t-PEBBLING NUMBER AND 2t-PEBBLING PROPERTY FOR THE DELETED INDEPENDENT EDGES OF SOME GRAPHS

A. LOURDUSAMY ${ }^{1}$, I. DHIVVIYANANDAM ${ }^{2}$ and S. KITHER IAMMAL ${ }^{3}$

${ }^{1}$ Department of Mathematics
St. Xavier's College (Autonomous)
Palyamkottai- 627002, India
E-mail: lourdusamy15@gmail.com
${ }^{2}$ Reg. No. 20211282091003
Research Scholar, PG and Research
Department of Mathematics
St. Xavier's College (Autonomous)
Palyamkottai- 627002, Manonmaniam
Sundaranar University
Abisekapatti-627012, Tamilnadu, India
E-mail: divyanasj@gmail.com
${ }^{3}$ Reg. No. 0211282092005
Research Scholar, PG and Research
Department of Mathematics
St. Xavier's College (Autonomous)
Palyamkottai-627002, Manonmaniam
Sundaranar University
Abisekapatti-627012, Tamilnadu, India
E-mail: cathsat86@gmail.com

Abstract

A pebbling transformation is considered as the shifting of two pebbles from a vertex and the insertion of one of them onto an adjacent vertex, given a configuration of pebbles on the vertices of a connected graph G. The t-pebbling number, $f_{t}(G)$, of a simple connected graph G is the

smallest positive integer such that a sequence of pebbling moves can transfer t-pebbles to any target vertex for any distribution of $f_{t}(G)$, pebbles on G 's vertices. In this paper, we discuss the pebbling number, t-pebbling number and 2 t-pebbling property for F_{n}^{-f} graphs obtained from F_{n} by deleting f independent edges.

1. Introduction

Pebbling, introduced by Lagarias and Saks, has sparked a lot of interest. Chung [5] was the first to put it into the literature, and many others have followed suit, including Hulbert, who published an overview of graph pebbling [6]. Since Hulbert's survey first appeared in graph pebbling, a lot has happened. Graph pebbling has been an important instrument for the conveyance of consumable resources for the past 30 years. Throughout this paper, we have considered a simple connected graph G. Let us denote G 's vertex and edge sets as $V(G)$ and $E(G)$, respectively. Consider a graph with a fixed number of pebbles at each vertex. One pebble is taken away and the other is placed on an neighbouring vertex when two pebbles are removed from a vertex. This process is known as a pebbling move. The pebbling number of a vertex v in a graph G is the smallest number $f(G, v)$ that allows us to shift a pebble to v using continuous pebbling move, regardless of where these pebbles are located on G 's vertices. In [1] the pebbling number is defined as "The pebble number, $f(G)$, is the maximum $f(G, v)$ over all the vertices of a graph".
A. Lourdusamy et al. in [1, 2] state that "The t-pebbling number of v in G is the lowest positive number, $f_{t}(G, v)$, that can move t pebbles to v in all pebble configurations. The t-pebbling number $f_{t}(G)$ of a simple connected graph G is the maximum of $f_{t}(G, v)$ over all vertices v ".
A. Lourdusamy et al. in [1] describe "When the total number of pebbles on a graph G at the beginning of pebble move is $2 f_{t}(G)-q+1$, and q is the number of vertices with at least one pebble, we can move $2 t$-pebbles to the target. In this case, we say that the graph G has the $2 t$-pebbling property".

Lourdusamy et al. [7], [1], [2], [3] showed that the n-cube graphs, the complete graphs, the even cycle graphs, the complete r-partite graphs, the
star graphs, the fan graphs and the wheel graphs have the $2 t$-pebbling property. The aim of this paper is to deal with t-pebbling number and $2 t$ pebbling property for the deleted independent edges of fan graph f_{n}^{-f}.

2. Preliminaries

For the basic definition of graph theory, the reader can refer to [2].
Definition 2.1. Consider the path $P_{n-1}: x_{1}, \ldots, x_{n-1}$. Then add an extra vertex x_{0} to the path P_{n-1} and connect it to all of the path's vertices. The graph obtained by this process is called fan graph and it is denoted by F_{n}. Considering the fan graph F_{n}, we construct the f_{n}^{-f} graph by deleting f independent edges. For convenience, we always assume that $V\left(F_{n}^{-f}\right)=x_{1}, x_{2}, \ldots, x_{n-1}, x_{0}$ and the independent edges of f_{n}^{-f} are $x_{1}, x_{2}, x_{3}, x_{4}, \ldots, x_{n-2} x_{n-1}$ if n is odd and $x_{1}, x_{2}, x_{3}, x_{4}, \ldots, x_{n-3} x_{n-2}$ if n is even.

