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Abstract 

In this script, an exponential Diophantine equation in three variables   22 zpp yx   

where p is a prime number given by 14  np   for persuaded possibility of Rn   the set of 

all real numbers is explored for the presence of integers solutions or the concerned equation has 

no solution under the assumption that the sum of the exponents x and y is 1, 2 and 3. 

1. Introduction 

A Diophantine equation is one in which the only possible solutions are 

integers. Number theory includes the study of Diophantine equations. Many 

scholars have been working on the solution of the Diophantine equation of 

the form 
2zqp yx   in recent years, where p and q are separate primes 
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and ,, yx  and z are non-negative integers. Asthana and Singh demonstrated 

in [1] that the Diophantine equation 2133 zyx   with non-negative 

integers ,, yx  and z has only four solutions      ,4,1,1,2,0,1,, zyx  

 14,2,3  and  .16,1,5  In [2], Burshte in Nechemia showed a few months 

ago that the Diophantine equation   24 zpp
yx   has no solution, where 

,, yx  and z are positive integers and 4, pp  are primes with .3p  For an 

extension analysis one may refer [1-4, 6, 8-10]. In this paper, an exponential 

Diophantine equation in three unknowns   22 zpp
yx   where p is a 

prime number stated by 14  np  for specific opportunity of ,Rn   the set 

of all real numbers is analysed for the occurrence of solutions in integers or 

this equation has no solution under the hypothesis that yx   is 1, 2 and 3.  

2. Progression of Investigations 

An exponential equation for determining whether an integer solution 

occurs or not is considered as 

  22 zpp
yx    (1) 

where p is a prime number of the form 14  np  for certain ,Rn   the set 

of all real numbers. 

Let us seek solutions for (1) by assuming the sum of the exponents is less 

than or equal to 3. 

The opportunities of the above statement are illustrated below.  

(i) 1,0  yx  and 0,1  yx   

(ii) 1,1,2,0  yxyx  and 2,0  yx   

(iii) 1,1,2,1,3,0  yxyxyx  and .0,3  yx   

Below is a full description of how to analyse each of the nine scenarios.  

Case (i). Assume 0x  and 1y  

These two selected values of x and y diminish (1) to the subsequent 

equation comprising two-variables p and z 
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23 zp    (2) 

244 zn   

Even though the unique choice 0n  reveals an integer value for z as 

,2z  the same value of n provides that 1p  which is not a prime 

number. 

Hence, there exists no solutions in integer.  

Case (ii). Let 0,1  yx  

These two predilections of x and y moderate (1) to the equation as 

specified below.  

21 zp    (3) 

224 zn   

Note that when 2,
2

1
 zn   

Therefore, 3p  As a result, the possible integer solution is  zyxp ,,,  

 2,0,1,3   

Case (iii). Let 2,0  yx  

These suppositions reduce (1) to the quadratic equation with two 

unknowns as shown below.  

  22
21 zp   

  12 22
 zp   (4) 

The foregoing postulation always false since the square of an integer 

minus one can never be a square.  

The conclusion is neither (4) nor (1) has a solution. 

Case (iv). Deliberate 1x  and 1y  

Using these assumptions, the alterative form of (1) is offered by  
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222 zp    (5) 

248 zn   

As in case (i), the options 4n  and 220n  delivers 6z  and 

42z  respectively. 

Also, these two values of n affords the equivalent chances of p as 17p  

and 881p   

Then, the original equation can be changed into 21917 zyx   and 

.883881 2zyx    

Consequently, the four integer solutions to (5) are exemplified by 

      42,1,1,881,6,1,1,17,,, zyxp  

Case (v). Elect 0,2  yx   

These elected values of x and y shortened (1) to the resulting equation  

22 1 zp   

  .114 22
 zn   (6) 

The proclamation quantified above does not hold according to the same 

explanation given in case (iii). 

It is determined that there is no solution to (6) and hence to (1).  

