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Abstract

In this article, we develop some PPF dependent fixed point results for nonself mapping in
Metric spaces for Presié¢-Hardy-Rogers contraction, which is generalization of Presié¢ type
contraction, where the domain space abstract is different from range space E. We also include

some examples related to our results.

1. Introduction

Fixed point theory has several applications in various fields of research.
It is a combination of analysis, topology and geometry. There has been a lot of
research in this field since the establishment of the Banach contraction
principle and some well-known fixed point theorems have emerged as an
extension of this principle. It has been extended and generalized in many
ways (see [1], [2], [5], [10], [11], [14], [19], [22], [23]). Several authors have
dealt with the fixed point theory for different type of contractions in various
spaces ([4], [6], [12], [13], [18]). After that, Presié¢ ([16], [17]) extended Banach
contraction principle for mappings defined on product spaces and proved

some fixed point results for the same.

Bernfeld et al. [3] developed an idea of a fixed point for mappings with
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distinct domains and ranges, known as the past-present-future (PPF)
dependent fixed point or the fixed point with PPF dependence. They also
introduced the concept of Banach type contraction for non-self mappings and
demonstrated the existence of PPF dependent fixed point results in the
Razumikhin class. These studies are valuable for establishing the solutions of
nonlinear functional differential and integral equations that may depend
upon past history, present data and future considerations. Many researchers
have demonstrated several PPF dependent fixed point results (see [7], [8], [9],
[20]).

Inspired by the work of Bernfeld et al. [3] and Shukla et al. [21], we
develop some PPF dependent fixed point results for a nonself mapping in
metric spaces for Presi¢-Hardy-Rogers contraction which is generalization of
Presié type contraction.

Throughout this paper, (E, d) is a complete metric space with the norm
|-llg» I is a closed interval [a, b] in R and Ey = C(I, E) is the set of all

continuous E-valued functions on I with the corresponding metric

do(y. &) = max d[y(c). &)} (1.1)

And Q o = {y € Ey : do(y, ") = d(w(c), $"(c))} is a class of functions in

E,. This class Q . is said to be algebraically closed with respect to difference

¢
if p-€eQ o and topologically closed if it is closed with respect to topology
on E; induced by dj.

Definition 2.1[3]. “A function y € E; is said to be a PPF dependent

fixed point or a fixed point with PPF dependence of a nonself mapping S if
Sy = y(c) for some ¢ € 1.”

Definition 2.2. “Let (E, d) be a metric space, [ be a positive integer and

S Eé — E be a nonself mapping then

1. [16] S is said to be a Presi¢ contraction if it satisfies
l
d(S(¥1, Yo, - Y1) S(Was Y3, ooy Ppup)) < Z(de(wj(c), Pjs(c)
=1
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where o4, 09,...,0; are mnon negative constants such that

o; +og +...+o0; <1

2. [15] S is said to be Presi¢-Kannan contraction if it satisfies

1+1
d(S(¥1, Yo, - Y1) S(Was W3 ..oy Ypu1)) < Bzd(w,-(c), SWj, ¥jy s ¥j))
=

where 0 < BI(l+1) < 1.

3. [18] S is said to be Presié-Reich contraction if it satisfies

/
AS(r. Yz oeos Y1), SWe Voo Y1) < Y (0, 1 (c)

j=l
I+1

+B; D dwie), SWj, s - %))
j=l

. l I+1
where o, B; are non negative constants such that Z o1 % + lz in B;

4. [4] S is said to be a Presi¢-Chatterjea contraction if it satisfies

d(S(%, Y95 -ens 1/’1), S(wZ’ Y35 oes ¢l+1))

+1  I+1
Z D dw;(e). Sw. v s v))
j=1, j=k k=1

where 0 < yi2(1+1) < 1.

