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Abstract

In this paper, we prove some common fixed point theorems for sequence of mappings in

generalized cone metric space.
1. Introduction

In 2007, Huang and Zhang [9] introduced the concept of cone metric space
with generalized the concept of the metric space, replacing the set of real
numbers by an ordered Banach space and obtained some fixed point theorems
for contractive mappings in normal Cone metric space. S-metric space was

introduced by Sedghi et al. [19] in 2012 and they generalized fixed point

2020 Mathematics Subject Classification: 47H10, 54H25.
Keywords: Generalized Cone metric space, Common fixed point, Sequence of maps.

Received May 27, 2022; Accepted June 1, 2022



262  A. SAKILA BHANU, S. CHELLIAH and G. UTHAYA SANKAR

theorems in S-metric space. Recently, Ozgur and Tas [13] have studied
integral type contractive conditions in S-metric space. In 2017, Dhamodharan
and Krishnakumar [11] introduced the concept of cone S —Metric space and
prove fixed point theorems for contractive mappings. In this paper, we prove
some common fixed point theorems for sequence of mappings in generalized
cone metric space.

2. Preliminaries
Definition 2.1. Let E be a real Banach space and let P be a subset of E. P

is said to be a cone iff:

(1) Pis non-empty, closed and P = {0},
2) ax +by € P Vx, y € P and a and b are non-negative real numbers
B) x € P and —x € P implies x = 0.

Given a cone P < E, a partial ordering < on E with respect to P defined
by x <y iff y—x € P. We shall write x <y to indicate that x <y but

x = vy, while x << y will stand for y — x € int P, where int P is the interior
of P.

Let E be a real Banach space, P — E a cone and < partial ordering by P.

Then the cone P is called normal if there is a number K > 0 such that, for all
x,ye E,0<x <y implies |x| < K|y|. The least positive K number

satisfying the above condition is called the normal constant of P.

Definition 2.2. Let E be a real Banach space, then P a cone in E with
int P is nonempty, and < is partial ordering with respect to P. Let X # ¢

and let d : X x X — E mapping such that
(1) dw,v)>20Vu,veX and du, v)=0iff u=v
(2) du,v)=dv, u) Y,u,veX
3) d(u, v) < d(u, w)+ dw, v) Vu, v, w € X,

Then d is called a cone metric on X and (X, d) is called a cone metric

space.
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Definition 2.3. Let X # ¢ be any set and S : X% — [0, ) be a function

satisfying the conditions for all x, vy, z, a € X.
(1) S(x, y,z) > 0.
(2) S(x, y,2) =0 ifandonly if x = y = 2.
(3) S(x, v, 2) < S(x, x, a) + S(y, ¥, a) + S(z, z, a).

Then the function S is called an S-metric on X and the pair (X, S) is

called an S-metric space.

Example 2.4. Let X be a non empty set, d be the ordinary metric on X,
then S(u, v, w) = d(u, v) + d(v, w) is an S-metric on X.

Lemma 2.5. Let (X, S) be a S-metric space. Then S(x, x, y) = S(y, y, x).

Lemma 2.6. Let (X, S) be a S-metric space. Then, for all x, y, z € X, we

have
28(x, x, y) + S(y, ¥, 2) > S(x, x, 2)
28(x, x, y) + S(z, z, y) = S(x, x, 2)

Lemma 2.7. Let (X, S) be a S-metric space. Then, for all x, y, z € X it
follows that:

1. S(x, x, y) = S(x, v, ¥)

2. S(x, x, y) = S(x, y, x)

3. S(x, x, 2) + S(y, y, 2) = S(x, y, 2)
4. S(x, x, )+ S(z, z, ¥) = S(x, y, 2)

5. S(y, y, x) + S(x, x, z) = S(x, y, 2)

6. %[S(y, v, 2)+ S(y, v, x)] = S(x, x, 2).

Definition 2.8. Let E be a real Banach space, then P a cone in E with
int P is nonempty, and < is partial ordering with respect to P. Let X = ¢
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andlet S: X° > E satisfy the following conditions
(1) S(u, v, w) >0
(2) S(w, v, w) =0 ifand only if u = v = w.
3) S, v, w) < S, u, a)+ S, v, a) + S(w, w, a), for all u, v, w, a € X.

