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Abstract 

A graph ( )EVG  ,  is created from G by eliminating all edges between s and its complement 

sV −  and any non-edges between s and sV −  are added as edges for a simple graph ( )EVG ,  

and a non empty subset .Vs   We write vG  for  vG  when ,vs =  and the associated 

switching is referred to as vertex switching. S -vertex switching is another name for it. 2-

vertex switching occurs when S  equals 2. If B is connected and maximal, a joint at  in G is a 

subgraph of G that includes  .G  If B is connected, we refer to it as a ĉ -joint, otherwise, we 

refer to it as a d-joint. An acyclic graph is one that has no cycles. The term “tree” refers to a 

linked acyclic network. In this article, for a graph G, we provide necessary and sufficient criteria 

for ,G  the switching of G at  nm,=  to be connected and unicyclic graph when ( )GEmn  

and ( ).GEmn  

1. Introduction 

For any graph ( )EVG ,  with ( ) ,pGV =  the graph ( )EVG  ,  is defined 
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as the graph generated from G by deleting all edges between  and its 

counterpart, ,−V  and any non-edges between  and −V  are added as 

edges where .V  Seidel [1, 8] defined switching, which is also known as 

 -vertex switching [9, 11]. When ,2=  it is called as 2-vertex switching. 

Highly irregular graphs and its chromatic number are studied in [16]. Harge 

discussed in detail about switching of a vertices in a graph in [2, 4] A graph 

which contains exactly one cycle is called an unicylic graph. In [6, 13] the 

concept of self vertex switchings were studied. A survey in two graphs and 

reconstruction of graphs were studied in [12, 14]. Switching classes and Euler 

graphs were discussed in [10]. 

In 2008, the concept of branches and joints in graphs were introduced by 

Vilfred V. et al., [10]. A joint at  in G is a subgraph B of G that includes 

 G  if −B  is connected and maximum. If B is connected, we refer to it as 

a ĉ -joint, otherwise, we refer to it as a d-joint. B is a total joint if  

( ).−+= BB  In [3] graphs were characterized for self vertex switching of 

trees. In [3, 15] C. Jayasekaran, et al., analysed the graphs for 2-vertex 

switching of joints and characterized trees for 2-vertex self switching in [7].  

For standard symbols and definitions we refer F. Harary [3]. 

For the graph G in Figure 1.1,   GG ,  and −G  is shown in Figures 

1.2 to 1.4 respectively, where  ., nm=  Figures 1.5, 1.6 and 1.7 shows the 

ĉ -joint, d-joint and the total joint respectively. 
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When the transformer circuit faces an problem during the supply from 

one station to another the concept of two vertex switching is used to minimize 

the time for the power cut by switching the transformer circuit from one node 

to another which is one of the major application. 

Consider the following outcomes, since they will be needed in the 

following sections. 

Theorem 1.1 [5]. If G is of order 3p  and let   ( )GVnm = ,  and  

( ).GEmn   If B is a ĉ -joint at  in G, then B  is a ĉ -joint at  in G  iff 

−B  is connected, ( ) ( ) 30 − BVmdB  and ( ) ( ) .30 − BVndB  

Theorem 1.2 [5]. If G is of order 3p  and let   ( )GVnm = ,  and  

( ).GEmn   If B is a d-joint at  in G, then B  is a ĉ -joint at  in G  iff 

−B  is connected and either ( ) 0=mdB  and ( ) ( ) 30 − BVmdB  or 

( ) 0=ndB  and ( ) ( ) .30 − BVndB  

Theorem 1.3 [5]. If G is of order 3p  and let   ( )GVnm = ,  and 

( ).GEmn   If B is a ĉ -joint at  in G, then B  is a ĉ -joint if and only −B  

is connected and either ( ) ( ) 20 − BVmdB  or ( ) ( ) .20 − BVndB  

Theorem 1.4 [5]. If G is of order 3p  and let   ( )GVnm = ,  and 
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( ).GEmn   If B is a ĉ -joint at  in G, then B  is a d-joint at  in G  iff 