5. [6] S is said to be Generalized-Presi¢ contraction if it satisfies

d(S(1, Y2, s Y1), S(W2, Y3 - Y111))

I+1
Za A5(e) Wi (@) +B; D W) SWy, v wos wy)
J=1 j=1
I+1  1+1
+B Y D dwie) SWys ¥ s W)
j=1, j#k k=1
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where a;, Bj, B are non negative constants such that

l I+1 141
Z(xj + ZZZBj +BA(I+1) < 1.
j=1 Jj=1 k=1

6. [11] S is said to be Presi¢-Hardy-Rogers contraction if it satisfies

d(S(l/)b Yo, -y 1/)l)’ S(VJZ’ Y3, s wl+1))

l I+1 1+1
< adlyj(e) yiale)+ DD B adwe) S, vy s ;)
j=1 j=1 k=1

where o, B;  are non negative constants such that

l I+1 [+1
) NI
j=1 j=1 k=1

for all vy, Yo, ..., Y, Ypi1 € Eg.”
2. The Main Results

Theorem 3.1. Let (E, d) be a complete metric space and I = [a, b] be any

closed interval in R. Suppose Ey = C(I, E) denotes the set of all continuous

function on I to E, S : E(l) — E is a Presié contraction and Q . is a class of

¢

functions in Ej, which is topologically and algebraically closed with respect

to difference. Then, S has a unique PPF dependent fixed point in Q¢*.

Proof. Let g € QUJ* c Ej. Clearly S(yy, ..., ¥g) € E. Let us suppose

S(yg, ..., ¥o) = x1. Define y; : I - E as y;(z) = x; for some z € I. Then
Y, € Egp. We choose ;e Q¢* st. S, ..., Yo) = Y1(c) =x;. Let
S(yy, ..., Y1) = x9. Consider vy : I - E as 9(z) = x9 for some z e I.
o St Sy, ... 1) = Yolc) = x9. Let
S(ys, ..., Pg) = x3. We define y3: 1 - E as y3(z) = x3 for some z e I.

Then 19 € Ey. Choose g € Q
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Then, g3 € E;. Hence we take g3 e Q¢* s.t. S(yg, ..., P9) = x3 = P3(c).
Continuing this process, we define a sequence {y,,} s.t.
SWy» s Yp) = Xpi1 = Puap(c) for n€{0,1,2,..}.
If ¥, =y, forsome n € {0, 1, 2, ..}, then
SWns s ¥n) = Yna(c) = Yu(c).

Thus v, is a PPF dependent fixed point of Sin Q¢*. So we assume

Yuel = Yn Vne {0, 1, 2, }
For our convenience, let

dj = d(y;j(c), ¥j.1(c)) and Dj = d(y;(c) S(yp, ... Yp)) Vi, k21 (2.1)

We now prove that {y,} is a Cauchy sequence. For ne{0,1, 2, ...},

consider

A1 = dWni1(c), Ynia(c)
= d(SWn, -, Yu) SWni1s -5 Wni1))
< d(SWn, s Yn) SWns s Yo Yna1))
+d(SWn, s Y Va1 SWns ooy Yoo Yrs1s Yi1))
+o d(SWns Ynats o Yni1) SWnits - Yna1))

By Presi¢ contraction

l
AS@W1, Yo, oo Wi Sy Yns oo Y1) € D 0jd(1(), P (c))

=l
l
for all ¥y, ¥, ..., Y, Y41 € Ky, and a; > 0 such that Zj:laj <1

So, d,,11 S oyd, + 14, + ...+ o1d,,.

Thus,
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!
dy < {Z oc]}dn.
j=1

Now, take oy +ag +...+ oy = p. So, d,,,1 < ud,.
Clearly p < 1.
So, we get
dpy1 < H’Hldo (2.2)

As dyiy = d(n(c), Yni(©)) = dYnsa(c), Yn(C))

Let if possible {y,} is not Cauchy, then 3 an § > 0 and sequence of
positive integers p and ¢ with p > g such that

dpp(e). 1 () 2 5 and d(py(e). vg1(e) <.
Now,
8 < d(yp(c), ¥q(c))
< dWp(e) Ypi1(0) + dWpi1(C), Wpiale) + ...+ d(1g-1(c), ¥4 (c))
=d,+tdp +...+dy
< nPdy + pPdy + ...+ pd7ld,

p

Now, 0<pu<l. So, by appling q —> o, we get
lim,_,., d(y,(c), ¥4(c)) = 0. Hence & = 0,

This is a contradiction.

£

So, y,, is a Cauchy sequence in Q . c E,. We take lim, , v, =y .

¢

Since E is a complete. So, we have ,, is convergent. Thus, y* € Ej,.
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Now, y* € Q e because Q o is topologically closed.

