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Abstract 

Android malware prediction becomes an essential activity in the formation and 

implementation of coding systems. Deficiency prediction can be a significant essential for 

quality assurance techniques in the early stages of the computing system development cycle and 

has been explored loosely in the last 20 years. The central forecast for defective modules in 

establishing a standardized protocol can make it possible for the event team to quickly and 

effectively offer top-of-the-range goods in a limited time. Various machine learning approaches 

may be innovative because of the confirmation of defective modules, which are used to the 

prediction of codes defects in NASA‟s data set JM1 by identifying hidden patterns between the 

coding systems attributes throughout this study. This work proposes a new planned model that 

promotes the standardization of this XG Boost model by automatically boosting its parameter, 

especially estimator, learning rate, max depth, and sub-sample. The experimental results reveal 

that the intended models have inaccurate coding program development method defect prediction 

levels to improve the code quality.  

1. Introduction 

Bug classification and prediction is one of the main issues in software 

testing. Various efforts have been carried out in the past. But still the 
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research issues remain in various stages. Saiqa Aleem et al. [1] discussed the 

success of the software project nowadays. The biggest headache of a project 

manager is faults or bugs. Bad code design and implementation cause these 

bugs. M. Farida Begum et al. [3] A team that works on a project comprising 5 

to 6 developers, some have the expertise, and some are new, is the primary 

problem in default-free code. Now the new developer does not know what 

problems can emerge in real-life settings with this code.  

They are therefore only carrying out this project without worrying about 

future bugs. Subsequently, this application will be disseminated across users. 

They will experience in a non-uniform environment that the Surbhi 

Parnerkar [4] proposed bugs that affect application rating, customer 

engagement, and performance.  Rashid et al. [5] noted that “we had spent a 

lot of work and resources fixing issues. Sometimes these vulnerabilities or 

defects can be seen, and hackers will use our website or app and sometimes 

compromise us with crucial information or money. This exposes the software 

industry‟s dilemma and the need to predict software flaws in its development 

phase the procedures to ensure safety safeguards before these effects occur”.  

The major problem in the software business is to design an application 

that is 100% bug-free. This problem is challenging for software developers to 

achieve, even if it is tested by Markland et al. [6]. Shruthi Puranika et al. [7] 

suggested that any application built by a person is essentially not an 

automated process because defects are prevalent or natural. Software 

developer organizations focus on the early detection of defects through many 

checks and testing techniques. To overcome this problem, we, therefore, 

reviewed that different ways are based on machine learning.  

The rest of the paper is discussed in various sections. Section 1 deals with 

the introduction. Section 2 presents the related work and various issues 

works carried in the past works. Section 3 presents a planned model for 

automated bug classification using machine learning approach. Section 4 

discusses the implementation of the methodology. Section 5 presents the 

results and its discussion. Section 6 concludes the paper. 

2. Related Work 

Various ways to bug classification have been offered. In the past, various 
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researchers have discussed many approaches. The problems relating to the 

prediction of defects still exist in this direction.  

Zhaowei [8] “compared most approaches to machine learning in this 

method, including supervised and unchecked learning. WEKA experiment 

tool and PROMISE - NASA data collection is used for model training”. 

Vignesh et al. [9] have implemented a CNN and Long Short-Term Memory 

(LSTM) model for precise detection. Neetu Goyal et al. [10] proposed using 

the historical data set using the Supervised Learning algorithm, primarily 

logistical reverse, Naif Bayes and Decision Tree. The technique of K-Fold 

cross-validation. Mohammad et al. [11] concentrated on detecting and 

removing external products, followed by reducing dimension. The 

classification system identifies faulty code from correct code by using deep 

Bug Framework.  

Amod Kumar et al. [13] added a tool or frame called a defect detector 

framework with different compilers and languages, such as javac, GCC, 

visual study. Meiliana et al. [14] “developed a strategy employing the least 

and correct number of metrics performed simultaneously using marginal R 

square values. Uses selected Eclipse JDT Core dataset.” Keita Mori et al. [15] 

suggested a one-class SFP (Software Fault Prediction) Model with One-Class 

SVM. Ali Ouni et al. [16] focused on web applications using machine learning 

vulnerability prediction. Validation of inputs and sanitation we generate 

characteristics. It calculates static rear sections for each sink. We based the 

program analysis on the web program‟s control flow charts, control 

dependency charts, and system dependency charts. Uma Subbiah et al. [17] 

advised that defects be first classified based on severity and component 

attributes according to their priority. It employs X means the Bayes Net 

Classifier Clustering Algorithm.  

Supervised learning was proposed by Ashima Kukkar et al. [18]. KC1, 

MC1, AR1, AC6 and compares datasets. The results of naïve model Bays and 

j48 (Decision Tree Classifier) MC2. Awni et al. [19] Supervised Learning on 

10 NASA Data Sets mainly classified using Bagging, SVM, Decision Tree 

(DS), and Random Forest (RF) classification tools. Fei Wu et al. [20] 

advocated that the data be gathered via an open-source software in which we 

translated data into object-oriented metrics.  
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The above literature work involves the use of techniques, such as logistic 

regression and decision trees. They provide less precision and presume 

various data sets that create prejudices if we do not meet the assumptions. I 

later introduced ensemble techniques, such as Random Forest, for 

categorization that enhance decision-making processes. However, we 

employed boosting approaches such as Ada Boost for classification to prevent 

bias from generation but still suffer from low accuracies.  

3. A Model for Automated Bug Classification using Machine Learning 

The Random Forest works very well for the Software Bug prediction. 

However, other newly arrived algorithms called XG Boost can also boost by 

offering a method for building a classification model with more accuracy than 

Random Forest.  

