

FIXED POINT THEOREMS IN CONVEX G-METRIC SPACES

ELHADI E. E. DALAM

Department of Mathematics College of Arts and Science in Al Mandag Al Baha University, Saudi Arabia E-mail: adalam@bu.edu.sa

Abstract

The aim of this paper is to introduce convex structure G-metric spaces and extended Mann's iteration algorithm to these spaces. By using Mann's iteration scheme, a series of fixed point results and Mann's iteration algorithm was generalized. Also, strong convergence theorems for contraction mappings in convex G-metric spaces were developed. Furthermore, the problem of T-stability of the Mann's iteration procedure for the mappings in complete convex G-metric spaces was considered.

1. Introduction

The fixed point theorems, convex metric spaces and convex structure have been well discussed in literature (Alnafei et al. [1], Hadzic [5], Hamaizia [5], Saha et al. [12], Shimizu [14]). The properties of fixed point of the *b*-metric spaces and *E*-metric spaces have been established by different authors and references (Chen et al. [3], Goswami et al. [4], Haokip and Goswami [4], Mehmood et al. [8]). The *T*-stable is one of the important requirements for a fixed point iteration to be valuable and applicable from a numerical point of view (Rani and Jyoti [12]).

In Mustafa and Sims [11], the authors introduced a new concept of generalized metric space called *G*-metric spaces. After that, many authors have proven several fixed point results in these spaces (Modi and Bhatt [9], Mustafa et al. [10]). This paper introduced the concept of the convex *G*-metric space by the convex structure. Moreover, Mann's iteration algorithm was

2020 Mathematics Subject Classification: 47H09, 47H10.

Keywords: *G*-metric space; Mann's iteration scheme; fixed point theorems; convex structure. Received October 1, 2020; Accepted January 4, 2021 extended to G-metric space. Additionally, by means of Mann's iteration scheme, strong convergence theorems for two types of contraction mapping in convex G-metric spaces were obtained.

2. Preliminaries

In this section, definitions of general metric, properties and the other result that are needed in the sequel are explained.

Definition 1. [9.11]. Assume that X is a nonempty set, and let $G: X \times X \times X \to R^+$ be a function satisfying the following properties:

- (i) G(u, v, w) = 0 if u = v = w;
- (ii) $0 < G(u, u, v), \forall u, v \in X \text{ with } u \neq v;$
- (iii) $G(u, u, v) \leq G(u, v, w), \forall u, v, w \in X \text{ with } u \neq w;$

(iv) G(u, v, w) = G(v, u, w) = G(w, v, u) = ... (all permutations of u, v, w), (symmetry in three variables);

(v) $G(u,v,w) \leq G(u,a,a) + G(a,v,w) \forall u,v,w,a \in X$ (rectangle inequality). Then the function G is called a generalized metric or a G-metric on X and the pair (G, X) is called a G-metric space.

Definition 2. [9.11]. Let (G, X) be a *G*-metric and let $\{u_n\}$ be a sequence of points of *X*, a point $\{u_n\}$ is said to be limit of the sequence $\{u_n\}$ if $\lim_{n,m\to\infty} G(u, u_n, u_m) = 0$ and the sequence $\{u_n\}$ is said to be *G*-convergent to *u*. Thus, if $u_n \to u$ in a *G*-metric space (G, X) then for any $\varepsilon > 0$, there exists a positive integer *N* such that

$$G(u, u_n, u_m) < \varepsilon \forall n, m \ge N.$$

Definition 3. [9.11]. Let (G, X) be a *G*-metric space. A sequence $\{u_n\}$ in *X* is called *G*-Cauchy if for every $\varepsilon > 0$, there is a positive integer *N* such that $G(u_n, u_m, u_l) < \varepsilon, \forall n, m, l \ge N$, that is, if $G(u_n, u_m, u_l) \to 0$, as $n, m, l \to \infty$.

Definition 4. [9]. Let (G, X) be a *G*-metric space. A mapping $W: X \times X \times X \times (0, 1] \to X$ is said to be convex structure on (G, X) if for each $(u, v, w, \lambda) \in X \times X \times X \times (0, 1]$ and for all $x, y \in X$ the condition

$$G(x, y, W(u, v, w, \lambda)) \le \frac{\lambda}{3} \{G(u, v, x) + G(u, v, y) + G(u, v, z)\}$$

holds. If W is convex structure on a G-metric space (G, X) then the triplet (X, G, W) is called a convex G-metric space.

