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Abstract 

It is known that each n-state circular automaton having a non-permutation input letter is 

synchronizing, if n is a prime number. The aim of this paper is to investigate the 

synchronization of n-state circular semi-flower automata having a non-permutation input letter, 

where 1n  is an integer. We first prove that every semi-flower automaton is one-cluster with 

respect to each input letter. Using a group-theoretic technique we next prove, for an odd integer 

,3n  that each n-state circular semi-flower automaton containing a cycle of length at most two 

is synchronizing. We back up with few examples to conclude that not every circular semi-flower 

automaton is synchronizing. 

1. Introduction 

Let   ,,Q  be an n-state (complete and deterministic) automaton, 

where Q is the state set of size ,n  is finite alphabet with at least two 

(input) letters, and QQ  :  is the transition function. The canonical 

extension of  to 
Q  is also denoted by . An automaton  is called 

synchronizing if there is a word in ,  called a synchronizing word, that 

sends all its states to a single state. 

Several investigations have been done in the area of synchronization of 

automata. For prime n, Pin [16] proved that each n-state circular automaton 

containing a non-permutation letter is synchronizing. Perles et al. [15] 
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observed that the class of definite automata is a subclass of synchronizing 

automata. It has also been verified that each strongly connected aperiodic 

automaton is synchronizing. Problem of synchronization of automata appears 

to be nontrivial and, even in case of small alphabet size, it is hard to provide a 

characterization of synchronization of automata. 

Besides many applications of synchronizing automata [26], there is a 

famous conjecture for synchronized automata, known as the Černý 

conjecture. The Černý conjecture [5] claims that each n-state synchronizing 

automaton possesses a synchronizing word of length at most   .1
2

n  Despite 

many attempts, the Černý conjecture in the general case is still unsolved. In 

this context, Pin [16] proved that the Černý conjecture is satisfied for circular 

automata with a prime number of states. Dubuc [6] proved that all circular 

automata satisfy the Černý conjecture. Steinberg [24] proved the Černý 

conjecture for one-cluster automata with prime length cycle. For other special 

classes of synchronizing automata, the Černý conjecture has also been 

verified, or sharper bounds have been proven, see for instance [1, 3, 7, 12, 13, 

17, 25, 27]. 

In this paper, we focus our attention on the synchronization of circular 

semi-flower automata. Circular automata have been studied in various 

contexts [6, 16]. Semi-flower automata (in short, SFA) have been introduced 

to study the finitely generated submonoids of a free monoid [10, 19]. Using 

SFA, the rank and intersection problem of certain finitely generated 

submonoids of a free monoid have been investigated [11, 19, 20]. SFA have 

also been studied in several contexts over the last few years, see for instance 

[9, 18, 21, 22, 23]. 

The rest of the paper is organized as follows. In the next section, we 

introduce the notation and briefly give the required background. We 

investigate the synchronization of circular semi-flower automata in Section 3. 

We finally conclude the paper in Section 4. 

2. Preliminaries and Notation 

In this section, we introduce some necessary concepts and fix notation 

used within this paper. We refer the reader to the standard books [2, 8, 14] 

for terminology in digraph, group, and automata theory respectively. 
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We write X  to denote the size of a nonempty finite set X, and nT  to 

denote the full transformation monoid of an n-element set. We write 

argument of a trans-formation nT  on its left so that x  is the value of  

at the argument x. The composition of transformations is designated by 

concatenation, with the leftmost transformation understood to apply first, so 

that     . xx  

Let D be a (labeled) digraph with vertex set  .DV  A path in D is an 

alternating finite sequence kkk vevvev ,,,,,, 1110   of distinct vertices and 

(labeled) edges such that, for ,1 ki   the tail and the head of edge ie  are 

vertices 1iv  and ,iv  respectively. A path with at least one edge is called a 

cycle if its initial vertex and terminal vertex are the same. The length of a 

path is the number of its edges. A k-cycle is a cycle of length k. If there is a 

path from vertex u to vertex v, then the distance from u to v is the length of 

shortest path from u to v. 

Let   ,,Q  be an n-state automaton. We write   and  to denote 

the set of all words over  and the empty word, respectively. Each word 

x  has a natural interpretation as a transformation in nT  and we do not 

distinguish between the word x and its interpretation. A permutation letter is 

a letter in  whose interpretation is a permutation; otherwise, it will be called 

non-permutation. Automaton  is called circular if there exists a permutation 

letter which induces a circular permutation on its state set. The set 

    xTxM n |  forms a submonoid of the full transformation 

monoid nT  called the transition monoid of . An automaton  is called 

synchronizing if there exists a word x  such that the image of Q under 

the transformation  Mx   is a singleton set. 

