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Abstract 

We are concerned with the development of the more general real case of the classical 

theorem of Gelfant on representation of a complex commutative unital Banach Algebra. We 

obtain two representative theorems for unital real Banach Algebras.  

Introduction 

A Banach algebra, is an associative algebra A over the real or complex 

numbers that at the time also a Banach space, i.e. a normed space and 

complete in the metric induced by the norm. The norm is required to satisfy  

.:, yxxyAy   

This ensures that the multiplication operation is continuous.  

A Banach algebra is called unital if it has an identity element for the 

multiplication whose norm is 1. In particular we shall give a proof of the 

Gelfand-Mazur theorem.  

Theorem. (The Gelfand-Mazur Theorem) If a unital Banach algebra 

X is a division algebra, then X is isometrically isomorphic to . In other 

words, the only normed field is  within an isometric isomorphism.  
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Proof. Let   .0 Xxx   Hence,  x  for some .   

So,  ex   is not invertible. But is a division algebra.  

Therefore, .0 ex  In other words, .ex   

We assume that this representation is unique.  

If ,ex   then   ,0 e    

The zero element of X, so ,0e  a contradiction.  

This proves our assumption.  

Define.  X  by   ,xf  where .ex    

Let ., eyex   Then   ,eyx   so that  

     .yfxfyxf   (1)  

Also, for every complex scalar ,  

   eex   

and so  

   .xfaf   (2)  

Thus form (1) and (2) we infer that f is linear.  

Furthermore  ey   and so  

     .yfxfxyf   

Therefore, f is multiplicative. Since ,1e  we obtain  

ex   

             e  

         

             .  

This shows that f is an isometry.  



BANACH ALGEBRAS (THE GELFAND-MAZUR THEOREM) 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 4, February 2021 

1807 

Finally, given ,   choose ex   in X.  

Hence f is surjective. Thus is an isometric isomorphism of X onto .  

Hence proved.  

Theorem. If X is a Banach algebra and is a proper closed ideal in X, then 

M

X
 is a Banach algebra. Also, if e is the identity in X, then Me   is the 

identity in .
M

X
  

Proof. We have already seen that 
M

X
 is a Banach space.  

Define multiplication in .
M

X
  

    ., XyxMxyMyMx   

Then X is an algebra. Also commutativity of X implies commutativity of 

.
M

X
 

Furthermore  

    .211221 Mxymmymxmxymymx   

Hence      MyxMyMx    

                                     Mmmmymx  2121 ,,  

         21 mymx   

Therefore  

     21inf mymxMyMx   

 Where  Mmm 21,  

.MyMx   

Now  
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  .1
22

 MeMemeMe  

Also .1 eMe   

Hence .1 Me   

Hence proved.  

Theorem. A Banach algebra A without a unit can be embedded into A 

unital Banach algebra 1A  as an ideal of codimension one .  

Proof. Let  AA1  as a linear space, and define a Multiplication in 

1A  by 

     .,,,  yxxyyx  

It is easily checked that this is associative and distributive.  

Moreover, the element (0, 1) is a unit for this multiplication:  

           .,1,0,1,001,0,  xxxxyx  

Put    xx,   

Then 1A  is a Banach space when equipped with this norm. Furthermore,  

      ,,, yxxyyx  

 yxxy   

 xyx   

   yx   

    .,,  yx  

Hence 1A  is a Banach algebra with unity. We may identify A with the 

ideal   Axx :0,  in 1A  via the isometric isomorphism  .0,xx    

Hence proved.  

Theorem. Every maximal ideal in a unital Banach is closed.  

Proof. Let J be a maximal ideal in the unital Banach algebra.  
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Then J cannot contain any invertible elements, otherwise we would have 

.AJ    

Hence  .\ AJ    

Now,  A  is open and so  AA \  is closed,  

Hence  AAJJ \   

In particular, .AJ    

But J  is an ideal containing J, and so JJ   since J is a maximal ideal. 

That is, J is closed.  

Hence proved. 

Conclusion 

In this project work, we discussed about the theorems that are based on 

Banach algebra. In particular, we seen special theorem in the Gelfand-Mazur 

theorem.   
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