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Abstract

In this paper, we prove some common fixed points for weakly compatible mappings

satisfying generalized condition (B) on complex quasi-partial metric spaces. Some examples are

given to illustrate the main results.

1. Introduction

The Banach contraction principle is one of the fundamental results of

nonlinear functional analysis to prove the existence and uniqueness of fixed

points of certain self-maps of metric spaces. There are many generalizations
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of metric spaces such as partial metric spaces, generalized metric spaces, cone
metric spaces, and quasi metric spaces. Recently, Azam et al. [4] obtained the
generalization of Banach’s contraction principal by introducing the concept of
complex valued metric space and established some common fixed point
theorems for mappings involving rational expressions which are not

meaningful in cone metric spaces.

The partial metric was introduced by Matthews [12, 13], it differs from a
metric in that points are allowed to have nonzero self-distances (i.e.,

d(x, x) > 0) and the triangle inequality is modified to account for positive

self-distance but the property of symmetric and modified version of triangle
inequality is satisfied. Matthews [12, 13] obtained, among other results, a
partial metric version of the Banach fixed point theorem. After the
appearance of partial metric spaces, some authors started to generalize
Banach contraction mapping theorem to partial metric spaces and focus on.
Valero [18], Oltra and Valero [17], and Altun et al. [9] gave some
generalizations of the result of Matthews. Partial quasi metric space was
introduced by Kunzi et al. [10] by dropping the symmetry condition in the
definition of a partial metric. Karapinar et al. [11] called it a quasi-partial
metric space and gave the first fixed point result in a quasi-partial metric
space. Later, some more results on fixed point theory on partial metric spaces
were published in [23].

The study of fixed point theorems concerning rational inequalities in
complex valued metric spaces have been increasing vigorously [1, 2, 8, 9, 19
and 20]. Along this direction, P. Dhivya et al. [8] introduced the notion of
fixed point results on ordered complex partial metric spaces, which is broader
than complex valued metric spaces. In this article, we prove some common
fixed points of weakly compatible mappings satisfying generalized condition
(B) on complex quasi-partial metric spaces. Our results generalize, extend
and improve many results existing in the literature ([5-9, 16] and so on)
1llustrating the importance of the generalized condition (B) for quadruple of
mappings in a complex quasi partial metric space. Two examples are given to
illustrate this work.
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2. Preliminaries

Let C be the set of complex numbers and 2z, zg € C. Define a partial
order X on C as follows. z; Zz9 if and only if Re(z;) < Re(zy), Im(z)
< Im(z).

Consequently, one can infer that z; 3 zg if one of the following conditions

is satisfied.
(C1) Re(z;1) = Re(z9), Im(z;) = Im(zy)
(C2) Re(z1) < Re(z2), Im(z1) = Im(z2)
(C3) Re(z)=Re(z3), Im(2) < Im(23)
(C4) Re(z;)<Re(z9), Im(z;) < Im(zs)
In particular, we will write z; 29 if 2z; #29 and one of (C2), (C3) and
(C4) is satisfied and we will write z; < zg if only (C3) is satisfied.

Definition 2.1 [4]. Let X be a nonempty set whereas be the set of
complex numbers. Suppose that the mapping d : X x X — C, satisfies the

following conditions.

1. 0 < d(x, y) forall x, y e X and d(x, y) =0 ifand only if x = y
2. d(x, y) =d(y, x) forall x, y e X
3. (x, y) < d(x, 2) +d(z, y), forall x, y, z € X.

Then d is called a complex valued metric on X and (X, d) is called a
complex valued metric space.
Definition 2.2 [12, 13]. Let X # ¢. A partial metric is a function

p: XxX — R satisfying
L. p(x, ¥) = p(y, x) (symmetry);

2. if 0 < p(x, x) = p(x, y) = p(y, ¥), then x =y (non-negativity and
indistancy implies equality);
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3. p(x, x) < p(x, y) (Small self-distances);

4. (x, 2)+(y, y) < p(x, ¥) + p(y, z) (Triangularity); for all x, y, z € X.
The pair (X, p) is called a partial metric space.

Each partial metric p on X generates a 7)) topology 1, on with a base of
the family of open-balls {Bp(x, €):xeX,e>0}, where B, (x, €)

={yeX: plx, y) < plx, x)+e€} forall x € X and € > 0.

Definition 2.3 [10]. A quasi-partial metric is a function ¢ : X x X - R*
satisfying

1. q(x, x) < q(y, x) (Small self-distances);

2. q(x, x) < q(x, y) (Small self-distances);

3. x =y iff q(x, x) = q(x, y) and q(y, y) = q(y, x) (Indistancy implies
equality and vice versa);

4. q(x, 2) + q(y, ¥) < q(x, y) + q(y, z) (Triangularity);
for all x, y, z € X. The pair (X, q) is called a quasi-partial metric space.
Note that, if (x, y) = q(y, x) for all x, y € X, then (X, q) becomes a partial
metric space. It is easy to see that for a partial metric p on X, the function
d, : XxX — R" defined by
(xx, ¥) = 2p(x, y) — plx, x) = p(y, )
is a (usual) metric on X. Analogously for a quasi-partial metric p on X, the
function d), : X x X — R* defined by
dq(x7 y) = q(x’ y)+Q(ya x)_q(x’ x)_q(y7 y)
is a (usual) metric on X.