Definition 5. [9.11]. A G-Metric space (G, X) is said to be G-complete (or complete G-metric space) if every Cauchy sequence in (G, X) is convergent in X.

Definition 6. [3]. Assuming that T is a self-map on a complete G-metric space (G, X). Let $u_{n+1} = f(T, u_n)$ be an iteration sequence that yields the sequence u_n of the points from X. So, the iteration procedure $u_{n+1} = f(T, u_n)$ is going to be weakly T-stable if $\{u_n\}$ converges to a fixed point u^* of T, and if $\{v_n\}$ is a sequence in X such that $\lim_{n\to\infty} G(v_{n+1}, f(Tv_n), a) = 0$ and sequence $\{G(v_n, Tv_n, a)\}$ a is bounded, then $\lim_{n\to\infty} v_n = u^*$.

Lemma 1. [3]. Let $\{k_n\}, \{l_n\}$ be a non-negative sequence that satisfies $k_{n+1} \leq hk_n + l_n \forall n \in N, 0 \leq h < 1, \lim_{n \to \infty} l_n = 0, \text{ then } \lim_{n \to \infty} k_n = 0.$

3. Main Results

In this section, we prove complete convex generalized metric version of Banach's contraction principle (Banach [2]) by means of Mann's iteration algorithm, complete convex generalized metric of Kannan type fixed point theorem (Chen et al. [3]), and the weak *T*-stability procedure respectively.

Theorem 1. Suppose that (X, G, W) is a complete convex G-metric space and $T: X \to X$ is a contraction mapping; that is, there exists $B \in [0, 1)$ such that

$$G(Tu, Tv, a) \leq BG(u, v, a) \forall u, v \in X.$$

Let us choose $u_0 \in X$ in such a way that $G(u_0, Tu_0, a) = M < \infty$ and define $u_n = W(u_{n-1}, Tu_{n-1}; \alpha_{n-1})$ where $0 \le \alpha_{n-1} < 1$ and $n \in N$. If B < 1

and
$$0 < \alpha_{n-1} < \frac{1^{\frac{1}{4}} - B}{1 - B}$$
 for each $n \in N$; then T has a unique fixed point in X.

Proof. For any $n \in N$, it is said that

$$G(u_n, u_{n+1}, a) = G(u_n W(u_n, Tu_n; \alpha_n), a) \le (1 - \alpha_n) G(u_n, Tu_n, a)$$

 $\quad \text{and} \quad$

$$G(u_n, Tu_n, a) \le G(u_n, Tu_n; Tu_{n-1}) + G(Tu_{n-1}, Tu_n, a)$$

$$\le G(W(u_{n-1}, Tu_{n-1}; \alpha_{n-1}), Tu_{n-1}, Tu_{n-1}) + BG(u_{n-1}, u_n, a)$$

$$\le \alpha_{n-1}G(u_{n-1}, Tu_{n-1}, Tu_{n-1}) + B(1 - \alpha_{n-1})G(u_{n-1}, Tu_{n-1}, a).$$

From definition (1) (iii) and (iv) we have

$$\leq (\alpha_{n-1} + B(1 - \alpha_{n-1}))G(u_{n-1}, Tu_{n-1}, a)$$

$$\therefore G(u_n, Tu_n, a) \leq (\alpha_{n-1} + B(1 - \alpha_{n-1}))G(u_{n-1}, Tu_{n-1}, a)$$

Let $\lambda_{n-1} = \alpha_{n-1} + B(1 - \alpha_{n-1})$. By gathering this and the above

inequality with the assumptions B<1 and $0<\alpha_{n-1}<\frac{1}{4}^{-B}}{1-B}\,\forall n\in N,$ we get

$$G(u_n, Tu_n, a) \le \lambda_{n-1} G(u_{n-1}, Tu_{n-1}, a) < 1^{\frac{1}{4}-B} BG(u_{n-1}, Tu_{n-1}, a).$$
 (1)

This means that $\{G(u_n, Tu_n, a)\}$ is a decreasing sequence of non-negative reals. Therefore, $\exists \eta \geq 0$ Such that

$$\lim_{n\to\infty} G(u_n, Tu_n, a) = \eta.$$

We will show that $\eta = 0$. Suppose that $\eta > 0$. Letting $n \to \infty$ in inequality (1), we obtain

$$\eta \leq B.1^{\frac{1}{4}-B}\eta < \eta,$$

a contradiction. Hence we get η = 0. Furthermore, we have

$$G(u_n, u_{n+1}, a) \le (1 - \alpha_n) G(u_n, Tu_n, a) < G(u_n, Tu_n, a),$$

which shows that $\lim_{n\to\infty} G(u_n, u_{n+1}, a) = 0$. Now we will show that $\{u_n\}$ is a Cauchy sequence.

