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Abstract 

The aim of this paper is to introduce convex structure G-metric spaces and extended 

Mann’s iteration algorithm to these spaces. By using Mann’s iteration scheme, a series of fixed 

point results and Mann’s iteration algorithm was generalized. Also, strong convergence 

theorems for contraction mappings in convex G-metric spaces were developed. Furthermore, the 

problem of T-stability of the Mann’s iteration procedure for the mappings in complete convex G-

metric spaces was considered. 

1. Introduction 

The fixed point theorems, convex metric spaces and convex structure 

have been well discussed in literature (Alnafei et al. [1], Hadzic [5], Hamaizia 

[5], Saha et al. [12], Shimizu [14]). The properties of fixed point of the b-

metric spaces and E-metric spaces have been established by different authors 

and references (Chen et al. [3], Goswami et al. [4], Haokip and Goswami [4], 

Mehmood et al. [8]). The T-stable is one of the important requirements for a 

fixed point iteration to be valuable and applicable from a numerical point of 

view (Rani and Jyoti [12]). 

In Mustafa and Sims [11], the authors introduced a new concept of 

generalized metric space called G-metric spaces. After that, many authors 

have proven several fixed point results in these spaces (Modi and Bhatt [9], 

Mustafa et al. [10]). This paper introduced the concept of the convex G-metric 

space by the convex structure. Moreover, Mann’s iteration algorithm was 
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extended to G-metric space. Additionally, by means of Mann’s iteration 

scheme, strong convergence theorems for two types of contraction mapping in 

convex G-metric spaces were obtained. 

2. Preliminaries 

In this section, definitions of general metric, properties and the other 

result that are needed in the sequel are explained. 

Definition 1. [9.11]. Assume that X is a nonempty set, and let 

 RXXXG :  be a function satisfying the following properties: 

(i)   0,, wvuG  if ;wvu   

(ii)   XvuvuuG  ,,,,0  with ;vu   

(iii)     XwvuwvuGvuuG  ,,,,,,,  with ;wu   

(iv)        uvwGwuvGwvuG ,,,,,,  (all permutations of 

wvu ,, ), (symmetry in three variables); 

(v)       XawvuwvaGaauGwvuG  ,,,,,,,,,  (rectangle inequality). 

Then the function G is called a generalized metric or a G-metric on X and the 

pair  XG,  is called a G-metric space. 

Definition 2. [9.11]. Let  XG,  be a G-metric and let  nu  be a sequence 

of points of X, a point  nu  is said to be limit of the sequence  nu  if 

  0,,lim
,




mn
mn

uuuG  and the sequence  nu  is said to be G-convergent to 

u. Thus, if uun   in a G-metric space  XG,  then for any ,0  there 

exists a positive integer N such that 

  .,,, NmnuuuG mn   

Definition 3. [9.11]. Let  XG,  be a G-metric space. A sequence  nu  in 

X is called G-Cauchy if for every ,0  there is a positive integer N such that 

  ,,,,,, NlmnuuuG lmn   that is, if   ,0,, lmn uuuG  as 

.,, lmn  
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Definition 4. [9]. Let  XG,  be a G-metric space. A mapping 

  XXXXW  1,0:  is said to be convex structure on  XG,  if for 

each    1,0,,,  XXXwvu  and for all Xyx ,  the condition 

         zvuGyvuGxvuGwvuWyxG ,,,,,,
3

,,,,, 


  

holds. If W is convex structure on a G-metric space  XG,  then the triplet 

 WGX ,,  is called a convex G-metric space. 

Definition 5. [9.11]. A G-Metric space  XG,  is said to be G-complete (or 

complete G-metric space) if every Cauchy sequence in  XG,  is convergent in 

X. 

