

NEW CLASS OF CONNECTEDNESS IN SOFT TOPOLOGICAL SPACES

S. JACKSON¹ and S. CHITRA²

¹Assistant Professor
²Research Scholar (Reg.No:19212232092010)
P. G. and Research
Department of Mathematics
V. O. Chidambaram College
Thoothukudi - 628 008
Affiliated to Manonmaniam, Sundaranar University
Abishekapatti, Tirunelveli-627012
Tamil Nadu, India
E-mail: jacks.mat@voccollege.ac.in chitrasree1729@gmail.com

Abstract

The main aim of this paper is provide some comparison theorem related to S_{soft} Jc-connectedness with some other mapping. Further we have introduced S_{soft} Jc-Component and some of its comparison theorem was defined. Moreover we have studied some properties of S_{soft} Jc-connectedness in detail.

1. Introduction

The methodology of connectedness via various generalized open sets is not a new idea in topological spaces. Njastad [6] introduced the α -open sets and investigated the topological structure on the class of these sets; the α -open sets form a topology. The notion of S_{soft} set theory was introduced in

2020 Mathematics Subject Classification: 54Cxx.

Received April 26, 2022; Accepted September 1, 2022

Keywords: $S_{soft} Jc$ closed set, $S_{soft} Jc$ continuous functions, $S_{soft} Jc$ irresolute, and $S_{soft} Jc$ homeomorphism, $S_{soft} Jc$ Connected, $S_{soft} Jc$ Component.

1999 by Molodtsov [4]. Maji et al. [5] have initiated some operations on S_{soft} sets. Further, many researchers paved way to the S_{soft} set theory and its applications.

'Shabir and Naz [7] was found the notion of S_{soft} topological spaces with a fixed set of parameters'. The authors of this paper have found a S_{soft} generalized closed set namely $S_{soft} Jc$ closed set [1] and studied their properties. The main aim of this paper is provide some comparison theorem related to $S_{soft} Jc$ connectedness with some other mapping. Further we have introduced $S_{soft} Jc$ Component and some of its comparison theorem was defined. Moreover we have studied some properties of $S_{soft} Jc$ connectedness in detail.

2. Preliminaries

In this work, " \widetilde{X} refers to an initial universe", $P(\widetilde{X})$ is the power set of \widetilde{X} , E, K denote the set of parameters and (\widetilde{X}, τ_E) , $(\widetilde{Y}, \sigma_K)$ denote S_{soft} topological spaces where no S_{soft} separation axioms are assumed unless it is explicitly stated.

Definition 2.1. A S_{soft} Jc-closed [1] if $Sacl(A_E) \cong Int(A_E)$ whenever $(A_E) \cong (U_E)$ and (U_E) is $S_{soft} \hat{g}$ -open in (\tilde{X}, τ_E) , the complement of S_{soft} Jc closed set is called a S_{soft} Jc -open set.

Definition 2.2. A function $f_c : (\widetilde{X}, \tau_E) \to (\widetilde{Y}, \sigma_K)$ is called $S_{soft} \ Jc$ -continuous [3] if $f_c^{-1}(V_K)$ is $S_{soft} \ Jc$ -closed in (\widetilde{X}, τ_E) for every S_{soft} closed set (V_K) of $(\widetilde{Y}, \sigma_K)$.

Definition 2.3. A bijection $f_c : (\tilde{X}, \tau_E) \to (\tilde{Y}, \sigma_K)$ is called $S_{soft} Jc$ -homeomorphism [2] if f_c is both $S_{soft} Jc$ -continuous and $S_{soft} Jc$ -open.

Definition 2.4[8]. A S_{soft} topological space (\widetilde{X}, τ_E) is called S_{soft} -connected-space if \widetilde{X} can't be written as a disjoint S_{soft} union of any two non-empty S_{soft} open sets.

Theorem 2.5. Let $\{B\gamma, \gamma \in \Gamma\}$ is a non-empty family of S_{soft} Jc-connected-subsets of a S_{soft} topological space \widetilde{X} such that $\widetilde{\cap} B\gamma \neq \widetilde{0}$, then $\widetilde{\bigcup} B\gamma$ is S_{soft} Jc-connected.