In fact, if $\{u_n\}$ is not a Cauchy sequence, so there exists $\varepsilon_0 > 0$ and the subsequences $\{u_{\theta(k)}\}$ and $\{u_{\tau(k)}\}$ of $\{u_n\}$, such that $\theta(k)$ is the smallest natural index with $\theta(k) > \tau(k) > k$,

$$G(u_{\theta(k)}, u_{\tau(k)}, a) \ge \varepsilon_0$$

and

$$G(u_{\theta(k)-1}, u_{\tau(k)}, a) < \varepsilon_0$$

Therefore, it is concluded that

$$\varepsilon_0 \leq G(u_{\theta(k)}, u_{\tau(k)}, a) \leq G(u_{\theta(k)}, v, v) + G(v, u_{\tau(k)}, a)$$

which implies that

$$\varepsilon_0 \leq \limsup_{k \to \infty} G(u_{\theta(k)}, u_{\tau(k)+1}, v).$$

Noticing that

$$\begin{split} G(u_{\theta(k)}, u_{\tau(k)+1}, a) &= G(W(u_{\theta(k)-1}, Tu_{\theta(k)-1}; \alpha_{\theta(k)-1}), u_{\tau(k)+1}, a) \\ &\leq \alpha_{\theta(k)-1}G(u_{\theta(k)-1}, u_{\tau(k)+1}, u_{\tau(k)+1}) + (1 - \alpha_{\theta(k)-1})G(Tu_{\theta(k)-1}, u_{\tau(k)+1}, a) \\ &\leq \alpha_{\theta(k)-1}G(u_{\theta(k)-1}, u_{\tau(k)+1}, u_{\tau(k)+1}) + (1 - \alpha_{\theta(k)-1})\{G(Tu_{\theta(k)-1}, Tu_{\tau(k)+1}, Tu_{\tau(k)+1}, u_{\tau(k)+1}) + G(Tu_{\tau(k)+1}, u_{\tau(k)+1}, a)\} \\ &\leq \alpha_{\theta(k)-1}G(u_{\theta(k)-1}, u_{\tau(k)+1}, u_{\tau(k)+1}) + (1 - \alpha_{\theta(k)-1})\{BG(u_{\theta(k)-1}, u_{\tau(k)+1}u_{\tau(k)+1}) + G(Tu_{\tau(k)+1}, u_{\tau(k)+1}, a)\} \end{split}$$

$$\leq (\alpha_{\theta(k)-1} + (1 - \alpha_{\theta(k)-1})B)G(u_{\theta(k)-1}, u_{\tau(k)+1}, u_{\tau(k)+1}) + (1 - \alpha_{\theta(k)-1})G(Tu_{\tau(k)+1}, u_{\tau(k)+1}, a) \leq (\alpha_{\theta(k)-1} + (1 - \alpha_{\theta(k)-1})B)\{G(u_{\theta(k)-1}, Tu_{\tau(k)+1}, Tu_{\tau(k)+1}) + G(Tu_{\tau(k)+1}, u_{\tau(k)+1}, u_{\tau(k)+1})\} + (1 - \alpha_{\theta(k)-1})G(Tu_{\tau(k)+1}, u_{\tau(k)+1}, a)$$

We obtain

$$\varepsilon_0 \leq \limsup_{k \to \infty} G(u_{\theta(k)}, u_{\tau(k)+1}, a) \leq \varepsilon_0,$$

which is a contradiction. Hence, $\{u_n\}$ is a Cauchy sequence in X. By the completeness of X, there exists $u^* \in X$ Such that $\lim_{n \to \infty} G(u_n, u^*, a) = 0$.