Definition 2.4 [6]. A complex partial metric on a non-empty set X is a

function p, : X x X — C* such that for all x, y, z € X.

1. 0 < p.(x, x) = p.(x, y)(small self-distances)
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2. pc(x, y) = pc(y, y) (symmetry)
3. pe(x, x) = p(x, ¥) = pc(y, ) if and only if x = y (equality)
4. p.(x, ¥) < p.(x, 2) + p.(2,y) — p.(2, z) (Triangularity)
For the complex partial metric p, on X, the function d,.: X x X — Cc*
given by
dpe = 2p(x, ¥) = pe(%, x) = Pe(y, ¥)
is a (usual) metric on X. Each complex partial metric p. on X generates a
topology 1, on X with the base family of open p.-balls
{Bp(x,€): x € X, ¢ >0} where {Bp(x,¢)=yeX:(x,y)<px,x)+e}
forall x € X and 0 < e € C*.
Definition 2.5. A complex quasi partial metric on a nonempty set X is a
function gp, : X x X — C* which satisfies
(CQPM1) If gp(x, x) = qp.(x, ¥) = gpc(y, ¥), that x = y (equality)
(CQPM2) gp,(x, x) < qp.(x, y) (small self-distances)
(CQPM3) gp,(x, x) < qp.(y, x) (small self-distances)
(CQPM4) gp.(x, y) < gp.(x, 2) + qp (2, ¥) — qp.(2, 2), for all x, y, z € X.
(Triangularity)

A complex quasi partial metric space (CQPMS) is equal to (X, gp,) such
that X is a nonempty set and gp,. is a complex quasi partial metric on X. Note
that, if g(x, ¥) = gp.(x, y) for all x, y € X, then (X, gp.) becomes a complex

partial metric space.
It is easy to see that for a complex partial metric p, on X, the function

dpe : X x X — R" defined by

dp(x, ¥) = 2pc(x, ¥) = pe(x, x) = pc(y, ¥)

is a (usual) complex metric on X. Analogously for a complex quasi-partial
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metric gp, on X, the function dg,. : X x X — C* defined by

dgpe(®, ¥) = apc(x, ¥) + qp(y, x) — qp (%, x) = qp (¥, ¥)

is a (usual) metric on X. Each complex quasi partial metric gp, on X
generates a topology t,p. on with the base family of open gp,.-balls

{By

p(x, €)1 x € X, € >0}, where {By,.(x, €)=y e X : q(x, y) < qpc(x, x) +¢}

forall x € X and 0 < e e C*.

Example 2.6. Let X = [0, «) endowed with complex quasi partial metric
q. is defined by ¢, : XxX — C" with g(x, y) = max{x, y} +i max{x, y} + x,
for all x, y € X.

A complex valued metric space is a complex partial metric space. But a
complex partial metric pace need not be a complex valued metric space. The

following example illustrates such a complex partial metric space.
Example 2.7 [6]. Let X = [0, ©) endowed with complex partial metric
p. is defined by p, : X x X — C* with (x, y) = max{x, y} +i max{x, y},

for all x, y € X.

It is easy to verify that (X, p.) is a complex partial metric space and note
that self-distance need not be zero, for example (1,1) =1+ = 0. Now the

metric induced by p, is follows,
d(x, y) = 2p(x, y) = pc(x, x) = pc(y, ¥)
without loss of generality suppose x > y then
d(x, y) = 2{max{x, y} +i max{x, y}} — {x +ix} - {y + iy}, forall x, y € X.
therefore, dpc(x, y) = |x —y|+i|x - y].

It is also true for complex quasi partial metric spaces.

Example 2.8. The following example illustrates such a complex quasi

partial metric space. It is easy to verify that (X, gp.) is a complex quasi

partial metric space and note that self-distance need not be zero, for
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example p(2,2)=2+i=0. Now the metric induced by g¢p, is
follows, p.(x, ¥) = qp.(x, ¥) + qo.(x, ¥) — gp.(x, x) — gp.(y, y) without loss of
generality suppose x > y then
dgpc(x, y) = { max{x, y} +i max{x, y} + x + max{y, x} + i max{y, x} + y}
- [x+ix}+x]-[{y+iy} +y] forall x, y € X.

therefore,
dqpc(x’ y)=|x—y|+i|x—y|.

Theorem 2.9. Let (X, gp..) be a complex quasi partial metric space, then
(X, gp.) is Ty topology.