3. Soft Jc-Connectedness and Mappings

Theorem 3.1. Let f_c be a S_{soft} Jc-irresolute function from a S_{soft} space (\tilde{X}, τ_E) onto a S_{soft} space (\tilde{Y}, σ_K) . If (\tilde{X}, τ_E) is S_{soft} Jc-connected, then (\tilde{Y}, σ_K) is S_{soft} Jc-connected.

Proof. Our assumption is that (\tilde{Y}, σ_K) is not S_{soft} Jc-connected.

Therefore there exist a S_{soft} non-empty proper subset A_K of (\tilde{Y}, σ_K) which is both S_{soft} Jc -open and S_{soft} Jc -closed.

Then the inverse image of A_K under f_c is both $S_{soft} Jc$ -open and $S_{soft} Jc$ -closed in (\tilde{X}, τ_E) , which contradicts our hypothesis.

Corollary 3.2. A S_{soft} Jc-irresolute function maps S_{soft} Jc-connected set onto S_{soft} -connected set.

Theorem 3.3. Consider a S_{soft} Jc-continuous function f_c from a S_{soft} space (\tilde{X}, τ_E) onto a S_{soft} space (\tilde{Y}, σ_K) . If (\tilde{X}, τ_E) is S_{soft} Jc-connected, then (\tilde{Y}, σ_K) is S_{soft} -connected.

Proof. Consider $(\widetilde{Y}, \sigma_K)$ is not S_{soft} -connected. Then there is a nonempty proper subset of (\widetilde{X}, τ_E) which is both S_{soft} -open and S_{soft} -closed. Then the inverse image of A_K under f_c is both S_{soft} Jc open and S_{soft} Jc -closed in (\widetilde{X}, τ_E) , a contradiction.

Though the concept of S_{soft} continuity, $S_{soft} Jc$ -continuity and $S_{soft} Jc$ -irresolute are independent of each other but they behave similarly in case of $S_{soft} Jc$ -connectedness, that is, these functions map a $S_{soft} Jc$ -connected set onto a S_{soft} connected set.

Remark 3.4. A S_{soft} -homeomorphism preserves S_{soft} Jc -connectedness.

Theorem 3.5. If (\widetilde{X}, τ_E) is S_{soft} Jc-connected space, then $(\widetilde{X}, \tau_E) \times \{a\}$ is also S_{soft} Jc-connected.

Proof. Obviously, (\widetilde{X}, τ_E) is S_{soft} homeomorphic to $(\widetilde{X}, \tau_E) \times \{a\}$.

Then by the previous remark, $(\widetilde{X}, \tau_E) \times \{a\}$ is S_{soft} Jc-connected.

Theorem 3.6. If (\tilde{X}, τ_E) and (\tilde{Y}, σ_K) are two S_{soft} Jc-connected spaces, then $(\tilde{X}, \tau_E) \times (\tilde{Y}, \sigma_K)$ is also S_{soft} Jc-connected.

Proof. For any S_{soft} point (a_e, b_e) in the product $(\tilde{X}, \tau_E) \times (\tilde{Y}, \sigma_K)$, then each of the subspace $(\tilde{X}, \tau_E) \times \{b_e\} \widetilde{\bigcup} \{x_e\} \times (\tilde{Y}, \sigma_K)$ is $S_{soft} Jc$ connected since it is the union of two $S_{soft} Jc$ -connected subspaces with a point in common. Then by Theorem 2.5, $(\tilde{X}, \tau_E) \times (\tilde{Y}, \sigma_K)$ is $S_{soft} Jc$ connected.

Theorem 3.7. Let $X_{\beta}, \beta \in A_E$, be a family of S_{soft} spaces. If ΠX_{β} is S_{soft} Jc-connected, then each X_{β} is S_{soft} -connected.

Proof. Let ΠX_{β} is S_{soft} Jc-connected. Then ΠX_{β} is S_{soft} -connected.

"Since $p_{\gamma} : \Pi X_{\beta} \to X_{\gamma}$ a projection which is a S_{soft} -continuous map. So each X_{β} is S_{soft} connected".

Theorem 3.8. Let $X_{\beta}, \beta \in A_E$, be a family of S_{soft} spaces. If each X_{β} is S_{soft} Jc -connected, then ΠX_{β} is S_{soft} -connected.

Proof. The proof follows from the fact that S_{soft} Jc-connectedness implies S_{soft} -connectedness and each X_{β} is S_{soft} -connected if and only if ΠX_{β} is Soft-connected.