−B  is connected and ( ) ( ) ( ) .1−== BVndmd BB  

Theorem 1.5 [5]. If G is of order 3p  and let   ( )GVnm = ,  and 

( ).GEmn   If B is a d-joint at  is G, then iff −B  is connected and 

( ) ( ) .1== ndmd BB  

2. Main Results 

2. 2-Vertex Switching of Connected Unicyclic Graphs 

We present necessary and sufficient requirements for a graph G in this 

study, for which G  at  nm,=  to be connected and unicyclic graph when 

( )GEmn   and ( ).GEmn   

We use this to describe two vertex switching of unicyclic graphs that are 

connected. 

Theorem 2.1. For a graph G of order 5p  and let   ( )GVnm = ,  

and ( ).GEmn   If B is a ĉ -joint at  in G, then B  is a ĉ -joint and unicyclic 

iff ( ) 5BV  and one of the following holds: 

(i) −B  is connected, acyclic and  ( ) ( )ndmd BB ,  

( ) ( ) .3,4 −−= BVBV  

(ii) −B  is connected, unicyclic and ( ) ( ) ( ) .3−== BVndmd BB  

Proof. Let B be a ĉ -joint at  in G such that B  is a ĉ -joint and 

unicyclic. By Theorem 1.1 we have, −B  is connected, 

( ) ( ) 30 − BVndB  and ( ) ( ) .30 − BVmdB  Since B  is unicyclic 

and −B  is either acyclic or unicyclic. 

Case 1. −B  is acyclic. 

If ( ) ( ) ,4− BVmdB  then there exist at least three vertices cba ,,  in 

( ) −BV  which are not-adjoint to m in B which implies m is  adjoint to ba,  

and C in .B  Since −B  is connected, there exist cbba −− ,  and ca −   
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paths in B and hence in .B  Now the edges bmam,  and cm and the paths 

cbba −− ,  and ca −  form at least three cycles in ,B  which is a 

contradiction to B  is unicyclic. Hence either ( ) ( ) 4−= BVmdB  or 

( ) ( ) .3−= BVmdB  

Subcase 1.a. ( ) ( ) .4−= BVmdB  

Since ( ),GEmn   there exist two vertices ba,  in ( ) −BV  such that a 

and b are not-adjoint to m in B. Implying that m is adjoint to a and b in .B  

Since −B  is connected, there exists an ba −  path in .B  Now, the edges 

bmam,  and the path ba −  form a cycle 1C  in .B  

If ( ) ( ) ,3− BVndB  there exist at least two vertices, yx,  in ( ) ,−BV  

which are not-adjoint to n in B. Implying that n is adjoint to both x and y in 

.B  

If    ,,, yxba =  then the edges bnnynanx == ,  and the path ba −  

form a cycle 2C  in B  different from .1C  

If    ,,, yxba   then the yx −  path in B  and the edges nx  and ny  

form a cycle 3C  in B  different from .1C  

If xa =  and ,yb   then the yx −  path in ,B  and the edges nxna =  

and ny  form a cycle 4C  in B  different from .1C  

Hence in all three cases, we get a cycle in addition to 1C  in B  which is a 

contradiction to B  is unicyclic. Hence ( ) ( ) .3−= BVndB  

Subcase 1.b. ( ) ( ) .3−= BVmdB  

Since ( ),GEmn   there is only one vertex in ( ) −BV  say a, which is not 

adjoint to m in B. As a result, a is adjoint to m in B  and hence ma  is an 

edge in .B  
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Now, ( ) ( ) .30 − BVndB  We can show that either 

( ) ( ) 3−= BVndB  or ( ) ( ) 4−= BVndB  by using a similar argument as in  

Case 1. If ( ) ( ) ,3−= BVndB  there exists only one vertex, b, in 

( ) −BV  and b is not-adjoint to n in B. Implying bn  is an edge in .B  Since 

−B  is acyclic and ( ) nbGEmn ,  and am do not form a cycle in B  and 

hence we have B  is acyclic which is a contradiction to B  is unicyclic. 