Definition 6. [3]. Assuming that T is a self-map on a complete G-metric 

space  ., XG  Let  nn uTfu ,1   be an iteration sequence that yields the 

sequence nu  of the points from X. So, the iteration procedure 

 nn uTfu ,1   is going to be weakly T-stable if  nu  converges to a fixed 

point u  of T, and if  nv  is a sequence in X such that 

    0,,lim 1 


aTvfvG nn
n

 and sequence   aTvvG nn ,,  a is bounded, then 

.lim 


 uvn

n
 

Lemma 1. [3]. Let    nn lk ,  be a non-negative sequence that satisfies 

,0lim,10,1 


 n
n

nnn lhNnlhkk  then .0lim 


n
n

k  

3. Main Results 

In this section, we prove complete convex generalized metric version of 

Banach’s contraction principle (Banach [2]) by means of Mann’s iteration 

algorithm, complete convex generalized metric of Kannan type fixed point 

theorem (Chen et al. [3]), and the weak T-stability procedure respectively. 

Theorem 1. Suppose that  WGX ,,  is a complete convex G-metric space 

and XXT :  is a contraction mapping; that is, there exists  1,0B  

such that 
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    .,,,,, XvuavuBGaTvTuG   

Let us choose Xu 0  in such a way that    MaTuuG ,, 00  and 

define  111 ;,   nnnn TuuWu  where 10 1  n  and .Nn    If 1B  

and 
B

B

n 




 1

1
0

4

1

1  for each ;Nn   then T has a unique fixed point in X. 

Proof. For any ,Nn   it is said that 

         aTuuGaTuuWuGauuG nnnnnnnnn ,,1,;,,, 1   

and 

     aTuTuGTuTuuGaTuuG nnnnnnn ,,;,,, 11    

     auuBGTuTuTuuWG nnnnnnn ,,,,;, 111111    

     .,,1,, 1111111 aTuuGBTuTuuG nnnnnnn    

From definition (1) (iii) and (iv) we have 

    aTuuGB nnnn ,,1 1111    

      aTuuGBaTuuG nnnnnn ,,1,, 1111    

Let  .1 111   nnn B  By gathering this and the above 

inequality with the assumptions 1B  and ,
1

1
0

4

1

1 Nn
B

B

n 






  we 

get 

     .,,.1,,,, 11
4

1

111 aTuuBGaTuuGaTuuG nn

B

nnnnn 



   (1) 

This means that   aTuuG nn ,,  is a decreasing sequence of non-negative 

reals. Therefore, 0  Such that 

  .,,lim 


aTuuG nn
n

 

We will show that .0  Suppose that .0  Letting n  in 

inequality (1), we obtain 



FIXED POINT THEOREMS IN CONVEX G-METRIC SPACES 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 5, March 2022 

2321 

,1. 4

1


B

B  

a contradiction. Hence we get .0  Furthermore, we have 

       ,,,,,1,, 1 aTuuGaTuuGauuG nnnnnnn   

which shows that   .0,,lim 1 


auuG nn
n

 Now we will show that  nu  is a 

Cauchy sequence. 

In fact, if  nu  is not a Cauchy sequence, so there exists 00   and the 

subsequences   ku  and   ku   of  ,nu  such that  k  is the smallest 

natural index with     ,kkk   

      0,,  auuG kk  

and 

      01 ,,  auuG kk  

Therefore, it is concluded that 

             auvGvvuGauuG kkkk ,,,,,,0    

which implies that 

     .,,suplim 10 vuuG kk
k




  

Noticing that 

                 auTuuWGauuG kkkkkk ,,;,,, 11111    

                   auTuGuuuG kkkkkkk ,,1,, 1111111    

                   ,,1,, 1111111   kkkkkkk TuTuGuuuG   

        auTuGTu kkkr ,, 111    

                     11111111 ,1,,   kkkkkkkk uuuBGuuuG   

     auTuG kk ,, 11   
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               11111 ,,1   kkkkk uuuGB  

         auTuG kkk ,,1 111   

                11111 ,,1   kkkkk TuTuuGB   

                 auTuGuuTuG kkkkkk ,,1,, 111111     

We obtain 

      ,,,suplim 010  


auuG kk
k

 