Let   ,,Q  be an automaton and let a .a  By denoting states as 

vertices and transitions as (labeled directed) edges,  can be represented by 

(labeled) digraph, denoted by  .D  A path (respectively, cycle) in  is a path 

(respectively, a cycle) in  .D  An automaton  is called semi-flower if all 

the  cycles in  pass through a common state, say .0q  We will use the terms 
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a-edge and a-cycle to mean respectively an edge labeled by a, and a cycle 

whose all edges are labeled by the letter a. 

Let G be a finite group with identity e, and let .Gg   The order of g is 

the smallest positive integer t such that .eg t   The cyclic subgroup 

generated by g is denoted by .g  If gG   for some ,Gg   then G is called 

cyclic, and g the generator of G. Note that any two finite cyclic groups of the 

same order are isomorphic. In finite group G, the order of each element of G 

divides the order of G [8, Theorem 7.1]. Therefore, if G  is odd, then the 

order of each element of G is also odd. The set of all invertible elements of a 

monoid is called its group of units. 

3. Main Results 

In this section, we investigate the synchronization of circular semi-flower 

automata (in short, CSFA). In order to investigate the synchronization of 

CSFA, we first recall the notion of one-cluster automata introduced by Béal 

and Perrin in [4]. 

An Automaton   ,,Q  is one-cluster with respect to input letter 

a  if the sub graph of  D  obtained by considering only the edges 

labeled by a is connected. 

Theorem 3.1. Every semi-flower automaton is a one-cluster automaton 

with respect to each letter. 

Proof. Let   ,,Q  be a semi-flower automaton and let .b  

Suppose that  is the sub graph of  D  obtained by considering only the 

edges labeled by b. 

Since the state set is finite and each state has exactly one outgoing edge 

in , we see each connected components of  contains a unique cycle. Since  

is an SFA, all the cycles in the sub graph  must pass through .0q  That 

means 0q  belongs to all the connected components of  and subsequently the 

sub graph  is connected. Then, since b is arbitrary, we can conclude the 

proof.  
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The converse of Theorem 3.1 is not necessarily true as it is shown in the 

following example 3.2. 

Example 3.2. Consider the 6-state automaton  over alphabet 

   ba,  given in the Figure 1. For any input letter, we see that  is a one-

cluster automaton with respect to that letter. Moreover,  is not a semi-

flower automaton since  contains no state such that all its cycles pass 

through that state. 

 

Figure 1. A one-cluster automaton which is not a semi-flower automaton. 

In view of Theorem 3.1, we gee that every semi-flower automaton 

contains a unique a-cycle for each input letter .a  

Notation 3.3. Let  be a semi-flower automaton and let .b  We write 

bC  to denote the unique b-cycle in . Moreover, the set of states in the b-

cycle bC  is denoted by  .bCV  

We next recall the notion of the level of an automaton from [4]. 

Let   ,,Q  be an automaton and let .b  The sub graph of  D  

obtained by considering only the edges labeled by b is a disjoint union of 

connected components called b-clusters. Since each state has exactly one 

outgoing edge in this sub graph, each b-cluster contains a unique cycle, called 

an b-cycle, with trees attached to the cycle at their root. The level of a state q 

in a b-cluster is defined as the distance between q and the root of the tree 

containing q. If q belongs to the cycle, its level is defined as zero. The level of 

A is defined as the maximal level of its states; see Figure 2. 
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Figure 2. An automaton of the level 5. 

Notation 3.4. We denote the level of an automaton by l. 

We now have the following theorem. 

Theorem 3.5. Let  be a semi-flower automaton. If a letter b  has a 

singleton cycle in ,bC  then  is synchronizing. 

Proof. Notice that  .CVQbl   Since  ,1bCV  it follows that 

.1lQb  That means  has a synchronizing word lb  and so  is 

synchronizing. 

We now recall a useful result from [22]. 

Theorem 3.6 ([23]). Let  be a semi-flower automaton and let ., ba  

(i) If a is a permutation, then a induces a circular permutation on Q. 

(ii) If a and b are permutations, then permutations induced by a and b are 

the same. 

Unless otherwise stated, in what follows,  denotes an n-state circular 

semi-flower automaton. In view of Theorem 3.6, there is a unique circular 

permutation induced by letters. For the rest of the paper, we fix the following 

regarding . Assume that a letter a  induces the circular permutation, 

and accordingly 110 ,,, nqqq   is the cyclic ordering of Q with respect to a. 

We write G to denote the cyclic subgroup of  M  generated by the 

permutation a. 

For completeness of the paper, we state the following necessary result 

from [23]. 
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Remark 3.7 ([24]). Let  be an n-state circular semi-flower automaton. 