Proof. Suppose x, ye X and x #y, from condition (CQPM1) and
(CQPM3) in  Definition (3.1), we get gp(x, x) < go.(x, y) or
Q. (¥, ¥) < qp.(x, y). We suppose that gp(x, x) < gp(x, y), which implies
that 0 < gp.(x, y) — gp.(x, x). Now let c¢f e C"™ such that 0<cj

< qp(x, ) — qpc(x,x). So we find that. Then x e By, (x,c'x) and

y & By, (x, ¢*x). Then we conclude that (X, gp,) is Tj topology. n

Definition 2.10. Let (X, gp.) be a complex quasi partial metric space
(CQPMS). A sequence (x,) in a CQPMS (X, gp.) is converges to x € X, if
for every 0 <e e C' there is N € N such that for all n > N we get
(x,) € By(x, €). Then said to be a limit of (x,), which is denoted by

lim x, = x or (x,) = x.
n—»

Lemma 2.11. Let (X, gp.) be a complex quasi partial metric space and
let {x,} be a sequence in X. Then {x,} is converges to x € X if and only if
| (e, %) — apel, %) < e

Proof. Suppose that (x,,) converges to x, for a given real number ¢ > 0,
let

C,

:L+ii
C V2 2
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Then 0<c, €C and there is a natural number N, such that

X, € By(x, c.) forall n > N ie.
qQp.(x,, x) < ¢, + pe(x, x).
So that when
n = N, | qpc(xy, x) = qpc(x, x)| < e
It follows that
Qpe(xp, x) = qp.(x, x) (as n — ).

Conversely, suppose that gp.(x,, x) = gp.(x, x) (as n - «). For each

0 < ¢, € C, there exists a real number § > 0 such that for z € C
|z]| <8 =z <c.
For this 6 > 0, there exists N € N such that, for all n > N we have
| @peliin, %)~ ape(x, )| < &
which implies that
Qpe (%, X) < ¢ + qpe(, x).
for all n > N. Hence x,, converges to x. .
Note that let (X, gp,.) be a complex quasi partial metric space. If
Qpc(%y, x) = gp.(x, x) (as n — o).
Then
Qpe(%y, x) = gpc(x, x) (as n — o).

Lemma 2.12. Let (X, qp,)be a complex quasi partial metric space and let

{x,} be a sequence in X. Then {x,} is a Cauchy sequence if and only if

| q(xn’ xm)_qpc(x’ x)l <€

Proof. Suppose that (x,,) converges to x, for a given real number € > 0,

let

Advances and Applications in Mathematical Sciences, Volume 21, Issue 5, March 2022



COMMON FIXED POINT UNDER GENERALIZED ... 2629

€ . ¢
¢, = 75 +1 Wk

Then 0<c, €C and there is a natural number N, such that

X, € By,(x, c.) forall n, m > N ie.
Qo (%, Xp,) < ¢, + pe(x, x).
So that when
n, m = N, | qp.(x,, x,,) — qp.(x, x) | < e.
It follows that
qpc(%y, x) = qp.(x, x) (as n — o).

Conversely, suppose that gp.(x,, x) > gp.(x, x) (as n — o). For each

0 < ¢, € C, there exists a real number & > 0 such that for z € C
|z] <8 =2z<c.
For this 6 > 0, there exists N € N such that, for all n, m > N we have
| P (%, Xm) = qp (%, %) | < 8
which implies that
qQp (%, xXp,) < ¢, + pe(x, x).
for all n, m > N. Hence {x,,} is a Cauchy sequence.

Definition 2.13. Let (X, gp.) be a complex quasi partial metric space
CQPMS. A sequence {x,} in a CQPMS (X, gp.) is called Cauchy if there is

¢ € C*, such that for every ¢ > O thereis N € N such that for all n, m > N

| qpc(xn’ xm)_ Cl <E€

Lemma 2.14. Let (X, qp.) be a complex quasi partial metric space. A
sequence {x,} is Cauchy sequence in the CQPMS (X, qp.) then {x,} is
Cauchy in a metric space (X, gp..).
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Proof. Let {x,} be a Cauchy sequence in (X, gp.). There is ¢ € C* such
that for every real e¢>0, there is NeN, for all nm=>N

€

| qpc(xn’ xm) Y | < 4

Hence
dqpc(xn’ xm) = (qpc(xn’ xm) - C) + (Qpc(xn’ xm) - C) - (qpc(xn’ xn) - C)

- (qpc(xn’ xm) - C).

for all n, m > N, we have

| qpe(y, X)) —c| <e.
That is
dy(xp, Xp) = 0(as n, m — o). .
Let X be a complex quasi partial metric space and A < X. Apoint x € X

is called an interior point of set A, if there exists 0 <r € C such that

By(x, r) ={y € X : gp.(x, y) < qp.(x, x) + r} < A. A subset A is called open,

if each point of A is an interior point of A. A point x € X is said to be a limit
point of A, for every 0 <r e C, By(x,r)N A —{x} # ¢. A subset B c X is

called closed, contains all its limit points.