Next, we will verify that u^* is a fixed points of *T*. Note that

$$G(u^*, Tu^*, a) \le G(u^*, u_n, u_n) + G(u_n, Tu^*, a)$$

Letting $n \to \infty$ we assume that $G(u^*, Tu^*, a) = 0$ which implies that $Tu^* = u^*$. Hence, u^* is a fixed point of T. Now we explain that T has a unique fixed point. Suppose that $v \in X$ is another fixed point, that is Tv = v. Then,

$$G(u^*, v, a) = G(Tu^*, Tv, a) \le BG(u^*, v, a).$$

For some $B \in [0, 1)$, a contradiction. Hence $u^* = v$, which completes the proof.

Theorem 2. Suppose that (X, G, W) is a complete convex *G*-metric space, and the mapping $T : X \to X$ be defined as

$$G(Tu, Tv, a) \le k(G(u, Tu, a) + G(v, Tv, a)) \forall u, v \in X,$$
(2)

and for some $k \in \left[0, \frac{1}{2}\right]$. Let us choose $u_0 \in X$ in such a way that $G(u_0, Tu_0, a) = M < \infty$ and we define $u_n = W(u_{n-1}Tu_{n-1}; \alpha_{n-1})$ for $n \in N$ and $\alpha_{n-1} \in \left(0, \frac{1}{2}\right]$. If $k \in \left[0, \frac{1}{4}\right]$, then T has a unique fixed point in X.

Proof. For any $n \in N$, we have

$$G(u_n, u_{n+1}, a) = G(u_n W(u_n, Tu_n; a_n), a) \le (1 - \alpha_n) G(u_n, Tu_n, a)$$
(3)

and

$$\begin{split} &G(u_n, \, Tu_n, \, a) = G(W(u_{n-1}, \, Tu_{n-1}; \, a_{n-1}), \, Tu_n, \, a) \\ &\leq \alpha_{n-1}G(u_{n-1}, \, Tu_n, \, a) + (1 - \alpha_{n-1})G(Tu_{n-1}, \, Tu_n, \, a) \\ &\leq \alpha_{n-1}(G(u_{n-1}, \, Tu_{n-1}, \, Tu_{n-1}) + G(Tu_{n-1}, \, Tu_n, \, a)) + G(Tu_{n-1}, \, Tu_n, \, a) \\ &\leq \alpha_{n-1}(G(u_{n-1}, \, Tu_{n-1}, \, Tu_{n-1}) + (\alpha_{n-1} + 1)G(Tu_{n-1}, \, Tu_n, \, a) \\ &\leq \alpha_{n-1}G(u_{n-1}, \, Tu_{n-1}, \, Tu_{n-1}) + k \, (\alpha_{n-1} + 1)(G(u_{n-1}, \, Tu_n, \, a) \\ &\quad + G(u_n, \, Tu_n, \, a)) \\ & \text{Let} \, Tu_{n-1} = a \\ &\quad \leq (\alpha_{n-1} + k\alpha_{n-1} + k)G(u_{n-1}, \, Tu_{n-1}, \, a) + (k\alpha_{n-1} + k)G(u_n, \, Tu_n, \, a) \end{split}$$

i.e.,

$$(1 - (k\alpha_{n-1} + k))G(u_n, Tu_n, a) \le (\alpha_{n-1} + k\alpha_{n-1} + k)G(u_{n-1}, Tu_{n-1}, a)$$

Since

$$k\alpha_{n-1} + k \le \frac{5}{4}k < \frac{5}{16} < 1,$$

then

$$G(u_n, Tu_n, a) \le \frac{\alpha_{n-1} + k\alpha_{n-1} + k}{1 - (k\alpha_{n-1} + k)} G(u_{n-1}, Tu_{n-1}, a).$$
(4)

Denote $\lambda_{n-1} = \frac{\alpha_{n-1} + k\alpha_{n-1} + k}{1 - (k\alpha_{n-1} + k)}$ for $n \in N$. We assume that

$$\lambda_{n-1} = \frac{\alpha_{n-1} + k\alpha_{n-1} + k}{1 - (k\alpha_{n-1} + k)} < \frac{\frac{5}{4}}{1 - (k\alpha_{n-1} + k)} < \frac{\frac{5}{4}}{1 - \frac{5}{16}} - 1 = \frac{9}{11}.$$

From the above inequality, as well as inequality (4) with the assumptions of the theorem, we get

