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Abstract 

The oscillatory mean involving power exponential mean and power mean and its dual are 

introduced. Further, different kinds of Schur convexities are discussed. 

1. Introduction 

For kh,  are positive real numbers, then  
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are respectively called arithmetic, geometric, harmonic and power 

exponential mean. Lokesha et al. introduced the oscillatory mean and rth 

oscillatory mean in [3, 4]. Further studied the various remarkable 

inequalities involving power mean, logarithmic mean and identric mean. Also 

obtained the best possible values. Results on convexities and Schur conditions 

are found in ([1, 2, 17, 19, 20, 21], [6]-[9]) and studies on power type means in 

([10]-[17], [22, 23]). 

For rkh ,0  be a real number,  1,0  then, oscillatory mean 

involving power exponential mean and power mean is given by; 
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and its dual is given by 
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When ,1r  the oscillatory mean involving power exponential mean and 

arithmetic mean is given by; 
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and its dual is given by  
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Various researchers have studied several homogeneous functions and 

obtained some identities involving means and established remarkable mean 

inequalities.  

Lemma 1.1[22]. With usual notations, recall  
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are respectively called the Schur, Schur geometric and harmonic 

convex(concave) conditions.  

2. Results 

In this section, Schur convexities of the rth oscillatory mean involving 

power exponential mean and power mean and its dual are discussed. Further, 

declared results when 1r  for oscillatory mean involving power exponential 

mean and arithmetic mean. 

Theorem 2.1. For rkh ,0  be a real number,  1,0  then, rth 

oscillatory mean  rkhOpemp ,,,   and its dual    rkhO d
pemp ,,,   are Schur 

convex, if .1r  

Proof. From the definition, the rth oscillatory mean of power exponential 

mean and power mean is given by;  
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By finding the partial derivatives w.r.t h and k, gives 
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Then for   
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Thus Schur convexity condition holds for .1r  From the definition, the 

dual rth oscillatory mean of power exponential mean and power mean is given 

by;  
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Take log on both sides gives  
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By finding the partial derivatives w.r.t h and k, gives  
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Then for 1r   
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Thus Schur convexity condition holds for .1r  Hence the proof of 

theorem 2.1. 
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Theorem 2.2. For rkh ,0  be a real number,  1,0  then, rth 

oscillatory mean  rkhOpemp ,,,   and its dual    rkhO d
pemp ,,,   are 

geometric-Schur convex, if .1r  

Proof. From equations (2.1), (2.2) and (2.3), for ,1r  leads to 
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Thus Schur geometric convexity condition holds for .1r  

From equations (2.4), (2.5), (2.6) and (2.7) for ,1r  leads to 
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Thus geometric-Schur convexity condition holds for .1r  Hence the 

proof of theorem 2.2. 

Theorem 2.3. For rkh ,0  be a real number,  1,0  then, rth 

oscillatory mean  rkhOpemp ,,,   and its dual    rkhO d
pemp ,,,   are 

harmonic-Schur convex, if .1r  

Proof. From equations (2.1), (2.2) and (2.3), for ,1r  leads to  
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Thus Schur harmonic convexity condition holds for .1r  

From equations (2.4), (2.5), (2.6) and (2.7) for ,1r  leads to 
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Thus harmonic-Schur convexity condition holds for .1r  Hence the 

proof of theorem 2.3. 
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