Note 2.1. If n is even, then the graph f_{n}^{-f} will have $\left\lfloor\frac{n-1}{2}\right\rfloor$ edges and one singleton vertex x_{1} on path P_{n-1} of the fan graph after deleting the f independent edges. All the edges and the singleton vertex will have a common vertex x_{0}. Hence, the edge set is

$$
E\left(F_{n}^{-f}\right)=\left\{x_{0} x_{j}, x_{2} x_{3}, \ldots, x_{n-2} x_{n-1}\right\} \text { where } j=1,2, \ldots, n-1
$$

Figure 1. n is even.

If n is odd, then the graph f_{n}^{-f} will have $\left\lfloor\frac{n-1}{3}\right\rfloor$ edges and two singleton vertices x_{1} and x_{n-1} on P_{n-1} path of the fan graph after deleting the f independent edges. The edge set of $E\left(F_{n}^{-f}\right)=\left\{x_{0} x_{j}, x_{2} x_{3}, \ldots, x_{n-3} x_{n-2}\right\}$ where $j=1,2, \ldots, n-1$.

Figure 2. n is odd.
The following theorems and definitions are used to prove the theorems on section 3.

Theorem 2.1 [7]. The t-pebbling number of a vertex v in a simple connected graph with n vertices where $n \geq 4$ and a vertex v with the property of $d(v)=n-1$ is $f_{t}(G, v)=2 t+n-2$.

Theorem 2.2 [7]. The t-pebbling number of a path P_{n} is $f_{t}\left(P_{n}\right)=t^{2 n-1}$.
Notation 2.1. Let us denote $p(x)$ as the number of pebbles placed on the vertex x. This paper sometimes uses the destination vertex interchangeably with the target vertex. Throughout the paper, we use w to denote the target vertex.

Remark 2.1. Consider graph G, which has a pebble configuration on its vertices. From G, we select a destination vertex w. We can easily shift a pebble to w if $p(w)=1$ or $p(s)=2$, where $w s \in E(G)$. When w is the destination vertex, we consider that $p(s) \leq 1$ and $p(w)=0$ for all $w s \in E(G)$ because if the destination vertex has a pebble then there is nothing to discuss.

3. The Pebbling number for f_{n}^{-f} graphs

Theorem 3.1. Let f_{n}^{-f} be a simple connected graph. Then $f\left(F_{n}^{-f}\right)$ is $n+1$ where $n \geq 4$.

Proof. Let the vertices of f_{n}^{-f} be $\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}\right\}$ and the edge set be $\left\{x_{0} x_{j}, x_{2} x_{3}, \ldots, x_{n-2}, x_{n-1}\right\}$ where $j=1,2, \ldots, n-1$ for n is even and the edge set be $\left\{x_{0} x_{j}, x_{2} x_{3}, \ldots, x_{n-3}, x_{n-2}\right\}$ for n is odd. When n is even, the graph f_{n}^{-f} has $\left\lfloor\frac{n-1}{2}\right\rfloor$ deleted edges, $\left\lfloor\frac{n-1}{2}\right\rfloor$ pairs of vertices, a singleton vertex and all these vertices have x_{0} as a common neighbour. When n is odd, we have $\left\lfloor\frac{n-1}{3}\right\rfloor$ pairs of vertices, two singleton vertices, and all these vertices have x_{0} as their common neighbour. To prove the necessary part, suppose we are given with n pebbles and fix x_{1} as the target. By placing $p\left(x_{1}\right)=p\left(x_{0}\right)=0, p\left(x_{n-1}\right)=3$ and one pebble each on the remaining vertices, we cannot reach w. Hence, the pebbling number of $f\left(F_{n}^{-f}\right) \geq n+1$.

Now we prove $f\left(F_{n}^{-f}\right) \geq n+1$. Let C be any configuration of $n+1$ pebbles.