Definition 2.15. Let (X, gp.) be a complex partial metric space
(CQPMS).

(1) A CQPMS (X, gp,..) is said to be complete if a Cauchy sequence {x,,}
in X converges, with respect to 7t,p, to a point x € X such that

lim qpc(xna xm) = qpc(x’ x)

n, m—o

(2) A mapping 7 : X — X is said to be continuous at xy € X if for every
¢ > 0, there exists 3 > 0, such that T(By,(xg, 8)) < Byp(T(x0), €).

Definition 2.16. A subset of a complex quasi-partial metric space

CQPMS (X, gp.) is closed if whenever {x,} is a sequence in M such that
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{x,,} converges to some x € X, then x € M.

Lemma 2.17. Let (X, qp.) be a CQPMS. Then the following statement
hold true.

(1) If qp(x, y) = O, then x =y
(2) If x # y, then gp.(x, y) >0 and q.(y, x) >0

Definition 2.18. Let A and S be self-mappings on a set X. A point x € X
is called a coincidence point of A and S if Ax = Sx = w, where w is called a

point of coincidence of A and S.

Definition 2.19 [9]. Let X be a non-empty set. Two mappings
A, S: X —> X are said to be weakly compatible if they commute at their
coincidence point, i.e., if Au = Su for some u € X, then ASu = SAu.

Definition 2.20 [3]. Let A, B, S and T be four self-mappings of a quasi-
partial metric space (x, q). The pair of mappings (A, S) satisfies generalized
condition (B) associated with (B, T') ((A, S) is a generalized almost (B, T')-
contraction) if there exist 6 € (0, 1) and L > 0 such that for all x, y, z € X

we have

q(Sx, Ty) < & maxi{gp.(Ax, By), qp.(Ax, Sx), gp.(By, Ty),

(qu(Sx, By) + qu(Ax, Ty)) }
2

+ L min{qp.(Ax, Sx), qp.(By, Ty), qp.(Ax, Ty), gp.(By, Sx)}. (3.1)

3. Main Result

Theorem 3.1. Let A, B, and 7 be self-mappings of a complex quasi-
partial metric space (X, gp.). If the pair of mappings (A, S) satisfies
generalized condition (B) associated with (B, T) for all x,y, z € X and we

have

1. 7X < AX and SX c BX,

2. AX or BX is closed,
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3. (8+2L) <1, then the pairs (A, S) and (B, T) have a coincidence
point. Further, A, B, S and have a unique common fixed point, provided that

the pairs (A, S) and (B, T) are weakly compatible.

Proof. Let x5 € X. Since SX — BX, there exists a point x; € X, such
that y; = Bx; = Sxg. Suppose there exists a point y, = Tx; corresponding to
this point y;. Also since 7X < AX, there exists x; € X, such that
yg = Axg < 7x;. Continuing in this manner, we can define a sequence {y,}

in X as follows
Yon+1 = BXopi1 = Sxoy,

Yon+2 = Axgpio = Txgpy 1.

Now
qpc(y2n+17 y2n+2) = qpc(S‘xZn’ Tx2n+1)

<38 max{qpc(.sz,l, BBX:ZrHl)’ qpc(Ax2n’ SxZn)’ qpc(Bx2n+17Tx2n+1)’

(qpc(stn’ Bx2n+1) + qpc(AxZn’ Tx2n+1)) }
B .

+ L min{gp.(Ax2n, Sx2n), qp.(Bx2n + 1, Tx2n + 1), qp.(Ax2n, Tx2n + 1),

qp(Bx2n +1, Sx2n)} < 8 max{qp.(Yon, Yon+1)

qpc(y2n’ Yon+1) qpc(y2n+1a Yon+2) }
2

+ Lmin{gp.(y2,> Yon+1 ) @Pc(Yon+1> Yon+1 ) WPc(Yons Yon+1 ) Wc(Yan+1» Yon+1)}

=9 max{qpc(yZn’ y2n+1)’ qpc(y2n+1’ y2n+2)’ + Lmin{qpc(an, y2n+2)’

qpc(y2n+1, Yon+1 )}’ (qp(y2n+1 ’ y2n+1) +ap. (y2n9 Yon+2 ))
Now the following four cases arise:

Case I. When

max{qpc(yzn, y2n+1)’ qpc(y2n+1’ y2n+2)} = qpc(yZn’ y2n+1)

and
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min{gp.(Y2n, Yon+2) WPe(Yoni1> Yon1)t = Wc(Yons Yon+1)
then
aP(Y2n+15 Yon+2) < 8 @P(V2n, Yoni1) + Lape(Yon, Yon+2)
<8 @pe(Yons Yons1) + i@ (Y2041, A0 Yocn(+¥22)n — ¥2aPn i )y +2n +1,