Then the function S is said to be a cone S-metric on X and (X, S) is called

a cone S-metric space.

Example 2.9. Let E=R? P={(x,y)eE:x, y>0'c R, X = R and
d be the ordinary metric on X. Then S:X 3 5 E defined by
S(u, v, w) = (d(u, w) + d(v, w), a(d(u, w) + d(v, w))), (o > 0) is a cone S-metric
on X.

Definition 2.10. Let (X, S) be a cone S-metric space.

(1) A sequence {u,} in X converges to u if and only if S(w,, u,,, v) = 0
as n -—>oo that is, there exists nye N such that for all
n > ng, S(u,, u,, u)<<c for each ce E,0<<c. We denote this by

lim u, = u or lim S(u,, u,, u) =0.
n—o n—0

(2) A sequence {u,} in X is called a Cauchy sequence if
S(u,,, Uy, U,,) — 0 as m, n — . That is, there exists ny € N such that

for all n, m > ng, S(u,, u,, 4,) << ¢ foreach c € E, 0 << c.

The cone S-metric space (X, S) is called complete if every Cauchy

sequence is convergent.
3. Main Results

Theorem 3.1. Let (X, S) be a cone S-Metric space which is complete and
let P a normal cone with K as normal constant. Let T, be a sequence of

mappings from X to X satisfying the condition

S(Tyx, Tix, Tjy) < aS(x, x, y) + bS(x, Tix, T;y) + c¢S(y, Tix, Tjy)
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for all i#j and V x,y e X, where a,b,c >0 and a+2b+c <1. Then

{T,,} has a unique common fixed point.
Proof. Let x; € X be an arbitrary element in X.
The sequence {x,} in X defined by x,,,; = T),,1%,, for n = 0,1, ...
Now
S(n11> Xns1s *nrz) = S(Tpia%n, Trarn, Thio¥ni1)
< aS(xp, X, %p41) + 08, L1, Thioxngn) + eSna1s Tyyadn, Thio¥nia)
= aS(xp, Xy, Xp41) + 0S(xn, Xpy1s Xpyg) + €S(Xni1, X1y Tniz)
< aS(xp, Xy, Xni1) + [S(n, %5y Xni1) + S(¥ni2, Xns2s X1l
+¢S(X415 Xni1s Xni2)
= (a +0)S(xp, %, Xps1) +6S(Xp 195 Xpi9s Xpi1) +S(Xp115 Xpi1s> Xni2)
= (a+0)S(xy, 2y, Xpi1) + (0 +)S(y41, Xny1s Xni2)
Therefore,
[1 =@+ )ISCns1s %15 Xni2) < (@ + B)S(x, X, Xpi1)

a+b
S(xn+1a Xn+1s xn+2) < m S(xnv Xn» xn+1)

S(x415 Xpa1s Xpao) < hS(x,, x,,, X,41), Where h = % <1 as
a+2b+c<1.
Similarly,
S(xp12, Xni2s Xni3) < AS(Xp41, Xni1s Xpi2)
Thus

S(xn’ Xn» xn+1) S hS(xnfla Xn-1» xn)

< hZS(xn—2’ Xn-1> xn—l)
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< h"S(xg, xg, 1)

—0asn—>ow
Now

SCeps %y %) < 2805, %5 %p41) + S(Eps Xy Xpi1)

= 25(xy, %75 Xp41) + S(Hna1s Xps1s %)

< 28(x,,, %, Xpy1) + oo+ 28095 X9, Xme1) + S(Xm_1> Xm-15 Xm)
— 0 as m, n > © we get
Therefore, S(x,, x,, x,,) —> 0 as m, n — o«
So the sequence {x,,} is Cauchy.
Since (X, S) is complete, sequence {x,} converges to x € X.
Now

S(T,,x, T,x, x) = lim S(T,,,x, Tp,x, x,.9)
n—oc

= lim S(me’ me’ Tn+2xn+1)
n—oc

= r}l_I)Iic{(lS(x, X, xn+1) + bS(x’ me’ Tn+2xn+1) + CS(xn+1’ me’ Tn+2xn+1)}

= Lim{aS(x, x, xp41) + bS(, T, Xpip) + €S(ni1s Ty Tp2)}
= aS(x, x, x) + bS(x, Tp,x, x) + cS(x, T),x, x)
< bS(x, x, T,,x) + cS(x, x, Tp,x)
= (b +¢)S(x, x, T,,x)
Therefore, || S(T,,x, Tpx, x) < (b + ¢)K| S(x, x, T,,,x) ||
Since b + ¢ < 1, then S(7),x, Tp,x, x) = 0.