Case 1. Let w be x_{0}. Let $p\left(x_{0}\right)=0$. If $p\left(x_{j}\right) \geq 2$ where $j=1,2, \ldots, n-1$, then we can shift a pebble to w.

Case 2. Let $w=x_{l}$, where $l=1,2, \ldots, n-1$. Let $p\left(x_{l}\right)=0$.
Subcase 2.1. If $p\left(x_{0}\right) \geq 2$ or $p\left(x_{j}\right) \geq 4$ for $j=1,2, \ldots, n-1$, then we can transfer a pebble to w using one of these transmitting subgraphs $\left\{x_{0}, x_{l}\right\}$ or $\left\{x_{j}, x_{0}, x_{l}\right\}$.

Subcase 2.2. If $p\left(x_{0}\right) \geq 1$ or $p\left(x_{j}\right) \leq 3$ for all $j=1,2, \ldots, n-1$, there exists some $x_{k}(k \neq j)$ with $p\left(x_{k}\right) \geq 3$. So $\left\{x_{j}, x_{0}, x_{l}\right\}$ gives a transmitting subgraph.

Subcase 2.3. Let $p\left(x_{0}\right)=0$ and $p\left(x_{j}\right) \geq 3$ where $j=\{1,2, \ldots, n-1\}$,

6656 A. LOURDUSAMY, I. DHIVVIYANANDAM and S. KITHER IAMMAL then there exists at least one vertex x_{k} with $p\left(x_{k}\right) \geq 2$. Further, if there exists at least 2 vertices x_{k} and x_{m} with $2 \leq p\left(x_{k}\right) \leq 3$, and $2 \leq p\left(x_{m}\right) \leq 3$, then a pebble can be shifted from x_{k} to x_{0}. So $\left\{x_{m}, x_{0}, x_{l}\right\}$ is a transmitting subgraph.

Case 3. Suppose there exists 2 pebbles adjacent to the target vertex of x_{1} or x_{0} we can reach the target. Hence, $f\left(F_{n}^{-f}\right)$ is $n+1$, for both even and odd number of vertices of F_{n}^{-f}.

4. The t -Pebbling number for F_{n}^{-f} graphs

Theorem 4.1. The t-pebbling number of F_{n}^{-f} is $f_{t}\left(F_{n}^{-f}\right)=4 t+n-3$.
Proof. Let us use the induction method on t to prove the theorem. The t pebbling number for the vertex x_{0} be $f_{t}\left(F_{n}^{-f}, x_{0}\right)=2 t+n-2$. Since, $d\left(x_{0}\right)=n-1$, thus, by Theorem 2.1 the result holds. Now let us find the t pebbling number for x_{1}. Let $p\left(x_{1}\right)=0, p\left(x_{n-1}\right)=4 t-1$ and $p\left(x_{i}\right)=1$ for each $i=2,3, \ldots, n-2$. Then we cannot reach w. Thus, $f_{t}\left(F_{n}^{-f}\right) \geq 4 t+n-3$.

Now let us prove $f_{t}\left(F_{n}^{-f}\right) \leq 4 t+n-3$. For $t=1$, the result is true by Theorem 3.1. Let us assume that the result is true $1<t^{\prime}<t$.

Let $w=x_{k}$, where $k \in\{1,2, \ldots, n-1\}$, and $p(w)=0$.
Case 1. If $p\left(x_{0}\right) \geq 2$, we can transfer one pebble to the destination w. Then $4 t+n-3-p\left(x_{0}\right)$ pebbles on the vertices of F_{n}^{-f}. After moving one pebble to the target using $4 t+n-3$ pebbles, there will be at least $(4 t+n-3)-(4+n-3)=4(t-1)+n-3=f_{t-1}\left(F_{n}^{-f}\right)$ pebbles left on the vertices of F_{n}^{-f}. Thus, $t-1$ additional pebbles can be shifted to w using induction on t.

Case 2. Let $p\left(x_{0}\right) \leq 1$. If there exists some $x_{j}(j \neq k)$ and $p\left(x_{j}\right) \geq 2$ then we can transfer a pebble to x_{0} using two pebbles of x_{j}. Which is sufficient to shift a pebble to w. Then using $4 t+n-3-p\left(x_{0}\right)-p\left(x_{j}\right)$ pebbles $t-1$ more pebbles can be shifted to w.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 12, October 2022

Case 3. If $\quad p\left(x_{k}\right)=l \quad$ where $\quad 1 \leq l \leq t-l$, then $\quad p\left(F_{n}^{-f}-x_{k}\right)$ $=(4 t+n-3)-l \geq 4(t-l)+n-3$. By placing $4(t-l)+n-3$ pebbles on remaining vertices, we can shift $t-l$ more pebbles to w. Hence, we have shifted $t-l+l=t$ pebbles to w by induction on t.