Yon+1)t < B + L)pe(Yon> Yon+1) + L aoe(Yon+1> Yon+2) ie.,

(1 - L)qp(y2n+1’ y2n+2) < (6 + L)qpc(yZn’ y2n+1)

le.,
ap(Y2n 41> Yon+2) < %qpc(mm Yon+1)-
Now let
W = g) J_r ég, since (8 +2L) <1 and L > 0, then py < 1. Therefore

A(Yon+1> Yon+2) < maP:(Yon» Yoni1)-

Case II. When

max{qpc(y2n’ y2n+1)7 qpc(y2n+1’ y2n+2)} = qpc(yZn’ y2n+1)

and

min{gp.(¥2n> Yon+2) We(Yon+1> Yon+1)h = We(Yon> Yon+1)-

Then
A(Yon+1> Yon+2) < 8 a0(Yons Yon+1) + La0c(Yons1> Yons) ie.,
A(Yon+1> Yon+2) < 8 a0(Yons Yoni1) + Lape(Yon, Yons1) ie.,
q(Yon+1 Yon+2) < (B + L)ape(Yan, Yoni1)-

Now let pg = (8 + L). Since (8 + 2L) <1, then py < 1. Therefore

aP(Yon+1> Yon+2) < H2qP(Yon» Yon+1)-

Case III. When
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2634 BALRAJ, KUMAR, GOVINDHARAJ and BALASUBRAMANIYAN

max{qpc(yZW y2n+1)’ qpc(y2n+1’ y2n+2)} = qpc(y2n+1’ y2n+2)

and
min{gp. (Y2, Yon+2) WPe(Yons1s Y2n1)} = We(Yons Yon+2),
then
aP(Yon+1> Yon+1) < 8 @P(Yon+1> Yon+2) + Lape(Yon, Yon+i2)
or
(A = 8)apc(y2n 11> Yon+2) < L{GP(Y2n, Yons1) + @P(Yon+1: Yoni2)
— @P(Y2n+15 Yon+1)}
le.,
(1 -8 - L)g(¥2n+1> Yon+2) < Lape(¥2n, Yons1) ie.,
1
ac(Y2n+15 Yons2) < mqpc(mm Yon+1)
— aP(Yoni1s Yon+1)}
Let pg = m, since (8 + 2L) < 1, then pg < 1. Therefore

aP(Yon+1> Yon+2) < 13qP:(Yon> Yon+1)-

Case IV. When

max{qpc(y2m y2n+1)7 Qpc(y2n+1, y2n+2)} = qpc(y2n+17 y2n+2)

and

min{qpc(an’ y2n+2)’ qpc(y2n+1’ y2n+1)} = qpc(y2n+1’ y2n+1)’

then
q(Yon+1> Yon+2) < 8 @ (Yoni1> Yon+2) + Lape(Yon+1> Yoni1)i-e.,

(1 - 8)q(yan+1> Yon+2) < Lape(Yon, Yoni1)ie.,
L
qpc(y2n+1’ y2n+2) < mqpc(y2n’ y2n+1)

Advances and Applications in Mathematical Sciences, Volume 21, Issue 5, March 2022



COMMON FIXED POINT UNDER GENERALIZED ... 2635

Let py = ﬁ, Since (8 + 2L) <1, then p, < 1. Therefore

qp(y2n+17 y2n+1) = “4qpc(y2n+1’ y2n+2)'
Choose p = max{y, ng, 1g, ty}. Therefore 0 < p <1 and we get

q(Yon+1> Yon+2) < 129D (Yon» Yon+1) < 12D (Yon—1, Yon)

2n+1

< usqPe(Yon-2> Yon-1) < ... < 0" gp (o, y1)-

So by induction we get
| qp(yn’ yn+1)| = “nl qpc(y07 yl)l

Which tends to 0 as n tends to .

So {y,} is convergent and hence its subsequence {yg, 9} = {Axg, o} is

also convergent to z. Let AX be closed.

So z € AX, i.e., there exists u € X such that z = AX. We claim z = Swu.
If not, by using (3.1), we get

/2 (Su’ Tx2n+1 )

<d max{qu(Au, Bx2n+1)’ qpc(-Au’ Su)7 qu(Bx2n+1, Tx2n+1 )’

1 .
5 (ap(Su, Bron 1) + qpe(Au, Txgy 1)) + L min{gpe (Au, Su),

QP (Bxon1, Txon 1), (AL, Txon 1 )ap (Brgn 1, Sw}-
Letting n — oo, then
1
qp.(Su, z) < & max{gp.(Au, z), gp.(Au, Su), qp.(z, z), E(qpc(Su, z)

+ qpo(Au, 2))} + L min{gp.(Au, Su), gp(z, 2), o (Au, 2), qp.(z, Su)}
qp.(Su, z) < (8 + L)gp.(Su, z),

a contradiction to (3). Hence, gp(Su, z) = 0, i.e., Su = z.
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So Au = Su, 1.e., A and S have a coincidence point. Since SX < BX,
there exists v € X such that z=Su = Buv.