which is a contradiction. Hence,  nu  is a Cauchy sequence in X. By the 

completeness of X, there exists Xu   Such that   .0,,lim 


auuG n

n
 

Next, we will verify that u  is a fixed points of T. Note that 

     .,,,,,, aTuuGuuuGaTuuG nnn
   

Letting n  we assume that   0,,  aTuuG  which implies that 

.  uTu  Hence, u  is a fixed point of T. Now we explain that T has a 

unique fixed point. Suppose that Xv   is another fixed point, that is .vTv   

Then, 

     .,,,,,, avuBGaTvTuGavuG    

For some  ,1,0B  a contradiction. Hence ,vu 
 which completes the 

proof. 

Theorem 2. Suppose that  WGX ,,  is a complete convex G-metric space, 

and the mapping XXT :  be defined as 

       ,,,,,,,, XvuaTvvGaTuuGkaTvTuG   (2) 

and for some .
2

1
,0 






k  Let us choose Xu 0  in such a way that 

   MaTuuG ,, 00  and we define  111 ;   nnnn TuuWu  for Nn   

and .
2

1
,01 





 n  If ,
4

1
,0






k   then T has a unique fixed point in X. 
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Proof.  For any ,Nn   we have 

         aTuuGaaTuuWuGauuG nnnnnnnnn ,,1,;,,, 1   (3) 

and 

     aTuaTuuWGaTuuG nnnnnn ,,;,,, 111   

     aTuTuGaTuuG nnnnnn ,,1,, 1111     

      aTuTuGaTuTuGTuTuuG nnnnnnnn ,,,,,, 111111    

      aTuTuGTuTuuG nnnnnnn ,,1,, 111111     

     aTuuGkTuTuuG nnnnnnn ,,1,, 111111    

 aTuuG nn ,,  

Let aTun 1  

       aTuuGkkaTuuGkk nnnnnnn ,,,, 11111    

i.e., 

        aTuuGkkaTuuGkk nnnnnnn ,,,,1 11111    

Since 

,1
16

5

4

5
1   kkk n  

then 

 
 

 .,,
1

,, 11
1

11 aTuuG
kk

kk
aTuuG nn

n

nn
nn 








  (4) 

Denote 
 kk

kk

n

nn
n 









1

11
1 1

 for .Nn   We assume that 

   
.

11

9
1

16

5
1

4

5

1
4

5

1 11

11
1 















 kkkk

kk

nn

nn
n  

From the above inequality, as well as inequality (4) with the assumptions 

of the theorem, we get 
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     ,,,
11

9
,,,, 11111 aTuuGaTuuGaTuuG nnnnnnn    (5) 

which implies that   aTuuG nn ,,  is a decreasing sequence of non-negative 

reals. Hence, there exists 0  Such that 

  .,,lim 


aTuuG nn
n

 

We will show that .0  suppose that .0  Letting n  in 

inequality (5), we obtain that ,
11

9
  a contradiction. Hence we get 

that ;0  i.e., 

  .0,,lim 


aTuuG nn
n

 

Moreover, by inequality (3) we obtain 

       ,,,,,1,, 1 aTuuGaTuuGauuG nnnnnnn   

which implies that   .0,,lim 1 


auuG nn
n

 Now it will be shown that  nu  

is a Cauchy sequence. In fact, if  nu  is not a Cauchy sequence, then there 

exist 00   and the subsequences 
 


l
u  and   lu  of  nu  such that  l  is 

the smallest natural index with     ,lll   

      0,,  auuG ll  

and 

      01 ,,  auuG ll  

Therefore, it is concluded that 

                   ,,,,,,, 1110 auuGuuuGauuG lllllll    

which implies that 

     auuG ll
l

,,suplim 10 


  

