$

$$x(a, a) + z(a, a, 1) + 78t_{42,a} \equiv 1 \pmod{1482}$$

$$y(a, a) - p(a, a) - 299t_{34, a} \equiv 0 \pmod{4485}$$

$$y(1, b) - z(1, b, 1) - 6t_{444, b} \equiv -443 \pmod{5948}$$

Pattern V

Instead of (7) write 1 as

$$1 = \frac{(1 + i56\sqrt{3})(1 - i56\sqrt{3})}{97^2} \tag{10}$$

For this choice, the corresponding integer solutions are found to be

$$x = x(A, B) = -26869A^{2} + 80607B^{2} - 98746AB$$

$$y = y(A, B) = -38121A^{2} + 114363B^{2} + 31234AB$$

$$z = z(A, B, d) = -32495A^{2} + 97485B^{2} - 33756AB + d$$

$$w = w(A, B, d) = -32495A^{2} + 97485B^{2} - 33756AB - d$$

$$p = p(A, B) = 9409A^{2} + 28227B^{2}$$

Properties.

$$x(A, 1) - y(A, 1) - 2813t_{10, A} \equiv -33756 \pmod{121541}$$
$$z(A, 1, 1) - w(A, 1, 1) + p(A, 1) - 28229$$

is a perfect square

$$p(A, 1) + x(A, 1) + 291t_{122, A} \equiv 108834 \pmod{115915}$$
$$y(A, A) + p(A, A) - 1649t_{178, A} \equiv 0 \pmod{143463}$$
$$x(1, B) + p(1, B) - 1649t_{134, B} \equiv -582 \pmod{8439}$$

Note.

Instead of (5), taking $13 = \frac{(5+i3\sqrt{3})(5-i3\sqrt{3})}{2^2}$ in the above patterns, we can obtain the corresponding nonzero integer solutions to (1).

Pattern VI

Rewrite (3) as
$$u^2 - p^2 = 3(4p^2 - v^2)$$
 (11)

which can be written in the ratio form as

$$\frac{u-p}{2p+v} = \frac{3(2p-v)}{u+p} = \frac{A}{B}, B \neq 0$$
 (12)

Solving (12) and in view of (2) the integral solutions of (1) are found to be

$$x = x(A, B) = 3A^2 - 9B^2 - 10AB$$

$$y = y(A, B) = -A^2 + 3B^2 - 14AB$$

$$z = z(A, B, d) = A^2 - 3B^2 - 12AB + d$$

$$w = w(A, B, d) = A^2 - 3B^2 - 12AB - d$$

$$p = p(A, B) = -A^2 - 3B^2$$

Properties.

$$x(A, 1) + y(A, 1) - t_{6, A} \equiv -6 \pmod{23}$$

$$z(A, 1, 1) + w(A, 1, 1) - 2 \Pr_A \equiv -6 \pmod{26}$$

$$x(A, A) + p(A, A) + t_{42, A} \equiv 0 \pmod{19}$$

$$y(A, A) + p(A, A) + t_{34 A} \equiv 0 \pmod{15}$$

$$p(1, B) + x(1, B) + t_{26, B} \equiv 2 \pmod{21}$$

Note.

Instead of (12), (11) can be written in three different ways as follows:

(i)
$$\frac{u-p}{3(2p+v)} = \frac{(2p-v)}{u+p} = \frac{A}{B}, B \neq 0$$

(ii)
$$\frac{u-p}{2p-v} = \frac{3(2p+v)}{u+p} = \frac{A}{B}, B \neq 0$$

(iii)
$$\frac{u-p}{3(2p-v)} = \frac{\left(2p+v\right)}{u+p} = \frac{A}{B}, \, B \neq 0$$

Following the procedure similar to the above, the corresponding non-zero integral solutions to the above three cases are as follows:

Case (i).

$$x = x(A, B) = 9A^2 - 3B^2 - 10AB$$

$$y = y(A, B) = -3A^2 + B^2 - 14AB$$

$$z = z(A, B, d) = 3A^2 - B^2 - 12AB + d$$

$$w = w(A, B, d) = 3A^2 - B^2 - 12AB - d$$

$$p = p(A, B) = -3A^2 - B^2$$

Properties.

$$x(A, 1) + y(A, 1) - t_{14, A} \equiv -2 \pmod{19}$$

$$z(A, 1, d) + w(A, 1, d) - 6pr_A \equiv -2 \pmod{19}$$

$$x(A, A) + p(A, A) + t_{18, A} \equiv 0 \pmod{7}$$

$$y(A, A) + p(A, A) + t_{42, A} \equiv 0 \pmod{19}$$

$$p(1, B) + x(1, B) + y(1, B) + t_{8, B} \equiv 3 \pmod{26}$$

Case (ii).