We claim that v = z. If not, by using (3.1) we get
qp.(Su, Tv) < § max{gp.(Au, Bv), gp.(Au, Su), gp.(Bv, Tv), %(qpc(Su, Bv)

+ qpeq(Au, Tv))} + Lmin{gp.(Au, Su), qp.(Bv, Tv), gp(Au, Tv),

qp.(Bu, Su)}

l.e.,
1
qp.(z, Tv) < 8 max{gp.(2, 2), qp.(2, 2), qp.(2, Tv), 3 (gpc(z, 2) + qp.(z, Tv))}

+ Lmin{gp.(z, 2), qp.(2, Tv), qpc(z, Tv), qp(2, 2);
le.,
qp.(z, Tv) < 8qp.(z, Tv) + Lgp.(z, Tv)
l.e.,
qp.(z, Tv) < (8 + L) gp.(z, Tv),
a contradiction to (3). Hence, ¢(z, 7v) =0, i.e., 7v = z. So Bv = Tv, i.e., B

and 7 have a coincidence point.

If we assume that BX 1is closed, then an argument analogous to the

previous argument establishes that the pairs (A, S) and (B, 7) have a

coincidence point. Hence, Au = Su = Bv = Tv = z.
Since (A, S) and (B, 7) are weakly compatible,
Az = ASu = SAu = Sz, and
Bz = BTu = TBv = 7z.

Now we will show that z = Az. If not, by using (3.1) we get

1
qp.(Sz, Tv) < d max{qp.(Az, Bv), qp.(Az, Sz), qp.(Bv, Tv), §(qpc(82, Bv)
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+ qpc(Az, Tv));

+ L min{qgp.(Az, Sz), qp.(Bv, Tv), qp.(Az, Tz), qp.(Bv, Sz)},

apel Az, 2) < Smax{ap,(Az, 2), dz 2), 3 (apelAz 2)+ apo( Az, 2)))

+ Lmin{gp.(Sz, 82), qpc(2, 2) gpc(Az, 2), qp (2, Az)}
le.,
apc(Az, 2) < 8qp.(Az, 2) + Lap.(Az, 2)
le.,
apc(Az, 2) < (8 + L)gp (Az, 2),

a contradiction to (3). So gp.(Az, z) =0, then z = Az. Similarly we can
prove that z = Bz. Hence, z = Az = Bz = Sz = Tz, i.e., z1is a common fixed

point for A, B, S and 7.

Uniqueness of the fixed point is an easy consequence of (3.1). n

Example 3.2. Let X =0, 2] be a set endowed with complex quasi-
partial metric dg,q(x, y) =[x -y|[+ix-y|. Let A B and 7 be self-

mappings defined by

X o o0<x<1 3 g<x<1
Ax=g Bx = %
2 <x< 2 <x<
3’ 0<x<2 1 0<x <2,
x x
—, 0<x<1 =, 0<x<1
Sx =412 Tc =8
2 <x < = <x<
1 0<x <2 3’ 0<x <2
Here
1 5 1
AX = O,ZUg and AX =10, — So 7TX = O’§ c AX and
1

SX = [o, E} U {l} c BX.
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The point O is a coincidence point of the four mappings. Further
AS0 - SA0 =0 and 7B0 = BT70 = 0, i.e., the two pairs (A, S) and (B, 7)

are weakly compatible.

Case L. For x, y € [0, 1], we have

Case IL For x € [0, 1], and y € (1, 2], we have

X
dqpc(Sx,Ty)— E—§‘+l E—g‘
4 3x 1 3x 1
< = i
‘5{' 1 sty 8|}

N O P
dp(Sx,Ty)—‘4 8‘+l4 8"
4 5 3y x 3y
< 2] 2_2) r_9)
ssig-F -7
Case IV. For x, y € (1, 2], we have
1 1 J1 1
dqpc(sx’Ty)_‘Z_§‘+lZ_§"

403 1, .3 1
<Xl 2_= Q2 _=
‘5{'4 g I+l 8|}'

Consequently, all hypotheses of Theorem 3.1 are satisfied (for & = % and

L = 0) and 0 is the unique common fixed point of A, B, S and 7.
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If A=8B and S =7, we get the following corollary

Corollary 3.3. Let A and T be self-mappings of a complex quasi-partial
metric space (X, qp.). If A satisfies generalized condition (B) associated with

Tforall x, y e X and we have

1. 7X < AX,
2. AX 1is closed,

3. 3+2L) <1, then A and T have a coincidence point. Further, A and T
have a unique common fixed point, provided that the pair (A, T) is weakly
compatible.