Remark 3.9. If $f_c : (\widetilde{X}, \tau_E) \to (\widetilde{Y}, \sigma_K)$ is $S_{soft} Jc$ -homeomorphism, then f_c preserves $S_{soft} Jc$ -connectedness.

Theorem 3.10. If a S_{soft} map $f_c : (\widetilde{X}, \tau_E) \to (\widetilde{Y}, \sigma_K)$ is a weakly S_{soft} Jc-irresolute, surjection and \widetilde{X} is S_{soft} Jc-connected, then \widetilde{Y} is S_{soft} Jc-connected.

Proof. Consider that \widetilde{Y} is not S_{soft} Jc-connected. There exist non-empty S_{soft} Jc-open sets V_K and W_K of \widetilde{Y} so that $V_K \widetilde{\bigcup} W_K = \widetilde{Y}$ and $V_K \widetilde{\cap} W_K = \widetilde{\varphi}$.

Since f_c is weakly S_{soft} Jc-irresolute, $f_c^{-1}(V_K)$, $f_c^{-1}(W_K) \in JcO(\widetilde{X})$.

Moreover, we have $f_c^{-1}(V_K) \widetilde{\bigcup} f_c^{-1}(W_K) = \widetilde{X}$, $f_c^{-1}(V_K) \widetilde{\cap} f_c^{-1}(W_K) = \widetilde{\varphi}$ and $f_c^{-1}(V_K)$ and $f_c^{-1}(W_K)$ are non-empty. Therefore, \widetilde{X} is not $S_{soft} Jc$ -connected. This contradicts. Therefore \widetilde{Y} is $S_{soft} Jc$ -connected.

4. Soft Jc-components

Definition 4.1. Consider x_e any element of a S_{soft} space (\tilde{X}, τ_E) . The S_{soft} Jc-component containing x, $\tilde{C}Jc(x_e)$, is the union of all S_{soft} Jc-connected subsets of (\tilde{X}, τ_E) which contain x.

The component $\widetilde{C}Jc(x_e)$ is S_{soft} Jc-connected and hence S_{soft} -connected. It follows from its definition that $\widetilde{C}Jc(x_e)$ is not properly contained in any S_{soft} Jc-connected subset of (\widetilde{X}, τ_E) . Thus, $\widetilde{C}Jc(x_e)$ is a S_{soft} maximal S_{soft} Jc-connected subset of (\widetilde{X}, τ_E) .

Lemma 4.2. If A_E is S_{soft} Jc-component of (\widetilde{X}, τ_E) containing x_e , then it is contained in S_{soft} component of (\widetilde{X}, τ_E) containing x_e .

Theorem 4.3. Consider (\tilde{X}, τ_E) be a S_{soft} space. Then, each S_{soft} Jccomponent of (\tilde{X}, τ_E) is S_{soft} Jc-closed.

Proof. If $\widetilde{C}Jc(x_e)$ is a S_{soft} Jc-component containing x_e in (\widetilde{X}, τ_E) , then $\widetilde{C}Jc(x_e)$ is S_{soft} Jc-connected. So $JcCl(\widetilde{C}Jc(x_e))$ is also S_{soft} Jcconnected.

By the maximality of $\widetilde{C}Jc(x_e)$, we have $\widetilde{C}Jc(x_e) = JcCl(\widetilde{C}Jc(x_e))$.

Thus, $\widetilde{C}Jc(x_e)$ is S_{soft} Jc-closed in (\widetilde{X}, τ_E) .

Theorem 4.4. Consider (\tilde{X}, τ_E) be a S_{soft} space. Then, each S_{soft} Jc-connected subset of (\tilde{X}, τ_E) is contained in a S_{soft} Jc-component of (\tilde{X}, τ_E) .

Proof. If A_E is a non-empty S_{soft} Jc -connected subset of (\tilde{X}, τ_E) .

Thus $A_E \cong \widetilde{CJc}(a)$ for each a in A_E .

Theorem 4.5. Let (\widetilde{X}, τ_E) be a S_{soft} space. Then, the set of all S_{soft} Jc-components of (\widetilde{X}, τ_E) forms a partition of (\widetilde{X}, τ_E) .

Proof. For $x_e \in (\widetilde{X}, \tau_E)$, $\{x_e\}$ is S_{soft} Jc-connected.