We prove that 9" is a PPF dependent fixed point of S. We consider
dy"(e), S@W", ..., ¥")) < AW (c), Ynai(e) + AW, (c) S, ..., 7))

= d(w*(C), ¢n+1(c)) + d(S(wna (T wn)’ S(Tl)*, RET) 1/)*))

By the same method as used in the calculation of d,,,{, we get

dy"(c), S, ..., ")) < d¥(c), Y41(0) + nd(wy(c), ¥ (c)).

By using lim,_,, =", we have d(¥"(c), S(y", ..., y"))=0. So,
S@", .. ¥) = y7(0)

Hence y* is a PPF dependent fixed point of S. For uniqueness, let &* be
any other PPF dependent fixed point of S, that is, S(¢", ..., £") = £". Again by
the similar process as used in the calculation of d,,;, we get d(y", £*) = 0.
Hence y* = £".

Thus PPF dependent fixed point is unique.

Theorem 3.2. Let (E, d) be a complete metric space and I = [a, b] be any
closed interval in R. Suppose Ey = C(I, E) denotes the set of all continuous
function on I to E, S : E(l) — E is a Presié-Hardy-Rogers contraction and
Qq)* is a class of functions in Ey, which is topologically and algebraically
closed with respect to difference. Then, S has only one PPF dependent fixed
point in Q o

Proof. Let vy € Qq),k c Eq. Clearly S(yy, ..., ¥g) € E. Let us suppose
Sos ---» Yo) = %1

Define ¢, : I - E as y(z) =x; for some z € I, then y; € E;. We
choose ¥, e Q¢* s.t. S(o, ..., Yo) = P1(c) = 2. Let S(yy, ..., Y1) = x9. Now
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define vy : I — E as q9(z) = xy for some z € I, then yy € E;. We take
1/)2 € Q¢* s.t. S(Ull, . 1,01) = 1[12(0) = X9. Let S(lpz, ey 1[)2) = X3. Define
Yg: I > E as ys3(z) =x3 for some z e l. Then 5 € E,. Hence choose

Y3 € Q. s.t. S(Wg, ..., P9) = x3 = P3(c). Continuing this process, we define

¢
a sequence {,,} s.t. S(Y,,, ..., ¥,,) = Xpa1 = Ypaalc) for n€{0,1, 2, ...}

If ¢, =y, forsome n € {0, 1, 2, ..}, then

S(wn’ RER) wn) = wn+l(c) = wn(c)

Thus vy, is a PPF dependent fixed point of S in Q So, we assume

RE
Yp1 =Y, VR e{0,1,2,..).
For our convenience, let
dj = d(yj(c), ¥j;1(c)) and Dj = (y;(c), S(Wp, ..., Yz) Vi, k21 (2.3)
We now prove that , is a Cauchy sequence. For n € {0, 1, 2, ...}
dpi1 = d(Yns1(C), Ypyia(c)
= d(SWns s Yn) SWrits s Yna1))
S dSWns s Yn) SWns s Yo Yna1))
+d(SWn, s Yns Yni1) SWns s Yo Yi1s Yns1))

+...+ d(S(I/)na wn+1’ (RS 1/)n+1)a S(wn+1’ tees 1/)n+1))-

By Presi¢-Hardy-Rogers contraction
l
S W oos 91 S, Py W) < D i) ¥ )
j=1

[+1 1+1

£ Birdi(e), Seps wis s W)

j=1 k=1

for all vy, Yo, ¥y, Y € Eo.
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Where aj, Bj,k > 0 such that

So,

! !
A ﬁ{azdnJ{ZﬁLkJrZ%kJr Zsz

k=1 k=1

n,n n,n+1

!
Z Bj i1 | D,
=

-1

l
+ {Z ﬁl+1,k} Dyt ﬁl+1,l+1Dn+1,n+1} + {al—ldn + {Z B1,x

k=1

+ B2k+ Zﬁlm

n,n

I-1 I-1
ZB]’,I + Zﬁj,m D
i =1

n,n+1
-1 11 11 11
+ Bur+ ) Bistk [Dniin Bur + ) Bistk | Dns1,nst

k=1 k=1 k=1 k=1

[+1
+{a1d +B1,1Dn,n + |:Zﬁlk} e+l *[21%1] 1, n
[+1 [+1 [+1
+[ Bz,k+ZB3,k+--~+ZBz+Lk