Hence ( ) ( ) .4−= BVndB  

Case 2. −B  is unicyclic. 

Let 1C  be the only cycle in −B  in G. Then 1C  is also a cycle of −B  

in .G  We have ( ) ( ) 30 − BVmdB  and ( ) ( ) 30 − BVndB  in G. If 

( ) ( ) ,3− BVmdB  then there is at least two vertices, say a and b in 

( ) −BV  that are not-adjoint to m in B. Now ( )GEmn   implies that m is 

adjoint to a and b in .B  Since −B  is connected, there is ba −  path in B 

and in .B  Now the edges bmam,  and path ,ba −  form a cycle 2C  in B  

different from ,1C  which is a contradiction to B  is unicyclic. Hence 

( ) ( ) .3−= BVmdB  Similarly ( ) ( ) .3−= BVndB  From case 1, we have 

( ) ( ) 4−= BVndB  and B is connected. Hence ( ) 1ndB  implies that 

( ) .5BV  Also from case 2, ( ) ( ) 3−= BVndB  and −B  is unicyclic. 

This implies ( ) 3−BV  and hence ( ) .5BV  

Conversely, assume the conditions in the statement. 

Case A. −B  is connected, acyclic and  ( ) ( )ndmd BB ,  

( ) ( ) .3,4 −−= BVBV  

Without loss of generality, let ( ) ( ) 3−= BVmdB  and ( ) ( )BVndB =  

.4−  By Theorem 1.1, B  is connected. Now ( )GEmn   and 

( ) ( ) ,3−= BVmdB  implying there exist only a vertex in ( ) ,−BV  say a, 

which is not adjoint to m in B and adjoint to m in B  and hence ma is an 

edge in .B  Also ( ) ( ) 4−= BVndB  implies that there exists exactly two 
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vertices in ( ) ,−BV  say u and v, such that n is  not adjoint to both u and v 

in B and n is  adjoint to both u and v in .B  Thus mv  and nv  are edges in 

.B  Since −B  is connected, nm−  is a path in −B  and in .B  Clearly 

the edge ,mv  path nm−  and edge nv  forms a unique cycle in .B  Hence 

B  is unicyclic. 

Case B. −B  is connected, unicyclic and ( ) ( ) ( ) .3−== BVndmd BB   

By Theorem 1.1, B  is connected. Since ( ) ( ) mBVmdB ,3−=  is not-

adjoint to exactly one vertex, say x, of ( ) −BV  in B implies mx is an edge in 

.B  Similarly, ( ) ( ) 3−= BVndB  implies n is not-adjoint to exactly one 

vertex of ( ) −BV  in ,B  say y, and ny  is an edge in .B  Now −B  is 

unicyclic and ( ),GEmn   the addition of the edges mx  and ny  (for )yx    

and the edge mx  and nx  (for )yx =  do not form another cycle in .B  Hence 

B  is unicyclic. 

Thus in both cases we have B  is connected and unicyclic. 

 Corollary 2.1. Let G be a connected graph and let  nm,=  be a subset 

of ( )GV  such that ( ).GEmn   Let G be connected. Then G  is unicyclic and 

connected iff 5p  and either: 

(i) −G  is connected, acyclic and  ( ) ( )ndmd GG ,  

( ) ( ) 4,3 −−= GVGV  or  

(ii) −G  is connected, unicyclic and ( ) ( ) ( ) .3−== GVndmd GG  

Theorem 2.2. If G is of order 3p  and let   ( )GVnm = ,  and 

( ).GEmn   If B is a ĉ -joint at  in G, then B  is a ĉ -joint and unicyclic iff 

( ) 5BV  and one of the following holds 

(i) −B  is connected, acyclic and either ( ) ( ) ( ) 2−== BVmdnd BB  or 

 ( ) ( ) ( ) ( ) .1,3, −−= BVBVndmd BB  
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(ii) −B  is connected, unicyclic and  ( ) ( )mdnd BB ,  

( ) ( ) .1,3 −−= BVBV  

Proof. If B is a ĉ -joint so that B  is a ĉ -joint and unicyclic. By Theorem 

1.3 we have −B  is connected and either ( ) ( ) 20 − BVmdB  or 

( ) ( ) .20 − BVndB  Without sacrificing generality, let ( )mdB0  

( ) .2− BV  Since ( ),GEmn   we have ( ) ( ) .11 − BVndB  We have 

−B  is either acyclic or unicyclic since B  is unicyclic. 