Which implies that S(T},x, T,,x, x) << 0.
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Hence, T,,x = x.
Therefore, T,,x = x for all n.
Hence x is a common fixed point of {7}, }.
Uniqueness: Let y # x such that 7,y = y, V n.
Now consider
S(x, x, y) = S(Tix, Tix, T;y)
< aS(x, x, y) + bS(x, Tix, T;y) + cS(y, Tix, T;y)
< aS(x, x, y)+ bS(x, x, y) +¢S(y, y, x)
< aS(x, x, y)+ bS(x, x, y) + c¢S(x, x, y)
=(a+b+c)S(x, x, y)

Where a + b + ¢ < 1, which implies S(x, x, y) = 0. Hence x = y.

Theorem 3.2. Let (X, S) be a cone S-Metric space which is complete and
let P a normal cone with K as normal constant. Let T, be a sequence of

mappings from X to X satisfying the condition

b
S(Tix, Tix, ij) < aS(x, x, y) + 5 [S(x, Tix, ij) +S(y, T, T]y)]
+ 5 [S(x, v, T) + S, v, Tyy)]

forall i # j and ¥ x, y € X, where a, b, c >0 and a+gb+%c<1. Then

{T,,} has a unique common fixed point.
Proof. Let x3 € X be an arbitrary element in X.
The sequence {x,} in X defined by x,,.; = T},,1x,, for n =0, 1, ...
Now

S(xn+1’ Xn+1> xn+2) = S(Tn+1xn7 Tn+1xn’ Tn+2xn+1)
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b
< aS(xn’ Xns xn+1) + § [S(xn’ Tn+1xn’ Tn+2xn+1) + S(xn+l’ Tn+1xn’ Tn+2xn+l)]
c
+ § [S(xn’ Xn+1s Tn+1xn) + S(xn’ Xn+1> Tn+2xn+1 )]
b
= aS(xp, X, Xp41) + Q[S(xn’ Xn41> Xna2) + S(Xpi1, Xni1, Xnao)l

C
+ 9 [S(xn’ Xpi1> Xpi1) + S(xm Xn+1> xn+2)]

b+c b
= aS(xn’ Xns xn+1) + 9 [S(xnr Xn+1> xn+2)] + 9 S(xn+1’ Xn+1s xn+2)

C
+ 9 S(xps Xps1s Xpi1)

b
(1 - E)S(xnﬂ’ Xn+1» xn+2)

b+ec

C
< aS(xy, xp, xn+1) + 9 [S(xn’ Xn+1> xn+2)] + 9 S(xn’ Xns xn+1)

c b+c
< (a + E)S(xn’ Xn> xn+1) + T[S(xn’ Xn> xn+1) + S(xn+2’ Xn+2> xn+1)]

b b+
= (a + 9 + C)S(xn’ Xn, xn+1) + Tc [S(xn+2’ Xn+2> xn+1)]

b b+c
< (a + 2 + ch(xn’ Xn> xn+1) + 9 [S(xn+17 Xn+1> xn+2)]
Therefore,
c b
(1 -b- g)s(xn-#l’ Xn+1» xn+2) < (a + 5 + CJS(xn’ Xn xn+1)

2a + b+ 2¢c
S(Xp415 Xn+1> Xpig) < 59 _c Sy, %ps Xpi1)

S(x,415 Xpt1s Xpao) < hS(x,,, x,, x,,41), where h = 22a_+2—l;)+_20c <1 as

3 3
a+§b+§c<1
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Similarly,

S(xn+2a Xn+2> xn+3) = hS(xn+1’ Xn+1s xn+2)