Thus, $f_{t}\left(F_{n}^{-f}\right) \geq 4 t+n-3$.
Theorem 4.2. The graph F_{n}^{-f} satisfies the $2 t$ pebbling property.
Proof. The number of pebbles is denoted by p, while q represents the number of vertices having at least one pebble. Then we have the $2 t$ pebbling property as $p \geq 2 f_{t}\left(F_{n}^{-f}\right)-q+1$. Note that we have $2 f_{t}\left(F_{n}^{-f}\right)-q+1$ $=2(4 t+n-3)-q+1=8 t+2 n-5-q$ pebbles on the vertices of F_{n}^{-f}. Let $Q=8 t+2 n-5$. To move $2 t$ pebble to the target w, we use induction on t. For $t=1$ by Theorem 3.2 holds. We assume $t>1$ and $p(w)=0$.

Case 1. Let w be x_{0}. There are $n-1$ vertices which have at least one pebble on it and denote as q. Let the initial pebble be at least $Q \geq Q-(n-1)=Q-n+1$ pebbles.

Subcase 1.1. Let $n \leq 8 t-5$.
Let us consider the configuration with at least $2 n+1$ pebbles. If there exists $\left(p\left(x_{i}\right), p\left(x_{l}\right)\right) \geq 3$ where $i, l \in\{1,2, \ldots, n-1\}$ and at least one vertex $p\left(x_{j}\right) \geq 5$ where $j \in\{1,2, \ldots, n-1\}$, then we can shift a pebble to w. If this configuration does not exist then there exists one j such that $p\left(x_{k}\right) \geq 2$ for every $k \neq j$ and $p\left(x_{j}\right)=4$. This particular distribution will have $(q-2) 2$ $+p\left(x_{j}\right) \leq(n-1-2) 2+p\left(x_{j}\right)=2 n-6+p\left(x_{j}\right)=2(n-3)+p\left(x_{j}\right)<2 n+1$
pebbles which a contradiction to the initial configuration of pebbles. As a result, we can shift two pebbles to w using $p\left(x_{j}\right)$. Placing the remaining pebbles on $n-2$ vertices, we will have $Q-p\left(x_{j}\right)-(n-2)=Q-n+2$ $-p\left(x_{j}\right)>2 f_{t-1}\left(F_{n}^{-f}\right)-q+1=\Rightarrow Q-2-q>2 f_{t-1}\left(F_{n}^{-f}\right)-q+1 \quad$ pebbles. Using induction on $t, 2(t-1)$ more pebbles can be transferred to x_{0}.

Subcase 1.2. $n>8 t-5$.

6658 A. LOURDUSAMY, I. DHIVVIYANANDAM and S. KITHER IAMMAL
Assume that there exist $p\left(x_{j}\right) \geq 5$ where $j \in\{1,2, \ldots, n-1\}$ or for some k, l with $\left(p\left(x_{k}\right), p\left(x_{l}\right)\right) \geq 3$ where $k, l \in\{1,2,, n-1\}$ then we can shift $2 t$ pebbles to w as in subcase 1.1. If we cannot shift 2 t pebbles on w, then we assume that there exists $p\left(x_{i}\right)=4$ where $i \in\{1,2, \ldots, n-1\}$ Therefore, $p\left(x_{m}\right) \leq 2$ for all $m \neq i$.

For this configuration, we will have exactly two pebbles each on $2 t-1$ vertices. Let $q \leq n-1$. If the configuration has maximum $2 t-2$ vertices having exactly two pebbles each, then there will be at most $(2 t-2) 2+p\left(x_{i}\right)$ $+(q-(2 t-1))=2 t+p\left(x_{i}\right)+(n-1)-3=2 t+n+p\left(x_{i}\right)-4$ pebbles. This is a contradiction. As a result, we will have one vertex with four pebbles and at least $2 t-1$ vertices having exactly two pebbles each. Thus, $2 t$ pebbles can be shifted to x_{0}.