Then there is a S_{soft} Jc-component $U_E \cong (\widetilde{X}, \tau_E)$ containing x_e .

So (\widetilde{X}, τ_E) will be contained in the union of S_{soft} Jc -components.

Let \widetilde{C}_1 and \widetilde{C}_2 be two distinct $S_{soft} Jc$ -components such that $\widetilde{C}_1 \cap \widetilde{C}_2 \neq \widetilde{0}$.

Then $\widetilde{C}_1 \widetilde{\bigcup} \widetilde{C}_2$ is $S_{soft} Jc$ -connected, which contradicts the fact that \widetilde{C}_1 and \widetilde{C}_2 are $S_{soft} Jc$ -components.

Therefore \widetilde{C}_1 and \widetilde{C}_2 are S_{soft} disjoint.

Thus, the S_{soft} Jc -components constitute a partition of (\tilde{X}, τ_E) .

Theorem 4.6. If (\tilde{X}, τ_E) has finite number of S_{soft} -components, then each S_{soft} -component is both S_{soft} Jc-open and S_{soft} Jc-closed.

Proof. If a S_{soft} space (\tilde{X}, τ_E) has finite number of S_{soft} components, then each S_{soft} component is both S_{soft} open and S_{soft} closed and since "A clopen subset of a soft topological space \tilde{X} is both S_{soft} Jc-open and S_{soft} Jc-closed, Hence the proof follows.

Remark 4.7. If (\tilde{X}, τ_E) has finite number of S_{soft} Jc-components, then each S_{soft} Jc-component is both S_{soft} Jc-open and S_{soft} Jc-closed.

Theorem 4.8. If $f_c : (\widetilde{X}, \tau_E) \to (\widetilde{Y}, \sigma_K)$ is S_{soft} Jc-continuous or S_{soft} Jc-irresolute and $\widetilde{C}(x_e)$ is the component containing x_e in (\widetilde{X}, τ_E) , then $f_c(\widetilde{C}Jc(x_e)) \cong \widetilde{C}(f_c(x_e))$.

Proof. Follows from Corollary 3.2 and Theorem 3.3.

Corollary 4.9. If f_c is $S_{soft} Jc$ -homeomorphism, then $f_c(\widetilde{C}Jc(x_e))$ = $\widetilde{C}(f_c(x_e))$.

Corollary 4.10. If f_c is S_{soft} homeomorphism, then $f_c(\widetilde{C}Jc(x_e))$ = $\widetilde{C}Jc(f_c(x_e))$.

Remark 4.11. Let (\widetilde{X}, τ_E) be a space with finite S_{soft} α -topology on it and f_c be S_{soft} Jc-homeomorphism. Then $f_c(\widetilde{C}(x)) = \widetilde{C}(f_c(x))$.

Theorem 4.12. A S_{soft} Jc-connected, S_{soft} Jc-open and S_{soft} Jc-closed subset A_E of a S_{soft} space (\tilde{X}, τ_E) is a S_{soft} Jc-component of (\tilde{X}, τ_E) .

Proof. If possible, suppose that A_E is not a S_{soft} Jc-component of (\widetilde{X}, τ_E) .

Then $A_E \cong B_E$ and B_E is S_{soft} Jc-component of (\widetilde{X}, τ_E) .

Obviously BE is S_{soft} Jc-closed. Therefore, $B_E \setminus A_E$ is S_{soft} Jc-closed.

Then A_E and $B_E \setminus A_E$ constitute a S_{soft} Jc-separation of BE, a contradiction.

Remark 4.13. A S_{soft} Jc-connected, S_{soft} Jc-open and S_{soft} Jc-closed subset A_E of a S_{soft} space (\tilde{X}, τ_E) with finite S_{soft} α -topology, is a S_{soft} component of (\tilde{X}, τ_E) .

Definition 4.14. A S_{soft} space (\widetilde{X}, τ_E) is known as locally S_{soft} Jcconnected at $x_e \in (\widetilde{X}, \tau_E)$ if for each S_{soft} Jc-open set U_E containing x_e ,
there is a S_{soft} Jc-connected, S_{soft} Jc-open set V_E such that $x_e \in V_E \subseteq U_E$. The S_{soft} space (\widetilde{X}, τ_E) is locally S_{soft} Jc-connected if it is
locally S_{soft} Jc-connected at each of its S_{soft} points.