Noticing that 
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                 auTuuWGauuG llllll ,,;,,, 11111    

                 auTuGauuG llllll ,,1,, 111111    

                   1111111 ,,1,,   llllllk TuTuTuGauuG  

             auuGauTuG lllll ,,,, 11111    

               aTuukGaTuukG lllll 11111 ,,1    

     auTuG ll 11,   

                  aTuukGauuG lllkll ,,1,, 111111    

       aTuuGk ll ,,1 11   (for some 






2

1
,0k  satisfying (2)) 

                auuGuuuG llllll ,,,, 111    

                  aTuuGkaTuukG lllll ,,1,,1 11111    

We obtain 

      0
0

1 4
,,suplim 






auuG ll
l

 

which is a contradiction. Thus  nu  is a Cauchy sequence in X. By the 

completeness of X, it follows that there exists .Xu   Such that 

  .0,,lim 


auuG n

l
 

Now we will show that u  is a fixed point of T. Since 

     aTuuGuuuGaTuuG nn ,,,,,,    

     aTuTuGTuTuuGuuuG nnnnnn ,,,,,,    

        aTuuGaTuuGkTuTuuGuuuG nnnnnnn ,,,,,,,,     

We conclude that 

         aTuuGkuuuGaTuuGk nn

n

nn ,,
11

9
1,,,,1 







   

(for some aTun  )  
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Consequently, we get that   ,0,,  aTuuG  so u  is a fixed point of T. 

In order to illustrate the uniqueness of the fixed point, suppose that 

,,  uqXq  is another fixed point of T.  Then .qTq   However, 

        ,0,,,,,,,,0   aTqqkGaTuukGaTqTuGaquG  

a contradiction. Hence qu 
 which completes the proof. 

Theorem 3. Under the assumptions of theorem 1, if, additionally, 

,0lim 


n
n

 then Mann’s iteration is weakly T-stable. 

Proof. By virtue of Theorem 1, we assume that u  is a unique fixed point 

of T in X Assuming that  nv  is a sequence in X which satisfies 

    0,;,,suplim 1 


aTvvWvG nnnn
l

 and   aTvvG nn ,,  is bounded. We 

obtain 

      nnnnnnnn TvvWTvvWvGauvG  


 :,,;,,, 11  

   auTvvWG nnn ,,;,   

        nnnnnnnnnnnn TvTvTvvWGTvvWTvvWvG ,,;,;,,;,,1    

 auTvG n ,,   

      nnnnnnnnnnn TvTvvGTvvWTvvWvG ,,;,,;,,1    

 .,, auvBG n
  

Noticing that ,1B  ,0lim 


n
n

   ,;lim 1 nnnn
n

TvvWvG 


 

  0;, nnn TvvW  and   nnn TvTvvG ,  is bounded, and taking into 

account Lemma 1, we get that 

  ,0,,lim 


auvG n

n
 

which completes the proof. 

Theorem 4. Under all the assumptions of Theorem 2, if, 0lim 


n
n

 and 

if the positive real number k from Theorem 2 satisfies, as well as the condition 
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,1
1


 k

k
 then Mann’s iteration is weakly T-stable. 

Proof. From Theorem 2, it follows that T has a unique fixed point of u  

in X. Assume that  nv  is a sequence in X which satisfies 

    .0,;,lim 1 


aTvvWvG nnnn
l

 

and   aTvvG nn ,,  is bounded. We obtain 

      nnnnnnnn TvvWTvvWvGauvG  
 ;,,;,,, 1  

   auTvvWG nnn ,,;,   

        nnnnnnnnnnnn TvTvTvvWGTvvWTvvWvG ,,;,;,,;,1    

 auTvG n ,,   

        auTvGTvTvvGTvvWTvvWvG nnnnnnnnnnnn ,,,,;,,;,1


   

Noticing that      0;,,;lim,0lim 1  


nnnnnnn
n

n
n

TvvWTvvWvG  

and   nnn TvTvvG ,,  is bounded, and taking into account Lemma 1, we get 

that 

  ,0,,lim 


auvG n

n
 

which completes the proof. 
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