Thus

S(xn’ Xns xn+1) < hS(xn—l’ Xn-1> xn)

2
< h S(xn_Z, xn—27 xn—l)

< h"S(xq, xg, x71)

—0as n > o

Now

S(n, %> %) < 2800y, Xy Xp41) + Sy Xy Xp41)
= 28(xp, %, Xpi1) + S(@n115 Tni1s %)

< 28(x,,, %55 Xpiq) + e+ 28X —2, Xpe2s Xme1) + S(_1s Xm—1> Xm)
— 0 as m, n > o we get
Therefore, S(x,, x,,, X,,) = 0 as m, n —
So the sequence {x,,} is Cauchy.
Since (X, S) is complete, sequence {x,} converges to x € X.
Now

S(T,,x, Tppx, x) = lim S(T,,x, T,,x, x,.9)
n—oc

= lim S(T,,x, T, Tyi2%p11)
n—soc

. b
= ,}Eﬂc{as(x’ X, Xpi1) + 9 [SCe, T, Tro%ni1) + S(pi1s T, Tio%pi1)]

C
+ b) [S(x’ Xpi1> Tpx) + S(x, %11, TyioXpiq )]
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= r}ig;{aS(x, X, Xpi1) + g [S(x, Thpx, xp0) + S(xp 41, T, %y42)]
+ 5 [SCe. 241, T) + S, %11, s )]
aS(x, x, x) + g [S(x, T,,x, x) + S(x, T),x, x)] + % [S(x, x, T),x) + S(x, x, x)]
= bS(x, Tp,x, x) + %S(x, x, Tpx)
< bS(x, x, T,x) + %S(x, x, Trpx)

S(T,,x, Tryx, x) < (b + %)S(x, x, Tppx)

= (21); ch(x, x, Tp,x)

Therefore, || S(T),x, T)x, x)|| < (Zb; CJKH S(ax, x, T,,x) |

2b + ¢
2

Since <1, then S(T),x, T),x, x) = 0.
Which implies that S(7),x, 7T,,x, x) << 0.
Hence, T,,x = x.
Therefore, T,,x = x for all n.
Hence x is a common fixed point of {7}, }.
Uniqueness: Let y # x such that 7,y = y, Vn.
Now consider
S(x, x, y) = S(Tix, Tix, T;y)
< aS(x, x, y) + % [S(x, Tix, Tjy) + S(y, Tix, T;y)]

+ % [SCx, v, Tix) + S(x, v, Tjy)]
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= aS(x, %, )+ 2[S(x, %, )+ S, %, 9]+ S[8(x, 3, %) + S(x, 3, )

< aS(x, x, y)+ % [S(x, x, y)+ S(y, v, x)] + % [S(x, x, y)+ S(x, x, ¥)]

< aS(x, x, 3) + 2 [8(x, % )+ S, %, ]+ Sl x, )
=(a+b+c)S(x, x, y)
Where a + b + ¢ < 1, which implies S(x, x, y) = 0. Hence x = y.

Theorem 3.3. Let (X, S) be a cone S-Metric space which is complete and
let P a normal cone with K as normal constant. Let T, be a sequence of

mappings from X to X satisfying the condition
S(Tix, Tix, Tjy) < aS(x, x, y) + bmax S(x, Tix, T;y), S(x, Tix, T;y)}
+cmax {S(x, x, Tjx), S(x, x, Tjy)} for all i#j and Vx,yeX, where

a,b,¢c>0 and a+2b+2c <1. Then {T,} has a unique common fixed point.

Proof. Let x; € X be an arbitrary element in X.

The sequence {x,} in X defined by x,,,; = T},,1x,, for n = 0,1, ...