Theorem 4.15. A S_{soft} space (\tilde{X}, τ_E) is locally S_{soft} Jc-connected if and only if the S_{soft} Jc-components of each S_{soft} Jc-open subset of (\tilde{X}, τ_E) are S_{soft} Jc-open.

Proof. Suppose that (\widetilde{X}, τ_E) is locally S_{soft} Jc-connected. Let U_E be a S_{soft} Jc-open subset of (\widetilde{X}, τ_E) and \widetilde{C} be a S_{soft} Jc-component of U_E .

If $x_e \in \widetilde{C}$, then there is a $S_{soft} Jc$ -connected $S_{soft} Jc$ -open set $V_E \subseteq (\widetilde{X}, \tau_E)$ such that $x_e \in V_E \subseteq U_E$.

Since \widetilde{C} is a S_{soft} Jc-component of U_E and V_E is a S_{soft} Jc-connected subset of U_E containing $x_e \in V_E \cong \widetilde{C}$. Thus, \widetilde{C} is a S_{soft} Jc-open set.

Conversely, let $U_E \cong (\widetilde{X}, \tau_E)$ be a S_{soft} Jc-open set, and $x_e \in U_E$.

By our hypothesis, the $S_{soft} Jc$ -component V_E of U_E containing x_e is $S_{soft} Jc$ -open, so (\widetilde{X}, τ_E) is locally $S_{soft} Jc$ -connected at x.

Theorem 4.16. Let $f_c : (\widetilde{X}, \tau_E) \to (\widetilde{Y}, \sigma_K)$ be a S_{soft} Jc-irresolute, S_{soft} Jc-closed surjection. If (\widetilde{X}, τ_E) is locally S_{soft} Jc-connected, then $(\widetilde{Y}, \sigma_K)$ is locally S_{soft} -Jc-connected.

Proof. Suppose that (\widetilde{X}, τ_E) is locally S_{soft} Jc-connected.

Let \widetilde{C} be a $S_{soft} Jc$ -component of $U_E \in JcO(\widetilde{Y}, \sigma_K)$, and let $x_e \in f_c^{-1}(\widetilde{C})$. Then there exists a $S_{soft} Jc$ -connected $S_{soft} Jc$ -open set V_E in (\widetilde{X}, τ_E) such that $x_e \in V_E \subseteq f_c^{-1}(U_E)$, since (\widetilde{X}, τ_E) is locally $S_{soft} Jc$ -connected and $f_c^{-1}(U_E)$ is $S_{soft} Jc$ -open in (\widetilde{X}, τ_E) . It follows that $f_c(x) \in f_c(V_E) \subseteq \widetilde{C}$ for $f(V_E)$ is $S_{soft} Jc$ -connected.

So, by Theorem 4.15, $x \in V_E \cong f_c^{-1}(\widetilde{C})$, and $f_c^{-1}(\widetilde{C}) \in JcO(\widetilde{X})$.

Since f_c is $S_{soft} Jc$ -closed surjection, $\widetilde{Y} \setminus \widetilde{C} = f_c(\widetilde{X} \setminus f_c^{-1}(\widetilde{C}))$ is $S_{soft} Jc$ -closed.

References

- S. Jackson and S. Chitra, The new class of closed and open sets in soft topological spaces 55 (2021), 78-85.
- [2] S. Jackson and S. Chitra, The new class of Homeomorphism in soft topological spaces 2 (2021), 111-121.
- [3] S. Jackson and S. Chitra, New class of continuous function in soft topological spaces, (communicated).
- [4] D. Molodtsov, Soft set theory first results, Computers and Mathematics with Applications 37 (1999), 19-31.

S. JACKSON and S. CHITRA

- [5] P. K. Maji and R. Biswas, Soft set theory, Computers and Mathematics with Applications 45(4-5) (2003), 555-562.
- [6] O. Njastad, On some classes of nearly open sets, Pacific Journal of Mathematics 15(3) (1965), 961-970.
- [7] M. Shabir and M. Naz, On soft topological spaces, Computers and Mathematics with Applications 61 (2011), 1786-1799.
- [8] Sabir Hussain, A note on soft connectedness, Journal of the Egyptian Mathematical Society 23(1) (2015), 6-11.

Advances and Applications in Mathematical Sciences, Volume 22, Issue 4, February 2023

882