ELHADI E. E. DALAM

$$G(u_n, Tu_n, a) \le \lambda_{n-1} G(u_{n-1}, Tu_{n-1}, a) < \frac{9}{11} G(u_{n-1}, Tu_{n-1}, a),$$
(5)

which implies that $\{G(u_n, Tu_n, a)\}$ is a decreasing sequence of non-negative reals. Hence, there exists $\eta \ge 0$ Such that

$$\lim_{n\to\infty}G(u_n,\,Tu_n,\,a)=\eta.$$

We will show that $\eta = 0$. suppose that $\eta > 0$. Letting $n \to \infty$ in inequality (5), we obtain that $\eta \leq \frac{9}{11} \eta < \eta$, a contradiction. Hence we get that $\eta > 0$; i.e.,

$$\lim_{n \to \infty} G(u_n, Tu_n, a) = 0.$$

Moreover, by inequality (3) we obtain

$$G(u_n, u_{n+1}, a) \le (1 - \alpha_n) G(u_n, Tu_n, a) < G(u_n, Tu_n, a),$$

which implies that $\lim_{n\to\infty} G(u_n, u_{n+1}, a) = 0$. Now it will be shown that $\{u_n\}$ is a Cauchy sequence. In fact, if $\{u_n\}$ is not a Cauchy sequence, then there exist $\varepsilon_0 > 0$ and the subsequences $\{u_{\theta(l)}\}$ and $\{u_{\tau(l)}\}$ of $\{u_n\}$ such that $\theta(l)$ is the smallest natural index with $\theta(l) > \tau(l) > l$,

$$G(u_{\theta(l)}, u_{\tau(l)}, a) \geq \varepsilon_0$$

and

$$G(u_{\theta(l)-1}, u_{\tau(l)}, a) < \varepsilon_0$$

Therefore, it is concluded that

$$\varepsilon_0 \le G(u_{\theta(l)}, u_{\tau(l)}, a) \le G(u_{\theta(l)}, u_{\tau(l)+1}, u_{\tau(l)+1}) + G(u_{\theta(l)+1}, u_{\tau(l)}, a),$$

which implies that

$$\varepsilon_0 \leq \limsup_{l \to \infty} G(u_{\theta(l)}, u_{\tau(l)+1}, a)$$

Noticing that

$$\begin{split} &G(u_{\theta(l)}, \, u_{\tau(l)+1}, \, a) = G(W(u_{\theta(l)-1}, \, Tu_{\theta(l)-1}; \alpha_{\theta(l)-1}), \, u_{\tau(l)+1}, \, a) \\ &\leq \alpha_{\theta(l)-1}G(u_{\theta(l)-1}, \, u_{\tau(l)+1}, \, a) + (1 - \alpha_{\theta(l)-1})G(Tu_{\theta(l)-1}, \, u_{\tau(l)+1}, \, a) \\ &\leq \alpha_{\theta(k)-1}G(u_{\theta(l)-1}, \, u_{\tau(l)+1}, \, a) + (1 - \alpha_{\theta(l)-1})\{G(Tu_{\theta(l)-1}, \, Tu_{\tau(l)+1}, \, Tu_{\tau(l)+1}) \\ &+ G(Tu_{\tau(l)+1}, \, u_{\tau(l)+1}, \, a)\} \leq \alpha_{\theta(l)-1}G(u_{\theta(l)-1}, \, u_{\tau(l)+1}, \, a) \\ &+ (1 - \alpha_{\theta(l)-1})\{kG(u_{\theta(l)-1}Tu_{\theta(l)-1}, \, a) + kG(u_{\tau(l)+1}, \, Tu_{(l)+1}a) \\ &+ G(Tu_{\tau(l)+1}, \, u_{\tau(l)+1}a)\} \\ &\leq \alpha_{\theta(l)-1}G(u_{\theta(l)-1}, \, u_{\tau(k)+1}, \, a) + (1 - \alpha_{\theta(l)-1})(kG(u_{\theta(l)-1}, \, Tu_{\theta(l)-1}, \, a) \\ &+ (k + 1)G(u_{\theta(l)+1}, \, Tu_{\theta(l)+1}, \, a)) \text{ (for some } k \in \left[0, \frac{1}{2}\right] \text{ satisfying (2))} \\ &\leq \alpha_{\theta(l)-1}\{G(u_{\theta(l)-1}, \, u_{\tau(l)}, \, u_{\tau(l)}) + G(u_{\tau(l)}, \, u_{\tau(l)+1}, \, a)\} \\ &+ (1 - \alpha_{\theta(l)-1})\{kG(u_{\theta(l)-1}, \, Tu_{\theta(l)-1}, \, a) + (k + 1)G(u_{\tau(l)+1}, \, Tu_{\tau(l)+1}, \, a)\} \\ &\text{We obtain} \end{split}$$