Case 1. −B  is acyclic. 

If ( ) ( ) ,3− BVmdB  then there exist at least three vertices ba,  and c 

in ( ) −BV  which are not-adjoint to m in B. Implying m is adjoint to ba,  

and c in .B  Since −B  is connected, there exist cbba −− ,  and ca −  

paths in B and hence in .B  Now the edges cmbmam ,,  and the paths 

cbba −− ,  and ,ca −  form at least  three different cycles in ,B  which is a 

contradiction to B  is unicyclic. Hence either ( ) ( ) 2−= BVmdB  or 

( ) ( ) .3−= BVmdB  Similarly if ( ) ( ) ,3− BVmdB  then B  is not 

unicyclic. Hence either ( ) ( ) 1−= BVndB  or ( ) ( ) 2−= BVndB  or 

( ) ( ) .3−= BVndB  

Subcase 1.a. ( ) ( ) .3−= BVmdB  

( )GEmn   shows that m is not-adjoint to only two vertices, say a and b 

of ( ) −BV  in B. This shows that m is  adjoint to a and b in .B  As −B   is 

connected, there is an ba −  path in .B  Now, the edge ,am  the path ba −  

and the edge bm  form a cycle 1C  in B  without the edge .mn  If 

( ) ( ) ,2− BVndB  there is at least one vertex, x, in ( ) ,−BV  which is not-

adjoint to n in B. Hence xn is an edge in .B  Now the edges nmxn,  and 

ma  and the path xa −  form cycle 2C  in B  with the edge ,mn  which is a 

contradiction to B  is unicyclic. This implies that ( ) ( ) .1−= BVndB  
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Subcase 1.b. ( ) ( ) .2−= BVmdB  

( )GEmn   implies that there is only one vertex, a, in ( ) −BV  which is 

not-adjoint to m in B. This implies that m is adjoint to a in .B  

If ( ) ( ) ,3−= BVndB  then there is two vertices, say b and c, in ( ) −BV  

so that b and c are not-adjoint to n in B. This implies n is adjoint to b and c in 

.B  If ,ab =  then the edges nanbcnammn =,,,  and the path ca −  form 

three different cycles ( ;amna  the edges ncan,  and the ac −  path; the edges 

vcmnam ,,  and the path )ac −  in .B  If ,ab   then the edges 

mnncbnam ,,,  and the paths cbba −− ,  and ca −  form three different 

cycles in .B  In both cases we get a contradiction to B  is unicyclic. 

If ( ) ( ) ,2−= BVndB  then there is only one vertex, say b, in ( ) −BV  

not-adjoint to n in B. This shows that bn  is an edge in .B  Hence the edges 

mnbnam ,,  and the path ba −  form a cycle in .B  

If ( ) ( ) ,1−= BVndB  then n is adjoin to every vertices in ( ) −BV  in B. 

This shows that n is not-adjoint to the vertices of ( ) −BV  in .B  Since 

−B  is acyclic and mnam,  are edges, we have B  is acyclic, which is a 

contradiction to B  is unicyclic. 

Hence we have ( ) ( ) .2−= BVndB  

Case 2. −B  is unicyclic. 