k=2 k=2 k=2

Dn+1Dn+1}

that is

l I 1 l
dn+1 < Zaj:|dn +{[22Bj,k]l)n,n +[ZBJ’,Z+1:|Dn,n+1
j=1

j=1 k=1

+ Z Bri1,x

Lk=1

Dn+1, n Tt Bl+1, l+1Dn+1, n+1}
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-1 1-1 -1 -1
+ Z Bj,k Dn,n + B],k Dn n+1
j=1k=1 j=1 k=1
I+1 1-1 I+1 [+1
+ B],k Dn+1,n + B],k Dn+l n+l
j=1 k=l j=l k=1
I+1 I+1

+...+ Bl,an,n +

ZBl,k
k=2

Dn,n+1+ Zﬁj,l Dn+1,n

[+1 1+1
+ ZZBj,k Dn+1,n+1
j=2 k=2
that is
l
n+1 < Za} dn
Jj=1
7 1-1 -1 2 2
+ZZBJ,k+Z it +Z Bjk +Br1|Dpn
| j=1 k=1 j=1 k=1 j=1k=1
[ -1 -1 2 I+1 1+1
+ ZB],1+1+ Bjk+ +Z Bje + 2 Bik | Dnns
k=1 j=1 k=1 j=1 k=2 k=2
1 1+1 1-1 I+1 2 1+1
+ ZBZ+1,k+ZZB1k+ + ZBj,k+ Bj1|Dn+1,n
k=1 j=1k=1 j=3 k=1 j=2
(141 141 [+1 1+1 [+1 [+1
+ ZZBj,k + ZZBj,k ot ZZﬁj,k +Brs1,141 | Dns1, n1
Lj=2 k=2 j=3 k=3 j=1 k=l

Cldn + CZDn,n + CSDn,n+1 + C4Dn+1,n + C5Dn+1,n+1

where Cy, Cy, C3, C4, C5 are the coefficients of d,,, Dy, ,, D, p+1, Dyy1,, and

D, 11, n+1 respectively.
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Now,

Dy, = dn(€), S@ns s ¥n)) = AWn(e) Ynia(e)) = dn;
Dy, pi1 = dWn(c), SWni1s - Yni1)) = dWn(c), Yni2(0))
Dpiin = dWnaa(e), S@n, - ¥n)) = d(pnaa () Ypaale) = 0;
Dyii a1 = dWpi1(0) S@Wpits -oos Yni1)) = dWpi1(0) Yraz(c)) = dpyq-
Thus,
dni1 < Cidy + Cady, + C3d(y(€), Yny2(c)) + Csdp i
< Gy, + Cody, + C3d(1,(C), Y11(0)) + Cad(¥11(¢), Ynya(c)) + Csdyn
< (G + Gy + C3)dy, +(C3 + C5)dy i
that is
1-C5-C5)d, 1 <(C) +Cy +Cq)d,. (2.4)

As dyyy = d(Yn(c), Yni1(©)) = dWpaa(c), Yu(c))

If we interchange the role of v, and wy,,; then by above process, we

have
1 -C4 = Cp)dyi1 < (G + C5 + Cy)d, (2.5)
By (2.4) and (2.5)
(2-Cy—C5—-C4 —C5)d, 11 <20 +Cy + Cq + Cy +C5)d,

(201 +C2 +C3 +C4 +C5)

A A P o B
_ (2C]_ +Cz+C3+C4 +C5)
If we take p = @-Cp-C,-Cy—C5) then
dn+1 < len (26)
By using
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I+1 [+1

RD) I
Jj=1 k=1
we have
Cl+C2 +C3+C4+C5
l I 1 -1 7-1 2 2
DT VIIES 3 VAT ) WL
j=1 j=1 k=1 j=1 k=1 j=1 k=1
-1 [+1 2 I+1 [+1
ZBJ ED ) A TTES 3) 38 " 2P
j=1 k=1 j=1k=3
! [+1 1-1 I+1 2 [+1
+ZBZ+1,k+ Bj+- ZZB;k+ZB,1
j=1 j=l k=l Jj=3 k=1
I+1 [+1 I+1 [+1 I+1 [+1
+ZZBj,k "‘ZZB]k"‘ ZZB;kJer 1+1
j=2 k=2 Jj=3 k=3 j=l k=l
l I+1 [+1
= ZOL] +1 B] < 1
j=1 j=1 k=1

Thus 0 < p < 1. By using (2.6),

dy <" ldyv n>o0.