Corollary 3.4. Let A, B and T be self-mappings of a complex quasi-
partial metric space (X, qp,). If the pairs of mappings (A, S) and (B, T)
satisfy
q(Sx, Ty)

+ qp(Ax, T. y))}

Sx, B
< dmax{qp.(Ax, By), qp.(Ax, Sx), qp.(By, Ty), (ap(Sx, By) 5

forall x, y e X and we have
1. 7X < AX, and SX c BX,

2. AX or BX is closed, then the pairs (A, S) and (B, T) have a
coincidence point. Further, A, B, S and T have a unique common fixed point,
provided that the pairs (A, S) and (B, T) are weakly compatible.

Proof. The proof follows similar lines to the proof of Theorem 3.1, using
L=0. n

Corollary 3.5. Let A and T be self-mappings of a complex quasi-partial
metric space (X, gp.). If the pair of mappings (A, T) satisfies

ap.(Ax, Ay), pa.(Ax, Tx), gp.(Ay, Ty),
q(Tx, Ty) < Smax (qpc(Tx, Ay) + gp.(Ax, Ty))
2
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forall x, y € X and we have

1. TX ¢ AX

2. AX is closed, then the pair (A, T) has a coincidence point. Further, A
and T have a unique common fixed point, provided that the pair (A, T) is

weakly compatible.

Proof. The proof follows similar lines to the proof of Theorem 3.1, using
=L=0,a=Band S=T.

Corollary 3.6. Let A and T be self-mappings of a complex quasi-partial
metric space (X, qp. ). If the pair of mappings (A, T') satisfies

(Tx, Ty) < dmax{qp.(Ax, Ay)}
for all x, y € X and we have

1. TX ¢ AX

2. AX is closed, then the pair (A, T') has a coincidence point. Further, A
and T have a unique common fixed point, provided that the pair (A, T) is

weakly compatible.
Proof. The proof follows similar lines to the proof of Theorem 3.1.

Theorem 3.7. Let A, B, S and T be self-mappings of a complex quasi-
partial metric space (X, qp.). If there exist § € (0,1) and L > 0, such that
forall x, y € X, the pairs of mappings (A, S) and (B, T) satisfy

q(sx, Ty) < dmax{gp.(Ax, By), qp.(Ax, Sx), qp.(By, Ty), gp.(Ax, Ty),

Qo (Sx, By)} + Lmin{gp.(Ax, Sx), qp.(By, Ty), gp.(Ax, Ty), qp.(By, Sx)}.
(3.2)
1. TX < AX and SX < BX

2. (8 + 2L) < 1, then the pairs (A, S) and (B, T') have a coincidence point.
Further, A, B, S and T have a unique common fixed point, provided that the
pairs (A, S) and (B, T) are weakly compatible.

Proof. It can be proved following similar arguments to those given in the
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proof of Theorem 3.1.

Example 3.8. Let X = [0, ) be endowed with the complex quasi-partial
metric:

dgp(x,y) =|x—y|+i|lx—y| and let A, B,S and T be mappings
defined by

, 0<x<1 x
szx x Bx = 13> 0<x<1
2, x >1 1 x>1

X
X =, 0<x<1

szm, 0<x<1 Ty = L;)
1, x>1 3 x > 1,

Here we have

ﬁ:[o,au{%}c[o,ﬂU{‘zz}:AX

SX - [o, %} Uil e [o, %} Uf = BX.

The point is a coincidence point of the four mappings. Further
ASO = SA0 = 0 and TBO = BTO0 = 0, i.e., the two pairs (A, S) and (B, T)

are weakly compatible.

Case L. For x, y € [0, 1] we have

dyp, (Sx, Ty) = +1

A
10 5

A
10 5

0{|2x y|+i2c-y|}

ol

Case II. For x € [0, 1] and y > 1, we have

@Icn

| X _Y x
dyp, (S, Ty)—‘10 5| *e
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<_ —_ —_—

Case III. For € [0, 1] and x > 1, we have

dyp, (S, Ty)=‘1—% +i1—%‘
sg{‘Z—Z‘H‘ 2—%‘}.
Case IV. For x, y > 1, we have
dyp, (Sx, Ty)=‘1—% +i1—%‘
gg{1+i}.

Consequently, all hypotheses of Theorem 3.2 are satisfied (for & = g and
L = 0) and 0 is the unique common fixed point of A, B, S and T.
For A = B and S = T Theorem 3.2 reduces to following corollary

Corollary 3.9. Let A and T be self-mappings of a complex quasi partial
metric space (X, qp.). If there exist & € (0,1) and L > 0, such that for all

x, y € X, the pair of mappings (A, T) satisfies
q(Tx, Ty)
{ap.(Ax, Ay), qp.(Ax, Tx), qpc(Ay, Ty), gp.(Ax, Ty), qpc(Tx, Ay)}
{apc(Ax, Tx), qp(Ay, Ty), gpc(Ax, Ty), qp.(Ay, Tx)}. (3.3)
< dmax
+ L min
1. TX ¢ AX,

2. (8 +2L) <1, then the pair (A, T) has a coincidence point. Further, A
and T have a unique common fixed point, provided that the pair (A, T) is

weakly compatible.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 5, March 2022



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(13]

[14]

(18]

[16]

COMMON FIXED POINT UNDER GENERALIZED ... 2643
References

A. Azam, J. Ahmad and P. Kumam, Common fixed point theorems for multi-valued
mappings in complex-valued metric spaces, Numer. Funct. Anal. Optim. 33(5) (2012),
590-600.