Now
S(n115 Xni1s %nv2) = S(Th1%n, Trvi%n, TrvoXns1)
S(pi1s Tna%ns TnioXni )}
< aS(xp, %, %pi1) + dbmax {S(x,, Ty 12, Trio¥ni1),
+e max{S(xy,, X415 Ty 1%0)s Sy, X1, T 0% 41}
= aS(xy, %y, Xpi1)
+omax {S(x,, X1, Xpi2) S(ni1, Xni1s i)}
+e max {S(xy, Xni1, Xp41), S(En, Xpi1s Xnio))

= G,S(.’an, Xns xn+1) + bS(xns Xn+1> xn+2) + CS(xm Xn+1> xn+2)
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< aS(xn, Xp, Xpy1) + (0 + ) 180, X, Xp1) + S92, Xni2s Xpa1))
S(n115 Xns1> Xnr) < (@ +b +¢)S(xn, X, Xpi1) < (0 +€)S(Xn12, Xps2, Xni1)
(1= b= c)S(xps15 Xns1> Xnr2) < (a+b+c)S(xy, Xy Xp41)

a+b+c
S(xy115 Xns1s Xpa2) < 1 b_c S(x,, %y, %n41)

a+b+c<1

S(n115 X415 Xneg) < BS(n, Xp, Xnyq),  where  h =T as

a+2b+2c<1

Similarly,
S(xn+2’ Xn+2s xn+3) = hS(xn+17 Xn+1» xn+2)
Thus
S(xn’ Xns xn+1) < hS(xn—h Xn-1, xn)
2
<h S(xn—Z’ Xn—2> xn—l)
< h"S(xg, x0, x1)
—0asn—>w

Now

S(n, %ps %) < 280, Xns Xp41) + Sy Xy Xi1)
= 28(xp, %, Xpi1) + S@n11s Xni1s %)
< 28(x,, %55 Xpiq) + oo+ 28X —2, Xm—2s Xmo1) + S(m_15 Xm_1> Xm)
— 0 as m, n — o we get
Therefore, S(x,,, x,, x,,) = 0 as m, n —> x
So the sequence {x,} is Cauchy.

Since (X, S) is complete, sequence {x,} converges to x € X.
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Now

S(T,,x, T,,x, x) = lim S(T,,x, T, x, x,,.9)
n—oc

= lim S(me’ T, Tn+2xn+1)
n—»oc

< r}l_l’)l"lx{aS(x, X, xn+1) +bmax {S(x’ T, Tn+2xn+1)’ S(xn+1> Ty, Tn+2xn+1)}

+cmax {S(x’ Xn+1» me)a S(x’ Xn+1s Tn+2xn+1)}

= il_r)ric{as(xa X, xn+1) +bmax {S(x’ T, xn+2)’ S(xn+1’ Tnx, xn+2)}

+cmax {S(x, X417, Tpx), S(X, X1, Xpy2))
= aS(x, x, x) + bmax {S(x, T),x, x), S(x, T,,x, x)}
+cmax S(x, x, T),x), S(x, x, x)}
= bS(x, T),x, x) + cS(x, x, T,,x)
< bS(x, x, T,,x) + cS(x, x, Tp,x)
S(x, x, T,x) < (b + ¢)S(x, x, T),,x)
Therefore, || S(T,,x, Tpx, x) || < (b+ c)K || S(x, x, T,,,x) ||
Since b + ¢ < 1, then S(T),,x, Tp,x, x) = 0.
Which implies S(7),,x, Tp,x, x) << 0.
Hence, T,,x = x.
Therefore, T,,x = x for all n.
Hence x is a common fixed point of {7},}.
Uniqueness. Let y = x such that T,y =y, Vn.
Now consider
S(x, x, y) = S(Tix, Tix, Tjx)

< aS(x, x, y) + bmax {S(x, Tix, T;y), S(y, Tix, Tjy)}
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+cmax {S(x, y, Tix), S(x, y, Tjy)}
= aS(x, x, y) + bmax {S(x, x, v), S(y, x, )}

+cmax {S(x, x, ¥), S(x, x, y)}

IA

aS(x, x, y) + bmax {S(x, x, y), S(y, y, x)}
+cmax {S(x, x, y), S(x, x, y)}

< aS(x, x, y) + bmax {S(x, x, y), S(x, x, y)} + ¢S(x, x, ¥)

= aS(x, x, y) + bS(x, x, y) + cS(x, x, y)

=(a+b+c)S(x, x, y).

Where a + b + ¢ < 1, which implies S(x, x, y) = 0. Hence x = y.
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