Let if possible {y,} is not Cauchy, then 3 an § > 0 and sequence of
positive integers p and g with p > q such that

d(¥(c), ¥q(c)) 2 8 and d(yp(c), Yg-1(c)) < 8.
Now
8 < d(yp(c) pq(c))
d(® (), ¥pi1(e) + d(¥ps1(c), Ypr2(e)) + ...+ d(g-1(c) q(c))

Advances and Applications in Mathematical Sciences, Volume ..., Issue ..., 2023



SOME PPF DEPENDENT FIXED POINT RESULTS ...

=d, +dpq +...+dg4

< wPdy + pPldy + ...+ pid,

p
S “

1-p

do.

Now 0<p<l. So, by appling q —> o,

limg_,., d(yp(c), ¥p(c)) = 0. Hence & = 0,

Here, we have a contradiction.

So v, is a Cauchy sequence in Q R

Since E| is a complete. So, we have y,, is convergent. So, y* € E.

Now y* e Q¢*’ because Qd)* is topologically closed.

we

« € Ey. We take lim,,_,,, y,, =y

1289

get

Now we demonstrate that y* is a PPF dependent fixed point of S. We

consider

dy*(c), SW", ..., ¥")) < dW*(c), Yp41(c)) + dWyi1(c), S@W*, ...y"))

= d(lﬂ*(c), ¢n+1(c)) + d(S('l/}n’ e wn)’ S(’l/}*a ARET) 1/}*))

By the same method as used in the calculation of d,,,1, we get

d(w*(c)’ S(’P*, EE) 1/)* )) < d(w*(c)7 wn—b—l(c)) + Cld(wn(c)’ 1/1*(6))
+ CZd(l/)n(c)’ S('l/}na sy y)n) + C3d(1/)n(c)’ S(’l/}*’ sty 1/’*))
+ C4d(¢*(c), S(wn’ c Y )) + C5d(¢*(c), S(’P*’ EEES) w* ))

< d'(c), ¥Yn41(0)) + Cid(¥y (). ¥ (€)) + Cod(¥n(c), Yp11(c))

+ Cad(p(c), 9 (c) + Cad(™()S(W", ..., 7)) + Cod("(c), Ypa1(c)

+ C5d(1/}* (C)a S(‘/)* LIERES 1/)* ))

that implies
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A (@) S, ) < G L dlyalh 1)

+Cl+C2+C4
1-C, - C;

d(Wn41(c), ¥7(c)).

By using lim, ., =v*, we have d(y*(c), S(y", ..., ¥"))=0. So,
S, ... v) =y (o)

Hence y” is a PPF dependent fixed point of S.

For uniqueness, consider &* is any other PPF dependent fixed point of S,
that is, S(&%, ..., ") =¢&". Again by the same process as used in the

calculation of d,,q,
dy”, &) < Gd(y”, £) + Cod(y", SW", ..., ¥") + Cd(y", S(E”, ..., £7))
+Cyd(E", SW, ..., ) + C5d(E, SE, ..., €7))
= (Cy + C3 + Cy)d(y", €7).

As, C; +Cy +Cq +C4 + C5 < 1. So, d(y", £") = 0. Hence y* = &".

Thus PPF dependent fixed point is unique.
Example 1. Let £ =R and Ej; = C(I, R) where I =[0, 1] Fix a point

c:le[O,l]. Let us define S : Ey x Ey — E by

3
5 (1 4
Sy, v) = §¢(§)+§, b e Ey
¥ ifxe [0, %}
) =4, 1
§ if x € |:§, 1:|
Now
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o1y, 4_5 4 _9 1 n_1
S v) = 9"’(3)+ 81 "8l "8l 81 9 ”’(3) =9
Here S(y, y) =1/9 = ¢(1/3).

Thus, ¥ is a PPF dependent fixed point of S.