$$\limsup_{l \to \infty} G(u_{\theta(l)}, \, u_{\tau(l)+1}, \, a) \leq \frac{\varepsilon_0}{4} < \varepsilon_0$$

which is a contradiction. Thus $\{u_n\}$ is a Cauchy sequence in X. By the completeness of X, it follows that there exists $u^* \in X$. Such that

$$\lim_{l\to\infty}G(u_n,\,u^*,\,a)=0.$$

Now we will show that u^* is a fixed point of *T*. Since

$$\begin{aligned} &G(u^*, Tu^*, a) \leq G(u^*, u_n, u_n) + G(u, Tu^*, a) \\ &\leq G(u^*, u_n, u_n) + G(u_n, Tu_n, Tu_n) + G(Tu_n, Tu^*, a) \\ &\leq G(u^*, u_n, u_n) + G(u_n, Tu_n, Tu_n) + k \{G(u_n, Tu_n, a) + G(u^*, Tu^*, a)\} \end{aligned}$$

We conclude that

$$(1-k)G(u^*, Tu^*, a) \le G(u^*, u_n, u_n) + (1+k) \left(\frac{9}{11}\right)^n G(u_n, Tu_n, a)$$

(for some $Tu_n = a$)

Consequently, we get that $G(u^*, Tu^*, a) = 0$, so u^* is a fixed point of T.

In order to illustrate the uniqueness of the fixed point, suppose that $q \in X$, $q \neq u^*$, is another fixed point of T. Then Tq = q. However,

$$0 < G(u^*, q, a) = G(Tu^*, Tq, a) \le kG(u^*, Tu^*, a) + kG(q, Tq, a) = 0,$$

a contradiction. Hence $u^* = q$ which completes the proof.

Theorem 3. Under the assumptions of theorem 1, if, additionally, $\lim_{n\to\infty} \alpha_n = 0$, then Mann's iteration is weakly T-stable.

Proof. By virtue of Theorem 1, we assume that u^* is a unique fixed point of T in X Assuming that $\{v_n\}$ is a sequence in X which satisfies $\limsup_{l\to\infty} G(v_{n+1}W, (v_n, Tv_n; \alpha_n), a) = 0$ and $\{G(v_n, Tv_n, a)\}$ is bounded. We obtain

$$\begin{split} G(v_{n+1}, u^*, a) &\leq G(v_{n+1}W(v_n, Tv_n; \alpha_n), W(v_n, Tv_n : \alpha_n)) \\ &+ G(W(v_n, Tv_n; \alpha_n), u^*, a) \\ &\leq G(v_{n+1}, W(v_n, Tv_n; \alpha_n), W(v_n, Tv_n; \alpha_n)) + G(W(v_n, Tv_n; \alpha_n), Tv_n, Tv_n) \\ &+ G(Tv_n, u^*, a) \\ &\leq G(v_{n+1}, W(v_n, Tv_n; \alpha_n), W(v_n, Tv_n; \alpha_n)) + \alpha_n G(v_n, Tv_n, Tv_n) \\ &+ BG(v_n, u^*, a). \\ &\text{Noticing that } B < 1, \lim_{n \to \infty} \alpha_n = 0, \lim_{n \to \infty} G(v_{n+1}W(v_nTv_n; \alpha_n), W(v_n, Tv_n; Tv_n)) \\ &+ W(v_n, Tv_n; \alpha_n)) = 0 \quad \text{and} \quad (G(v_nTv_n, Tv_n)) \text{ is bounded, and taking into} \end{split}$$

account Lemma 1, we get that

$$\lim_{n\to\infty}G(v_n,\,u^*,\,a)=0,$$

which completes the proof.

Theorem 4. Under all the assumptions of Theorem 2, if, $\lim_{n\to\infty} \alpha_n = 0$ and if the positive real number k from Theorem 2 satisfies, as well as the condition

 $\frac{k}{1-k} < 1$, then Mann's iteration is weakly T-stable.