Then 

(i) ;nG   

(ii) G is the group of units of  .M  

By using Lagrange’s theorem [8, Theorem 7.1], one of the most 

fundamental theorems in finite group theory, we now prove the following 

theorem. 

Theorem 3.8. For an odd positive integer ,3n  let  be an n-state 

circular semi-flower automaton. If a letter b  has a cycle bC  of length two, 

then  is synchronizing. 

Proof. Note that  .0 bCVq   As   ,2bCV  let  11  nmqm  be 

another state such that  bm CVq   and so    .,0 mb qqCV   It is easy to see 

that 

   .,0 mb
l qqCVQb   

Observe that 0qbqm   and .0 mqbq   It follows that ,0
2 qbqm   and 

therefore 

.2
0

21
00

2
0 m

lll qbqbqqbq    

Also, mm qbq 2  and so 

.0
2

0
212 qbqbqqbq ll

mm
l

m    

This shows the function lb 21  maps Q into  mqq ,0  and swaps the states 

0q  and .mq  

Observe that   .0qaq mn
m   We now consider the sequence kw  of 

words, where   .: 21 lmnk
k baw   From the suffix word ,21 lb 

 it is obvious 

that 

   mkm qqwqq ,, 00   
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for each positive integer k. If there exists a k such that   km wqq ,0  is a 

singleton, then the automaton  is synchronizing and hence we are done. 

Otherwise, assume that    mkm qqwqq ,, 00   for each positive integer k. 

Recall that   lmn baw 21
1

  and   .0qaq mn
m    Then we see that  

  ,21
0

21
m

llmn
m qbqbaq    and therefore   .0

21
0 qbaq lmn   

So, by induction, we will have that 

 







.evenisif

oddisif021
0

kq

kq
baq

m

lmnk  (1) 

Since, by assumption, n is an odd positive integer and the letter a induces 

a circular permutation on the state set, by the application of Lagrange’s 

theorem (cf. [8, Theorem 7.1]), the order of  mna   is also an odd positive 

integer, say t. For the positive integer t, we get that  mnta   induces the 

identity transformation on the state set. Hence 

  ,21
0

21
0 m

llmnt qbqbaq    

which is a contradicting to the previous statement. This completes the proof  

If a circular semi-flower automaton has an even number of states, the 

following example shows that the above Theorem 3.8 is not necessarily true. 

Example 3.9. Consider a 6-state circular semi-flower automaton 1  over 

alphabet    ba,  given in the Figure 3. Since the level of each state in the 

b-cluster is at most one, we have    ., 30 qqCVQb b   Note that a induces 

a circular permutation on the state set. Moreover, the distance between 0q  

and 3q  in the a-cluster is three, we see that 

       42413030 ,,,,,, qqqqqqaqq i   

for every .6,,1 i  Since each of the two letters a and b acts as a bijection 

between sets in      ,,,,,, 424130 qqqqqq  this shows that any word in   

cannot send the set  30, qq  to a single state. Hence 1  is not synchronizing. 
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Figure 3. A non-synchronizing 6-state CSFA 1  with   .2bCV  

For an odd positive integer ,3n  let  be an n-state circular semi-flower 

automaton. If C is a 3-cycle in , then  is also not necessary synchronizing 

as shown in the following example. 

Example 3.10. Consider a 9-state circular semi-flower automaton 2  

over alphabet    ba,  given in the Figure 4. Since the level of each state 

in the b-cluster is at most one, we have    .,, 630 qqqCVQb b   Note that 

a induces a circular permutation on the state set. Moreover, 

      ,3,,, 066330  qqdqqdqqd  denotes the distance from u to v in the 

a-cluster. Therefore 

       852741630630 ,,,,,,,,,, qqqqqqqqqaqqq i   

for every .9,,1 i  Since each of the two letters a and b acts as a bijection  

from S to T, where      .,,,,,,,,, 852741630 qqqqqqqqqTS   This shows 

that any word in   cannot send the set  630 ,, qqq  to a single state. Hence 

2  is not synchronizing. 
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Figure 4. A non-synchronizing 9-state CSFA 2  with   .3bCV  

4. Conclusion 

This work investigated the synchronization of circular semi-flower 

automata (CSFA). We proved that every semi-flower automaton is one-cluster 

with respect to each input letter, and subsequently concluded that every 

semi-flower automaton containing a 1-cycle is synchronizing. For an odd 

integer ,1n  using Lagrange’s theorem, we next proved that every n-state 

CSFA containing a 2-cycle is synchronizing. We finally provided examples of 

non-synchronizing 6-state CSFA and non-synchronizing 9-cycle CSFA 

containing, respectively, 2-cycle and 3-cycle respectively. 
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