Case (vi). Adopt 3,0  yx  

As an outcome of the choices made above, (1) is reduced to a three-degree 

equation  

  23
21 zp    (7) 

  134 23
 zn  

123  zr  
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where  

34  nr   (8) 

This is practicable only if    3,2, zr   

The equivalent value of n corresponding to the above value of r is  

4

1
n  

Also, this choice of 𝑛 reveals that 0p  which is not prime number.  

As a consequence of the result, (1) does not possess an integer solution 

however z is an integer. 

Case (vii). Consider 2,1  yx   

The replacement of such values of x and y translate (1) to the equation in 

terms of n and z as  

22 102816 znn    (9) 

which can be revised by  

       102210227272  zzuu  where 
2

7
4  nu   (10)  

Consider the fractional form of (10) as  

0,
72

1022

1022

72










b

a

u

z

z

u
 

Covert the above equation into double equations and resolving it by the 

method of cross-multiplication, it is attained by  

 

   22

2

22

22

4

71027104

ab

bab
n

ab

baab
u









  (11) 

 

 22

22 710

ab

abba
z




  (12) 

Note that, z is not an integer for any selections of a and b. 

Therefore, (9) and henceforth (1) does not have any solution in integer. 
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Remark. An additional form of (10) is taken as 

0,
72

1022

1022

72










d

b

c

u

z

z

u
 

Following the exact method as explained in the previous case, it is 

calculated by  

   22

2

22

22

4

1027

2

10477

dc

cdd
n

dc

cdcd
u









  (13) 

 22

22 10107

dc

dccd
n




  (14) 

Here also for any values of c and d, the value of z is not an integer. 

Hence, (13) and therefore (1) does not consume any solution in integer. 

Case (viii). Choose 1,2  yx  

These options condense (1) to an equation with two unknowns of degree 

two as  

22 41216 znn    (15) 

which can be factorized as  

       42423232  zzvv  where 
2

3
4  nv  (16)  

Contemplate (16) in an ensuing fraction form  

0,
32

42

42

32










f

f

e

v

z

z

v
 

Repeating the same process as explained earlier, it is received by  

   22

2

22

22

4

34338

ef

fef
n

ef

feef
v









  (17) 

 22

22

4

322

ef

effe
z




  (18) 

A keen observation from (17) and (18) is the comparable values of n and z 
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are 0n  and 2z  for each of the two pairs    kkfe 4,3,   and 

Likewise, this choice of n exposes that 1p  which is not a prime number. 

Consequently, (1) cannot have an integer solution.  

Remark. Intend (16) in the resultant ratio form 

0,
32

42

42

32










i

i

h

v

z

z

v
 

Repetition of the prior clarifications established that  

   22

2

22

22

4

43

2

833

ih

ihi
n

ih

ihhi
v









  (19) 

 22

22

2

223

ih

ihih
z




  (20) 

A deep notification from (19) and (20) is the values of n and z are 0n  

and 2z  when    kkih 4,3,   and    .0,, kih   

Moreover, this option of n gives 1p  which is not a prime number. 

Subsequently, it is impossible to find an integer solution to (1). 

Case (ix). Assume 0,3  yx  

Replication of the choices made above minimized (1) into 

  23
114 zn   

123  zr  

where  

   3,2, zr  (21) 

The only feasible solution of (21) is pointed out by    3,2, zr  

The corresponding value of n for the above-mentioned value of r is 

4

1
n  

Further, the above n provides that 2p  which is an even prime 
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number. Hence, an integer solution to (1) is represented by  zyxp ,,,   

 .30,3,2   

3. Conclusion 

In this paper, it is proved that an exponential equation 

  22 zpp
yx   in three variables where 14  np  for suitable Rn   

has limited number of integer solutions indicated by  zyxp ,,,  

        3,0,3,2,42,1,1,881,6,1,1,172,0,1,3   when yx   is 1, 2 

and 3. In this way, one search integer solutions for various Exponential 

equations with base as any other prime numbers and .3 yx  
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