Example 2. Let S : Ej x Ey — E be nonself mapping where (E, d) is a
complete metric space and I = [0, 1] € R. We define S by

S(9, ) = d(c) g v(c)

and (I)l, (I)Z, ¢3 1 > F by

d1(c)=1,Vx e[0,1]

x? ifxe|0, 1

2

bale) = 1| ; L2
= fxe|=,1

4 127 7|

x2 ifxe 0, 1

3
¢3(C) = 1 " :1 T
§ II X € _g, 1—

We show that S is a Presi¢-Hardy-Rogers contraction.

So, we have to prove that

d(S(91, ¢2): S(dg, ¢3)) < cud(¢r(c), do(c)) + oad(da(c), d3(c)
+PBr,1d(91(c), S(d1, ¢1))
+PB1,2d(1(c), S(d2, ¢2)) + Br,3d(d1(c), S(d3, ¢3)) + Bg,1d(d2(c), S(1, ¢1))
+PBg,2d(92(c), S(b2, 92)) + Ba, 3d(92(c). S(93. ¢3)) + Bs,1d(d3(c), S(d1. ¢1))
+ B3, 2d(93(c), Sz, d2)) + B3 3d(93(c). S(d3, ¢3)). (2.7)

Now
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d(S(dy, ds), Sy, 03)) = d(¢1(0) g 92(c) , alc) J5r (])3(0))

_ di(e) - ¢5(c)
5

1-x2 . 1
_ 5 1fxe[0,§
8 . 1
B 1fxe[0,§}

and

oy(1 - x?%) ifxe[ ,

03]
al(%) ifxe[%,l}

a1d(dr(c), do(c)) = {

0 if x €0,
agd(da(c), d3(c)) =

( _
0‘2(%) ifxel|z,
By, 1d(dr(c), S, ¢1) = Bl,ld(l, %ﬁj _ B1,1(1 _ %@
= B1,1(1 - %) = Bl,l(gj
Br 21 (0) Slb b2)) = By o1, 22|, 1 - 20209
_ [31,2(1 - %) ifx e [0, %}
BLQ(%j if x € [%, 1}

B1,3d(d1(c), S(ds, d3)) = B1,3d(1, Mj = 131,3(1 - Mj

N—

5 5
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rl 3[1 - 2%} ifxe [0, %}

P1, 3(22) if x e El}

Ba bl S(or, 01) = B 1 () 22

Ba,1 (x _Z) |
= 32,1(4)2(0)’ %) { By, 1( 3 )5 if x € [%, 1}

20

Ba,2d(d2(c), S(d2, d2)) = Bz, zd(tl)z(c), —2¢§(C))

32,2(%) ifx e [% , 1}

B, 3d(03(c). S(03. 43)) = Bo, 5 @%wg

K
|B2 3(% x2) if x e [o, %}
(-

Bs.1d(d3(c), SOy, ¢1)) = 53,103(4)3(0), 24%(0))

(-3

53 1
33,3(%) ifx e [%, }

B3 2d(d3(c), S(dg, ¢2)) = Bs, 2d(¢3(0) 2¢2(C))
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3 2 . 1
BS,Q(ExJ 1fxe[0, g}
_ 1.2 2\ 11
= ips2|(5-3+) <[5
1 . 1
B372(%) if x € |:§, ]_:I

By, d(d(c), S(s, ¢3)) = Bg,3d(¢3(c), 2¢;<c>)

iyl ()Bg’g(
= Pa,3 ¢ ¢3lc Bs,s(%) ifxe[%,}

R.H.S of equation 2.7 is

“oy -5+ 0 py2) 4 Bm(l . 2?} ; 31,3(1 . 2?) (s +2)
oo 202) o Bl 292 o B (67 - ) oo 262 oo 202)
xefo]

- ay(1 -2 ¢ g _éyBm@+B1,2(1_%+BL3(§)
I R N N
hlig)ee[f 3]

o2 ) D) ) ) () o)
a5 (2] sl o) <[]

which is

Advances and Applications in Mathematical Sciences, Volume ..., Issue ..., 2023



SOME PPF DEPENDENT FIXED POINT RESULTS ... 1295
2 2 3 3 3\ 9
= (—Oh P12 5 B3 5T Bo1 +B22 + P23 5* Bs,1 + B3 2 5T Bs,3 gjx