 

Figure 1. A Model for automated Bug Classification. 

4. Implementation 

The proposed methodology may be implemented by using the following 

concepts.  

(A) Logistic Regression:  

Logistic algorithm is an approach for machine learning used to classify 

problems. It is a predictive analytical tool based on the idea of probability. 
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Figure 2. Linear Regression vs Logistic Regression Graph. 

Here, call a logistic reversal a linear reversal model, however, “the logistic 

reversal uses a more complicated feature, which is characterized as the 

„sigmoid function‟ or also called „logical function, rather than a linear 

function. The logistic regression hypothesis restricts the cost function from 0 

to 1. Thus linear functions do not reflect it since it may have a value larger 

than one or less than 0, which is not possible in the logistic regression 

hypothesis”.  

  .10   xh  

Logistic regression hypothesis expectation  

(B) Random forest: “Random Forest” is an algorithm for the 

conventional learning machine that is part of the controlled learning 

experience. We may use it for classification and regression tasks in ML. It 

builds on the concept of entity learning, a process through which we can 

combine different classification systems to solve a complicated problem and 

improve model performance. As the name says, „Random Forest is a classifier 

containing a range of decision trees on various data sub-sets and takes the 

average to raise the predicted precision of the data set.” Instead of depending 

on a decision-making tree, we expect the random forest to provide a high 

number of votes from each tree. The rising quantity of forest trees leads to 

more accuracy and decreases over-fitting. The following graph explains how 

the algorithm Random Forest works.  

 

Figure 3. Prediction Process. 
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(C) ADA BOOST Algorithm: Adaptive Boosting, the brief is a boosting 

method used in machine learning as an ensemble method. It is called 

Adaptive Boosting because we reassign the weights of each instance to 

mistakenly identified cases with higher weights. Boosting is used to reduce 

both bias and variation in supervised learning. It works on the concept that 

students are sequentially cultivated. Except for the first, every succeeding 

student comprises previously grown students.  

Simply put, turn weak students into strong ones. Adaboost method 

operates on the same idea as boosting however, the working process differs 

slightly. 

 

Figure 4. Ensemble Process. 

(D) XGboost Algorithm: XGBoost stands for the boosting of eXtreme 

Gradient. Recently, it has been popular and dominates applied machines and 

Kaggle contests on structured data because of its scalability. XGBoost is an 

extension to gradation-enhanced decision-making bodies (GBM).  

XGBoost Features 

(i) Regularized Learning: The time of formalization minimizes overall 

ultimate weights gained to avoid high fitness. The standardized goal selects a 

system with primary and accurate parameters.  

(ii) Gradient Tree Boosting: It cannot optimize the model for a tree set 

with standard optimization. 

(iii) Shrinkage and Column Subsampling: It employs further two 

further strategies to prevent over-fitting besides the regularized aim. The 

first technique is Friedman‟s shrinkage. Recent weights applied with the 

factor μ after each step of the tree boost. Shrinkage scales Shrinkage lowers 

each tree‟s impact and leaves space for subsequent branches, in line with the 

evolutionary computing learning rate, enhance the model.  

The second is the column for sub-sampling (feature). We have utilized it 



A MODEL FOR AUTOMATED BUG CLASSIFICATION … 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022 

3099 

in the Random Forest. The sub-sampling column prevents far more than the 

standard sub-sampling line. Using sub-sample columns also speeds up the 

calculation of parallel algorithms.  

(E) Decision Tree: The Forest Algorithm is a supervised learning 

method that can be used for classification problems and regression, but most 

typically for classification problems. The classification is tree-structured, 

where the core nodes represent the functions of the dataset, where the trees 

reflect the rules of selection, and where every node in the tree is the result. 

Decision Tree contains two nodes: the Deciding Terminal and the Tree. It 

employs decision nodes and have many branches, whereas leaf nodes 

represent the output and have no branching. 

 

Figure 5. Decision Tree Process. 

5. Discussion of Results 

a. Logistic Regression: 

 

b. Decision Tree: 
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c. Random Forest: 

 

d. Ada Boost: 

 

e. XGBoost (Gradient Boosting Classifier):  

 

 

 

 

 



A MODEL FOR AUTOMATED BUG CLASSIFICATION … 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022 

3101 

Representation of Accuracy Levels  

 

Figure 6. Comparison of accuracy levels for various algorithms. 

6. Conclusion 

The preprocessed information with characteristic scaling for more 

significant mining and choice has automatically handled sophisticated 

imbalance in data sets using the SMOTE approach of victimization. The 

proposed methodology of machine learning - logistic regression, Decision 

Tree, Random Forest, ada boost, and XG Boost as NASA-JM1 datasets. Soon 

a new model standardized the dominant XGBoost model by adjusting its 

unique N estimator, learning rate, max depth, and sub-sample parameters. 

The findings were compared, and the model also outperformed each other. 

Many entirely various methodologies are units employed for software system 

detect prediction. On broad public data set JM1, from the PROMISE 

warehouse, employs Machine Learning Models area unit call Tree, logistic 

regression, Random Forest, Ada Boost, XG Boost. The applied algorithms 

show more incredible average JM1 data set accuracy rates in XG models to 

speed up learning and give higher average data set performance. The 

performance figures suggest that the intended models are intelligent in the 

prediction of software system defects. It helps to identify the categorization of 

bug severity and the priority victimization of deep learning approaches. It 

might involve alternative unit approaches of metric capacity and provide a 

comprehensive comparison between them. As a part of future work, the 

metrics of software systems within the learning process are an approach to 

increase the prediction model accuracy.  
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