Proof. From Theorem 2, it follows that T has a unique fixed point of u^* in X. Assume that $\{v_n\}$ is a sequence in X which satisfies

$$\lim_{l\to\infty} G(v_{n+1}W(v_n, Tv_n; \alpha_n), a) = 0.$$

and $\{G(v_n, Tv_n, a)\}$ is bounded. We obtain

$$G(v_n, u^*, a) \leq G(v_{n+1}W(v_n, Tv_n; \alpha_n), W(v_n, Tv_n; \alpha_n))$$

$$+ G(W(v_n, Tv_n; \alpha_n), u^*, a)$$

$$\leq G(v_{n+1}W(v_n, Tv_n; \alpha_n), W(v_n, Tv_n; \alpha_n)) + G(W(v_n, Tv_n; \alpha_n), Tv_n, Tv_n)$$

$$+ G(Tv_n, u^*, a)$$

$$\leq G(v_{n+1}W(v_n, Tv_n; \alpha_n), W(v_n, Tv_n; \alpha_n)) + \alpha_n G(v_n, Tv_n, Tv_n) + G(Tv_n, u^*, a)$$
Noticing that $\lim_{n \to \infty} \alpha_n = 0$, $\lim_{n \to \infty} G(v_{n+1}W(v_n Tv_n; \alpha_n), W(v_n, Tv_n; \alpha_n)) = 0$

$$\{G(v_n, Tv_n, Tv_n)\}$$
 is bounded, and taking into account Lemma 1, we get

and $\{G(v_n, Tv_n, Tv_n)\}$ is bounded, and taking into account Lemma 1, we get that

$$\lim_{n \to \infty} G(v_n, u^*, a) = 0,$$

which completes the proof.

Acknowledgments

The author would like to thank the referees for valuable comments and suggestions which helped to improve this paper.

Conflicts of Interest: The author declare no conflicts of interest regarding the publication of this paper.

References

 H. Shahrazad Alnafei, Stojan Radenović and Naseer Shahzad, Fixed point theorems for mappings with convex diminishing diameters on cone metric spaces, Appl. Math. Lett.

24(12) (2011), 2162-2166.

- [2] Stefan Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. math. 3(1) (1922), 133-181.
- [3] Lili Chen, Chaobo Li, Radoslaw Kaczmarek and Yanfeng Zhao, Several Fixed Point Theorems in Convex b-Metric Spaces and Applications, Mathematics 8(2) (2020), 242.
- [4] Nilakshi Goswami, Nehjamang Haokip and Vishnu Narayan Mishra, F-contractive type mappings in b-metric spaces and some related fixed point results, Fixed Point Theory A. 2019(1) (2019), 13.
- [5] Olga Hadzic, On coincidence theorems for a family of mappings in convex metric spaces, Internat. J. Math. and Math. Sci. 10(3) (1987), 453-460.
- [6] Taieb Hamaizia, Extension of some fixed point theorems type T-contraction in cone metric space, NTMSCI 7(4) (2019), 446-452.
- [7] Nehjamang Haokip and Nilakshi Goswami, Some fixed point theorems for generalized Kannan type mappings in b-metric spaces, Proyecciones (Antofagasta) 38(4) (2019), 763-782.
- [8] Nayyar Mehmood, Ahmed Al Rawashdeh and Stojan Radenović, New fixed point results for *E*-metric spaces, Positivity 23(5) (2019), 1101-1111.
- [9] Geeta Modi and Bhawna Bhatt, Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space, IJMSI. 2(11) (2014), 34-38.
- [10] Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory and Applications, Volume 2008, Article ID 189870 (2008), 12 pages.
- [11] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7(2) (2006), 289-297.
- [12] Asha Rani and Kumari Jyoti, A New IOSR Journal of Mathematics (IOSR-JM) 12(3) (2016), 11-20.
- [13] Mantu Saha, Debashis Dey and Anamika Ganguly, A generalisation of fixed point theorems in a 2-metric space, General Mathematics, Romania 19(1) (2011), 87-98.
- [14] Tomoo Shimizu, Fixed points of multivalued nonexpansive mappings in certain convex metric spaces, (Nonlinear Analysis and Convex Analysis) 1031 (1998), 75-84.