+(0€1 +B1,1§+B1,2 + B3 +Bz,1§—[33,1 %) if x e [O, %}
= [—Oh +og =Py 2 % +PB21 + B2 2 g +Bg,3 —Bs,2 %)xz +(001 — 0y % + ﬁ1,1%
+B1,3i—§+52,1§—Bz,34£5+[33,1%+l33,2%+B3,3%) if x e E %}
=0y % + 002(3%) + B1,1(%) + 51,2(%) + 51,3(3—2) + 32,1(%) + 52,2(%)

+ B2,3(%) + B3,1(%) + 133,2(%) + 53,3(%) if x e E 1}

Now we take a; =oag =11 =P1,2 =B1,3 =PB21 =B22 =PB23 =P31
= P32 = P33 = C=1/12.

Hence R.H.S of equation 2.7 is

C(1+§+1+1+2—g)+0x2( 2_2

3 3.3
55 —1—5—3+1+1+5+1+5+3)
_1(18 40, 1
_12(5+3xj1fxe[0,3}

of1_1.3,43
—C(l 5" %

2 1,1_2,7,8,1_2)_1(147 9
+Cx( 1+1 5+1+ +1 ) 12(

2) . 1 1
57173 E%lef“[g’ﬂ

_¢f834,5,3,9 /4 /3 8 /37 13 1 1) 759
4 36 5 10 45 20 20 180 45 90 180

. 1

f =

1xe[2,1}

15
Now, for all x €[0,1], 2.7 holds. Hence S is a Presi¢-Hardy-Rogers
contraction.
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Corollary 2.3. “Let (E, d) be a complete metric space and I = [a, b] be

any closed interval in R. Suppose Ey = C(I, E) denotes the set of all

continuous function on I to E,S:E(l) — E is a Generalized Presié

contraction and € & is a class of functions in E, which is topologically and

algebraically closed. Then, S has a unique PPF dependent fixed point in Q¢*. 7

Proof. For Bjr=BVjkell,2, .., 1+1} with j#k and
Bj ;i =B; Vjell, 2 .., 1 +1}, the Pre§ié-Hardy-Rogers contraction reduces
into the generalized Presi¢ contraction.

Corollary 2.4. “Let (E, d) be a complete metric space and I = [a, b] be

any closed interval in R. Suppose Eqy = C(I, E) denotes the set of all

continuous function on I to E, S : E(l) — FE is a Presi¢-Reich contraction and

Q¢* is a class of functions in E;, which is topologically and algebraically

closed. Then, S has a unique PPF dependent fixed point in Qq)*' 7

Proof. With B = 0, the generalized Presi¢ contraction reduces into the

Presié-Reich contraction.
Corollary 2.5. “Let (E, d) be a complete metric space and I = [a, b] be

any closed interval in R. Suppose Ey = C(I, E) denotes the set of all

continuous function on I'to E, S : E(l) — E is a Presié-Chatterjea contraction

and Q. is a class of functions in Egy, which is topologically and

¢
algebraically closed. Then, S has a unique PPF dependent fixed point in Q¢*. ”

Proof. With a; =0V, je{l,2,...,1;,B;=0V,je{l,2..,11+1} and

B =v, the Presi¢c-Reich contraction reduces into the Presi¢-Kannan

contraction.
Corollary 2.6. “Let (E, d) be a complete metric space and I = [a, b] be

any closed interval in R. Suppose Ey = C(I, E) denotes the set of all
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continuous function on I to E, S : Eé — E is a Presié-Kannan contraction

and Q. is a class of functions in Ey, which is topologically and

6

algebraically closed. Then, S has a unique PPF dependent fixed point in Q¢*. 7

Proof. With o; =0Vje{l, 2 ...,1}, the Presié-Reich contraction
reduces into the Presié-Kannan contraction.

Remark 2.7. If we take B; =0V e {1,2,..., 1,1 +1}, the Presié-Reich

contraction reduces into the Presié¢ contraction.
3. Conclusion

Inspired by the work of Bernfeld et al. [3] and Shukla et al. [21] we
developed some PPF dependent fixed point results for nonself mapping in
metric spaces for Presié-Hardy-Rogers contraction, which is generalization of
Presié type contraction.
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