Let 1C  be the only cycle in −B  in G. Clearly 1C  is also a cycle in .B  

If ( ) ( ) ,2− BVmdB  then there exist at least two vertices, a and b, in 

( ) −BV  not-adjoint to m in B. This shows that m is adjoin to a and b in .B  

Since −B  is connected, there exists an ba −  path in B and in .B  

Clearly, the edge ,ma  path ba −  and edge bm  form a cycle 2C  in B  

different from ,1C  which is a contradiction to B  is unicyclic. Hence 

( ) ( ) .2−= BVmdB  This shows there is a vertex x in −B  and is not-

adjoint to m in B. Hence xm is an edge in .B  
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If ( ) ( ) ,10 − BVndB  then ( )BV  has at least one vertex, say y, that 

is not neighbouring to n in B. This illustrates that in yB ,  is adjoint to n. 

There is a xy  path in B and in B  since −B  is linked. The edges 

,,, mxvmyn  and the path xy  create a cycle 3C  in ,B  which is different 

from ,1C  which is unicyclic and we get a contradiction. As a result 

( ) ( ) .1−= BVndB  

Similarly if ( ) ( ) ,20 − BVvdB  then we have either −B  is 

connected, acyclic and either ( ) ( ) ( ) 2−== BVndmd BB  or 

( ) ( ) 3−= BVndB  and ( ) ( ) 1−= BVmdB  or −B  is connected, unicyclic, 

( ) ( ) 2−= BVndB  and ( ) ( ) .1−= BVmdB  Thus we conclude that either 

−B  is connected, acyclic and either ( ) ( ) ( ) 2−== BVndmd BB  or 

 ( ) ( ) ( ) ( ) 1,3, −−= BVBVndmd BB  or −B  is connected, unicyclic and 

 ( ) ( ) ( ) ( ) .1,2, −−= BVBVndmd BB  

Conversely, assume the conditions given in the statement. We have three 

cases. 

Case A. −B  is connected, acyclic and  ( ) ( )ndmd BB ,  

( ) ( ) .1,3 −−= BVBV  

Without sacrificing generality, let ( ) ( ) ( )ndBVmd BB ,1−=  

( ) .3−= BV  By Theorem 1.3, B  is connected since ( ) ( ) 3−= BVvdB  

( ) .2− udB  Now ( )GEmn   and ( ) ( ) 1−= BVmdB  shows that m is  

adjoin to vertices of ( ) −BV  in B and not adjoin to the vertices of ( ) −BV  

in .B  Also ( ) ( ) 3−= BVndB  implies that there is exactly two vertices in 

( ) ,−BV  say u and v, so that n is not adjoint to both u and v in B and n is  

adjoint to u and v in .B  Thus vm and vn  are edges in .B  Since −B  is 

connected, there exist a vu −  path in −B  and in .B  Clearly the edge 

,mv  path uv −  and edge vn  make a unique cycle in .B  Hence B  is 

unicyclic. 
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Case B. −B  is connected, acyclic and ( ) ( ) ( ) .2−== BVndmd BB   

By Theorem 1.3, B  is connected. Since ( )GEmn   and 

( ) ( ) ,2−= BVmdB  m is not adjoint to exactly one vertex, say x, of ( ) −BV  

in B which shows that m is adjoin to x in B  and mx  is an edge in .B  

Similarly, ( ) ( ) 2−= BVndB  shows that n is  adjoin to exactly one vertex of 

( ) −BV  in ,B  say y so ny  is an edge in .B  If ,yx =  then mxynm is a 

cycle in .B  If ,yx   then there is an yx −  path in B  since −B  is 

connected. Now, −B  is acyclic and ( ),GEmn   the edge ,mx  the path 

yx −  and the edge ny  (for )yx   form a cycle in .B  Hence in both 

possible ways, B  is unicyclic. 

Case C. −B  is connected, unicyclic and  ( ) ( )ndmd BB ,  

( ) ( ) .1,2 −−= BVBV  

Without sacrificing generality, ( ) ( ) 1−= BVmdB  and 

( ) ( ) .2−= BVndB  By Theorem 1.3, B  is connected since 

( ) ( ) .2−= BVvdB   Now ( )GEmn   and ( ) ( ) ,1−= BVmdB  implies m is 

adjoint to all the vertices of ( ) −BV  in B and not adjoint to all vertices of  

( ) −BV  in .B  Also ( ) ( ) 2−= BVndB  implies that m is not-adjoint to 

exactly one vertex, say x, of ( ) −BV  in B which implies that m is adjoint to 

x in B  and ux  is an edge in .B  Since −B  is unicyclic and the vertex n 

is adjoint to only one vertex of −B  in  BB ,  is unicyclic. 