A. Azam, J. Ahmad and P. Kumam, Common fixed point theorems for multi-valued
mappings in complex-valued metric spaces, Journal of Inequalities and Applications (1)
(2013), 578.

Anita Tomar, Said Beloul, Ritu Sharma and Shivangi Upadhyay, Common fixed point
theorems via generalized condition (B) in quasi-partial metric space and applications De
Gruyter Open. Demonstr. Math. 50 (2017), 278-298.

A. Azam, B. Fisher and M. Khan, Common fixed point theorems in complex valued
metric spaces, Numerical Functional Analysis and Optimization 32(3) (2011), 243-253.

D. Balraj, M. Marudai, ZD. Mitrovic, O. Ege and V. Piramanantham, Existence of best
proximity points satisfying two constraint inequalities Electronic Research Archive 28
(2020), 549-557.

D. Balraj, V. Piramanantham and M. Marudai, Cyclic coupled best proximity points for
generalized rational proximal contractions, AIP Conference
Proceedings https://doi.org/10.1063/1.5135190 2177 020015 (2019).

F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional
equations in Banach spaces, Bull. Am. Math. Soc. 72 (1966), 571-576.

P. Dhivya and M. Marudai, Cogent Mathematics, Common fixed point theorems for
mappings satisfying a contractive condition of rational expression on ordered complex
partial metric space 4 (2017), 1389622,

I. Altun, F. Sola and H. Simsek, Generalized contractions on partial metric spaces,
Topology and Its Applications 157(18) (2010), 2778-2785.

H. P. A. Kunzi, H. Pajoohesh, M. P. Schellekens, Partial quasi-metrics, Theoret. Comput.
Sci. 365(3) (2006), 237-246.

E. Karapinar, M. Erhan and Ozt urk Ali, Fixed point theorems on quasi-partial metric
spaces, Math. Comput. Modelling 57 (2013), 2442-2448.

S. G. Matthews, Partial metric topology, Proceedings of the 8th Summer Conference on
General Topology and Applications, Ann. New York Acad. Sci. 728 (1994), 183-197.

S. G. Matthews, Partial metric topology, Research Report 212, Department of Computer
Science, University of Warwick, 1992.

0. Valero, On Banach Fixed Point Theorems For Partial Metric Spaces, Applied General
Topology 6(2) (2005), 229-240.

V. Pragadeeswarar and M. Marudai, Fixed point theorems for mappings satisfying a
contractive condition of rational expression on a ordered partial metric space, Thai
Journal of Mathematics 12(3) (2014), 613-620.

R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 5, March 2022



2644 BALRAJ, KUMAR, GOVINDHARAJ and BALASUBRAMANIYAN

[17]

(18]

[19]

(20]

(21]

[22]

(23]

S. Oltra and O. Valero and S. Banach, Fixed point theorem for partial metric spaces,
Rend. Ist. Mat. Univ. Trieste, 36(2004), 17.26. Satisfying a contractive condition of
rational expression on A Ordered Complex Partial Metric Space 4: 1389622.

T. Senthil Kumar, R. Jahir Hussain, Common Coupled Fixed Point Theorem for
Contractive Type Mappings in Closed Ball of Complex Valued Metric Spaces, Adv.
Inequal. Appl. Article Id 34 (2014).

T. Senthil Kumar, R. Jahir Hussain, Common Fixed-Point Theorem for Generalized
Contractive Type Mappings In Complex Valued Metric Spaces. J. Math. Comput. Sci. 4
(4), 639-648.

S. A. Al-Mezel, H. H. Alsulami, E. Karapinar and F. Khojasteh, A note on fixed point
results in complex-valued metric spaces, Journal of Inequalities and applications (1)
(2015), 1-11.

Karapinar, E. A note on common fixed point theorems in partial metric spaces, Miskolc
Mathematical Notes 12(2) (2011), 185-191.

T. Abdeljawad, E. Karapinar and K. Tag, Existence and uniqueness of a common fixed
point on partial metric spaces. Applied Mathematics Letters 24(11) (2011), 1900-1904.

E. Karapinar and I. M. Erhan, Fixed point theorems for operators on partial metric
spaces Applied Mathematics Letters 24(11) (2011) 1894-1899.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 5, March 2022