Case 2. Let $w=x_{l}$, where $l \in\{1,2, \ldots, n-1\}$. Without loss of generality, assume that $\left(p\left(x_{0}\right), p\left(x_{1}\right)\right)=0$. As $q=n-2$, we begin with $Q \geq Q-(n-2)=8 t+n-3$ pebbles.

Subcase 2.1. Let $n \leq 8 t-6$. Let us initiate the pebble distribution with minimum $2 n+3$ pebbles. If there is one $p\left(x_{k}\right) \geq 9$, where $k \in\{1,2, \ldots, n-1\}$ or there exist $\left(p\left(x_{j}\right), p\left(x_{i}\right)\right) \geq 5$ where $j \neq k, i \neq k$ or $\left(p\left(x_{i}\right), p\left(x_{j}\right), p\left(x_{l}\right), p\left(x_{m}\right)\right) \geq 3$ where $i, j, l, m \in\{1,2, \ldots, n-1\}$ such that $i \neq k, j \neq k, l \neq k, m \neq k$, then we can reach w. Otherwise, we may assume that there is one vertex with 8 pebbles. As a result, the remaining vertices will only have two pebbles each. Hence, there will be at most $(q-1) 2+=8=2 q-2+8=2 q+6$ pebbles. Since, $q=n-2$, there will be $2(n-2)+6=2 n+2$ pebbles. This is a contradiction. So, by moving 4 pebbles to x_{0} we could shift 2 pebbles to w. In this distribution we use only eight pebbles and the remaining pebbles are not used. After this move, we will have $Q-q-8>2 f_{t-1}\left(F_{n}^{-f}\right)-q+1$ pebbles which are not been transferred.

By induction, using the remaining pebbles we could shift $2(t-1)$ more pebbles on w.

Subcase 2.2. $n>8 t-6$.
If there is one $p\left(x_{k}\right) \geq 9$, where $k \in\{1,2, \ldots, n-1\}$, then we are done. If there are j and i with $p\left(x_{j}\right) \geq 5$ and $p\left(x_{i}\right) \geq 5$, then we reach the destination. If there are $\left(p\left(x_{i}\right), p\left(x_{j}\right)\right) \geq 3$, and $p\left(x_{l}\right) \geq 5$, where $i, j, l \in\{1,2, \ldots, n-1\}$, then we can reach the destination. If there are $\left(p\left(x_{i}\right), p\left(x_{j}\right), p\left(x_{l}\right)\right) \geq 3$ where $i, j, l, m \in\{1,2, \ldots, n-1\}$, and $p\left(x_{m}\right) \geq 3$, then we reach the destination. Suppose not, let there be a vertex with 8 pebbles and $q \leq n-2$. Then, we can put at most two pebbles each on $4 t-1$ vertices which are the remaining vertices after the distribution. Suppose, there exist exactly two pebbles each on at most $4 t-2$ vertices a then there will be at most $\leq 4 t+n+3$ pebbles which is a contradiction to the initial configuration. Therefore, we have at least 2 pebbles each on $4 t-1$ vertices and one vertex with 8 pebbles. Thus, we can shift $2 t$ pebbles to x_{l}.

References

[1] A. Lourdusamy, S. S. Jeyaseelan and A. P. Tharani, t-pebbling the product of fan graphs and the product of wheel graphs, International Mathematical Forum 32 (2009), 15731585.
[2] A. Lourdusamy and A. P. Tharani, On t-pebbling graphs, Utilitas Math. 87 (2012), 331342.
[3] A. Lourdusamy and A. P. Tharani, The t-pebbling conjecture on products of complete r partite graphs, Ars Combinatoria 102 (2011), 201-212.
[4] L. Pachter, H. S. Snevily and B. Voxman, On Pebbling Graphs, Congr. Number. 107 (1995), 65-80.
[5] F. R. K. Chung, Pebbling in hypercubes, SIAMJ, Disc. Math. 2(4) (1989), 467-472.
[6] G. Hurlbert, A survey of graph pebbling, Congressus Numerantium 139 (1999), 41-64.
[7] A. Lourdusamy, t-pebbling the product of graphs, Acta Ciencia Indica XXXII (M.No.1) (2006), 171-176.