Thus from the above three cases we have B  is connected and unicyclic. 

Hence the Theorem. 

Corollary 2.2. If G is of order p and let   ( )GVnm = ,  and 

( ).GEmn   If G is a ĉ -joint at  in G, then G  is a ĉ -joint and unicyclic iff 

one of the following is true: 

(i) −G  is connected, acyclic and either ( ) ( ) ( ) 2−== GVndmd GG  or 

 ( ) ( ) ( ) ( ) .1,3, −−= GVGVndmd GG  
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(ii) −G  is connected, unicyclic and  ( ) ( )ndmd GG ,  

( ) ( ) .2,1 −−= GVGV  

Theorem 2.3. For a graph G of order 4p  and let   ( )GVnm = ,   

such that ( ).GEmn   If B is a d-joint at  in G, then B  is a ĉ -joint and 

unicyclic iff 31 PKB =  and  ( ) ( )  .1,0, =ndmd BB  

Proof. Let B be a d-joint at  nm,=  in G such that B  is a ĉ -joint 

and unicyclic. By Theorem 1.2 we have −B  is connected and either 

( ) 0=mdB  and ( ) ( ) 30 − BVndB  or ( ) 0=ndB  and 

( ) ( ) .30 − BVmdB  Without loss of generality we take ( ) 0=mdB  and 

( ) ( ) .30 − BVndB  Since ( ) ,0=mdB  m is  adjoin to every vertices of 

−B  in .B  If ( ) ,5BV  then ( ) 325 =−−BV  and therefore there 

is at least  three vertices in ,−B  say ba,  and c, which are not-adjoint to m 

in B. Then ba,  and c are adjoin to m in B  and hence mbma,  and mc  are 

all edges in .B  As −B  is connected, there exist cbba −− ,  and ca −   

paths in −B  and hence in .B  Clearly the edges bmam,  and cm and the 

paths cbba −− ,  and ,ca −  form at least  three different cycles in ,B  

which is a contradiction to B  is unicyclic. Hence ( ) ,5BV  which implies 

that either ( ) 3=BV  or ( ) .4=BV  

If ( ) ,3=BV  then ( ) .123 =−=−BV  Let the vertex be a. Therefore 

( ) 0=mdB  and ( ) 033 =−ndB  and hence B is .3 1K  This implies that B  

is 3P  which is a contradiction to B  is unicyclic. 

If ( ) ,4=BV  then ( ) .224 =−=−BV  Let the two vertices be a and 

b. Since ( ) ,0=mdB  am and bm  are edges in .B  Since −B  is connected, 

ab is an edge in −B  and hence in .B  Clearly the edges mbam,  and ba  

in B  make a cycle .1C  

Now ( ) ( ) 1343 =−=− BVndB  implies that ( )ndB  is either 0 or 1. If 

( ) ,0=ndB  then 212 PKB =  where the 1K ’s are vertices m and n. Clearly 
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B  is mnK −4  which contains more than one cycle which is contradiction to 

B  is unicyclic. 

If ( ) ,1=ndB  then ,31 PKB =  where 1K  is the vertex m and n is an 

end vertex of .3P  Clearly ( ) ( )23 ,0,0 PmCB =  is unicyclic where n does not 

lie on the cycle. Hence ( ) 0,31 == mdPKB B  and ( ) .1=ndB   

Similarly, if ( ) 0=ndB  and ( ) ( ) ,30 − BVmdB  then we can show 

that ( ) 0,31 == ndPKB B  and ( ) .1=mdB  Thus 31 PKB =  and 

 ( ) ( )  .1,0, =ndmd BB   

 

Figure 8. 31 PKB =                Figure 9. ( ) ( )23 ,0,0 PuCB =  

Conversely, let B be a d-joint, 31 PKB =  and  ( ) ( )  .1,0, =ndmd BB  

If ( ) 0=mdB  and ( ) ,1=vdB  then ( ) ( )23 ,0,0 PuCB =  and if ( ) 1=mdB  

and ( ) ,0=ndB  then ( ) ( ).,0,0 23 PmCB =  In both the cases we get B  is a 

connected and unicyclic.  