$$x = x(A, B) = A^2 - 3B^2 + 14AB$$

$$y = y(A, B) = -3A^2 + 9B^2 + 10AB$$

$$z = z(A, B, d) = -A^2 + 3B^2 + 12AB + d$$

$$w = w(A, B, d) = -A^2 + 3B^2 + 12AB - d$$

$$p = p(A, B) = A^2 + 3B^2$$

Properties.

$$x(1, B) + y(1, B) + 26$$
 is a Nasty number

$$z(1, B, d) + w(1, B, d) - t_{14, B} \equiv -2 \pmod{29}$$

$$x(A, A) + y(A, A) - t_{58 A} \equiv 0 \pmod{27}$$

$$x(A, A) + p(A, A)$$

is a perfect square

$$y(A, A) + p(A, A) - 20pr_A \equiv 0 \pmod{20}$$

Case (iii).

$$x = x(A, B) = 3A^{2} - B^{2} + 14AB$$

$$y = y(A, B) = -9A^{2} + 3B^{2} + 10AB$$

$$z = z(A, B, d) = -3A^{2} + B^{2} + 12AB + d$$

$$w = w(A, B, d) = -3A^{2} + B^{2} + 12AB - d$$

$$p = p(A, B) = 3A^{2} + B^{2}$$

Properties.

$$x(A, 1) + y(A, 1) + p(A, 1) + t_{8,A} \equiv 3 \pmod{22}$$

 $z(A, 1, d) + w(A, 1, d) + x(A, 1) + pr_A \equiv 1 \pmod{41}$
 $x(1, B) + p(1, B) \equiv 6 \pmod{14}$
 $y(1, B) + p(1, B) - t_{10,B} \equiv -6 \pmod{13}$
 $p(A, A) + z(A, A, 1) + w(A, A, 1)$

is a Nasty number

Conclusion

Since the cubic Diophantine equations with five unknowns are rich in variety, one may search for other choices of Diophantine equations to find their corresponding integer solutions.

References

- [1] L. E. Dickson, History of theory of numbers, Vol-2, Chelsea Publishing Company, New York, 1952.
- [2] David Burton, Elementary Number Theory, Tata Mcgraw hill Publishing company Ltd, New Delhi, 2002.
- [3] E. Premalatha and M. A. Gopalan, On Homogeneous Cubic Equation with Four

- Unknowns $x^3 + y^3 = 13zw^2$, International Journal of Advances in Engineering and Management (IJAEM) 2(2) (2020), 31-41.
- [4] G. Janaki and C. Saranya, Integral solutions of the ternary cubic equation $3(x^2 + y^2) - 4xy + 2(x + y + 1) = 972z^3$ IRJET 04(3) (2017), 665-669.
- [5] M. A. Gopalan, G. Sumathi and S. Vidhyalakshmi, Integral solutions of nonhomogeneous ternary quintic equation in terms pells sequence $x^3 + y^3 + xy(x + y) = 2z^5$, JAMS 6(1) (2013), 56-62.
- [6] M. A. Gopalan, S. Vidhyalakshmi, J. Shanthi, J. Maheswari, On ternary cubic Diophantine equation $3(x^2 + y^2) - 5xy + x + y + 1 = 12z^3$, International Journal of Applied Research 1(8) (2015), 209-212.
- [7] M. A. Gopalan, S. Vidhyalakshmi, J. Shanthi, On the cubic equation with four unknowns $x^3 + 4z^3 = y^3 + 4w^3 + 6(x - y)^3$, International Journal of Mathematics Trends and Technology 20(1) (2015), 75-84.
- [8] R. Anbuselvi, K. Kannaki, On ternary cubic Diophantine equation $3(x^2 + y^2) 5xy + x + y$ $+1 = 15z^3$ IJSR 5(9) (2016), 369-375.
- [9] R. Anbuselvi and K. S. Araththi, On the cubic equation with four unknowns $x^3 + y^3 = 24zw^2$ IJERA 7(11) (Part-I), (2017), 01-06.
- [10] S. Vidhyalakshmi, M. A. Gopalan and S. AarthyThangam, On the ternary cubic Diophantine equation $4(x^2 + x) + 5(y^2 + 2y) = -6 + 14z^3$, International Journal of Innovative Research and Review (JIRR) 2(3) (2014), 34-39.