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Abstract 

Let G be a simple connected graph of order ivn,  its vertex. Let 
L
n

LL  ,,, 21   be the 

eigenvalues of the distance Laplacian matrix 
LD  of G. The distance Laplacian energy of G is 
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 where iD  is the sum of the distance between iv  and 

other vertices of G was already studied. Here we defined the monophonic distance Laplacian 

energy as      
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 where  jG vMT  is the jth row sum of 

monophonic distance matrix  ,GM  and L
n

LL  ,,21   be the eigenvalues of the 

monophonic distance Laplacian matrix  .GM L   
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1. Introduction 

I. Gutman established the concept of graph energy in 1978 [7]. Consider 

the graph G, which has n vertices and m edges. Let  ijaA   be the 

adjacency matrix of the graph. The energy  GE  of G is defined as 

   


n

i iGE
1

 [2, 7]. In the year 2008, I. Gutman and others established 

the concept of graph distance energy [4]. Jieshan Vang, Lihuayou and I. 

Gutman introduced the distance Laplacian energy of a graph in the year 2013 

[10]. The monophonic number of a graph was introduced by A. P. 

Santhakumaran and others in 2014 [12]. We offer the monophonic distance 

Laplacian energy of a graph as a new idea based on these.  

2. Definitions and Examples 

Definition 2.1. The monophonic distance matrix G is defined as  

    ,nnmij
dGMM   where 

 



 


otherwise0

if, jivvd
d jim

mij  

Here  jim vvd ,  is the monophonic distance of iv  to .jv   

Definition 2.2. The monophonic transmission  vMTG  of a vertex v as 

 
   GVu m vud ,  and monophonic transmission matrix  GMT  is the 

diagonal matrix       .,,, 21 nGGG vMTvMTvMTdiag   The connected 

graph G and its monophonic distance Laplacian matrix defined as  GM L   

   .GMGMT   The eigenvalues of monophonic distance Laplacian matrix 

 GM L  are denoted by L
n

LL  ,,21   and  .GSpec
L

M  Since the 

monophonic distance Laplacian matrix is symmetric and its eigenvalues are 

real, it can be ordered as. The monophonic distance Laplacian energy of a 

graph is defined as     .
1

1 1  


n

i

n

j jG
L
iM vMT

n
GLE   

Example 2.3. The monophonic distance Laplacian energy of 

  .48GLEM  
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Figure 1. 

3. Main Results 

Theorem 3.1. The monophonic distance Laplacian energy of nK  is 

    .2,12  nnKLE nM  

Proof. The monophonic distance matrix of nK  is    ,nnn IJKM   

where nJ  is the matrix with all entries 1’s of order n and nI  is the identity 

matrix of order n.  

The monophonic transmission matrix of nK  is     .1 nn InKMT   

The monophonic distance Laplacian matrix of nK  is 

   .nnn
L JnIKM   

The LM spectrum of nK  is  

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The monophonic distance Laplacian energy of nK  is  
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 .12  n  

Theorem 3.2. The monophonic distance Laplacian energy of 

   .18, ,,  nKLEK nnMnn  
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Proof. The monophonic distance matrix of nnK ,  is  
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The monophonic transmission matrix of nnK ,  is  
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The monophonic distance Laplacian matrix of nnK ,  is  
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The LM spectrum of nnK ,  is 
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The monophonic distance Laplacian energy of nnK ,  is  
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Theorem 3.3. The monophonic distance Laplacian energy of nnH ,  is 

   .116,  nHLE nnM   

Proof. The LM spectrum of nnH ,  is  
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The monophonic distance Laplacian energy of nnH ,  is  
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Theorem 3.4. The monophonic distance Laplacian energy of 2nK  is 

  .42 nKLE nM   

Proof. Monophonic distance matrix of  
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The monophonic distance Laplacian energy of 2nK  is  
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 Theorem 3.5.  
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Proof. The monophonic distance Laplacian matrix of nS  is  
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The monophonic distance Laplacian energy of nS  is  

Case (i) for 2,1n   
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Case (i) for 3n  
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Theorem 3.6. The monophonic distance Laplacian energy of friendship 

graph nF  is .
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The monophonic distance Laplacian energy of nF  is  
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Theorem 3.7.       .222  nMMnM KLEPLEKPLE  For .2n   

Proof. The monophonic distance Laplacian spectrum of is 
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have nKP 2  graph with 2n  vertices. Therefore 
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Conclusion 

In this paper we obtained monophonic distance Laplacian energy of some 

standard graphs. We have planned to extend the results for various kinds of 

graph operations.  
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