Corollary 2.3. If G is of order 4p  and let   ( )GVnm = ,   and 

( ).GEmn   If G is a d-joint at  in G, then G  is a ĉ -joint and unicyclic iff 

31 PKG =  and  ( ) ( )  .1,0, =ndmd GG  

Theorem 2.4. For a graph G of order 3p  and let   ( )GVnm = ,   

and ( ).GEmn   If B is a d-joint at  in G, then B  is a ĉ -joint and unicyclic 

iff 31 PKG =  where 2K  is the edge .uv  

Proof. If B is a d-joint at  nm,=  in G such that B  is a ĉ -joint and 

unicyclic. By Theorem 1.5 we have −B  is connected and 
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( ) ( ) .1== ndmd BB  Since mn  is an edge, mn  is a component of B. If 

( ) ,4BV  then ( ) .224 =−−BV  Therefore there is at least two 

vertices in ,−B  say a and b such that they are adjoint to both u and v in 

.B  Now the edges nanbmbmamn ,,,,  and nb  form at least  five different 

cycles in B  which is a contradiction to B  is unicyclic. Hence ( ) .3=BV  

This implies that ,21 KKG =  where 2K  is the edge .mn  

 

Figure 10. 22KB =                  Figure 11. 4KB =  

Conversely, let ,21 KKB =  where 2K  is the edge .mn  Clearly 

3CB =  is the unique cycle. Thus the theorem. 

Corollary 2.4. For a graph G of order 3p  and let   ( )GVnm = ,  

and ( ).GEmn   If G is a d-joint at  in G, then G  is a ĉ -joint and unicyclic 

iff 21 KKG =  where 2K  is the edge .mn  

 

Figure 12. .21 KKG =     Figure 13. .3CG =    

Theorem 2.5. If G is of order 3p  and   ( )GVnm = ,  and 



2-VERTEX SWITCHING OF CONNECTED UNICYCLIC … 

Advances and Applications in Mathematical Sciences, Volume 22, Issue 1, November 2022 

309 

( ).GEmn   If B is a ĉ -joint at  in G, then B  is a d-joint and unicyclic iff 

−B  is connected, unicyclic and ( ) ( ) ( ) .1−== BVndmd BB   

Proof. If B is a ĉ -joint at  in G and B  is a d-joint and unicyclic. By 

Theorem 1.4 we have −B  is connected and ( ) ( ) ( ) .1−== BVndmd BB  

This implies that both u and v are adjoint to every vertices of .−B  Hence 

−B  is a component of .B  Since ( ) ( )−=  BKBGEmn 2,  where 

2K  is the edge .mn  Since B  is unicyclic, −B  is unicyclic. 

Conversely, assume that −B  is connected, unicyclic and 

( ) ( ) ( ) .1−== BVndmd BB  By Theorem 1.4, B  is a d-joint. Clearly 

( ).2 −= BKB   Since −B  is unicyclic, B  is also unicyclic. 

Corollary 2.5. If G is of order 3p  and let   ( )GVnm = ,  and 

( ).GEmn   If G is a ĉ -joint, then G  is a d-joint and unicyclic iff −G  is 

unicyclic, connected and ( ) ( ) ( ) .1−== GVndmd GG  

Conclusion 

Thus, in this article, we gave the necessary and sufficient conditions for 

G, for which ,G  the switching of G at  nm,=  to be connected and 

unicyclic graph when ( )GEmn   and ( ).GEmn   
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