

PRODUCT BINARY L-CORDIAL LABELING

S. NILA STEFFI* and J. SUBHASHINI²

*Research Scholar, ²Assistant Professor Department of Mathematics St. John's College, Palayamkottai Tirunelveli, Tamil Nadu, India Affiliated to Manonmaniam Sundaranar University Abhishekapatti Tirunelveli-627012, Tamil Nadu, India E-mail: shinijps@gmail.com

Abstract

Here, we introduced the Binary \mathcal{L} -Cordial labeling and Product Binary \mathcal{L} -Cordial labeling. We have shown that Path, $P_n \circ K_1$, Dumbell graph, Flag graph, Crown graph and some other simple graphs admit Product Binary \mathcal{L} -Cordial labeling.

1. Introduction

 \mathcal{L} -Cordial labeling was first presented in [1]. In [2, 3] they discussed about the \mathcal{L} -Cordial labeling of standard graphs. Here, we utilize the graph \mathcal{G} on p vertices and q edges which are undirected, finite and simple. A detailed review of graph labeling is given in [5]. The basic definitions needed for this assessment is given in [2]. In this work we introduced the definition of Binary \mathcal{L} -Cordial labeling and Product Binary \mathcal{L} -Cordial labeling. We have studied that some simple graphs admit Product Binary \mathcal{L} -Cordial labeling.

²⁰²⁰ Mathematics Subject Classification: 05Cxx.

Keywords: Binary \mathcal{L} -Cordial, Product Binary \mathcal{L} -Cordial, $P_n \circ K_1$, Dumbell graph, Flag graph, Crown graph.

^{*}Corresponding author; E-mail: nilasteffis@gmail.com

Received November 2, 2021; Accepted November 16, 2021

2. Preliminaries

Definition 2.1. "Let P_n be a path graph with *n* vertices. The comb graph is defined as $P_n \circ K_1$. It has 2n vertices and 2n - 1 edges".

Definition 2.2. "The graph obtained by joining disjoint cycles $u_1, u_2, ..., u_n, u_1$ and $v_1, v_2, ..., v_n, v_1$ with an edge u_1, v_1 is called *dumbbell* graph Db_n ".

3. We Characterize another Sort of Labeling

Definition 3.1. A graph \mathcal{G} with vertex set \mathcal{V} and edge set \mathcal{E} , together with the binary operation is said to have *Binary* \mathcal{L} -*Cordial labeling* if it has a bijection $h : E(G) \rightarrow \{1, 2, ..., |E|\}$ and each vertex u is given the label 1 if $h(uv_i) * h(uv_j)$ is odd and 0 otherwise for any binary operation *, where uv_i, uv_j have the smallest and the greatest h values respectively. Now $V_h(1)$ represents the total number of u's labeled as 1 and $V_h(0)$ represents the total number of u's labeled as 0 then h is called binary \mathcal{L} -Cordial labeling of a graph if $|V_h(0) - V_h(1)| \leq 1$ and it is denoted by B_{LCL} . A graph is called binary \mathcal{L} -Cordial graph on the off chance that concedes the above labeling.

Definition 3.2. If a graph \mathcal{G} has a bijection $h : E(G) \to \{1, 2, ..., |E|\}$ and for each vertex u, assign the label as 1 if $h(uv_i)h(uv_j)$ is odd and 0 otherwise where uv_i, uv_j have the smallest and the greatest h values. This graph is said to be Product B_{LCL} if it also satisfies the condition that $|V_h(0) - V_h(1)| \leq 1$ where $V_h(0)$ denote the number of vertices labeled with 0 and $V_h(1)$, the number of vertices labeled with 1. The graph is called Product Binary \mathcal{L} -Cordial graph on the off chance that admits product B_{LCL} .

4. Main Results

Theorem 4.1. Any Path P_n admits product B_{LCL} for $n \ge 3$.

Proof. Let us consider a Path of length *n*.

Let $\{v_i\}_{i=1}^n$ denote the vertices of the path P_n and $\{e_i\}_{i=1}^{n-1}$ denote the edges of the path P_n . When n = 3,

The result is obvious.

When n > 3,

For even *n*,

$$h(e_i) = 2i - 1; i = 1, 2, 3, \dots, \left\lceil \frac{n}{2} \right\rceil$$
$$h(e_{\lceil \frac{n}{2} \rceil + i}) = 2i; i = 1, 2, 3, \dots, \left\lfloor \frac{n - 1}{2} \right\rfloor$$

We get, $|V_h(0)| = |V_h(1)| = \frac{n}{2}$.

For odd n,

$$h(e_i) = 2i - 1; i = 1, 2, \dots, \left\lfloor \frac{n}{2} \right\rfloor$$
$$h(e_{\lfloor \frac{n}{2} \rfloor + i}) = 2i; i = 1, 2, \dots, \left\lfloor \frac{n}{2} \right\rfloor$$

We get, $|V_h(0)| = |V_h(1)| + 1$.

Hence the path P_n admits Product B_{LCL} .

Theorem 4.2. Odd Cycles admit Product B_{LCL}.

Proof. Let $V = \{v_i\}_{i=1}^n$ denote the vertices and $E = \{e_i\}_{i=1}^{n-1}$ denote the edges of the cycle.

Define $h: E(G) \rightarrow \{1, 2, \dots, |E|\}$ as follows.

$$h(e_i) = 2i - 1; i = 1, 2, \dots, \left\lceil \frac{n}{2} \right\rceil$$

$$h(e_{\left\lceil \frac{n}{2} \right\rceil + i}) = 2i; i = 1, 2, ..., \frac{n-1}{2}$$

We get, $|V_h(0)| = \left\lceil \frac{n}{2} \right\rceil$

$$|V_h(1)| = \left\lfloor \frac{n}{2} \right\rfloor$$

Hence, $|V_h(0) - V_h(1)| \le 1$.

Theorem 4.3. $K_{1,n}$ satisfies Product B_{LCL} for even values of n.

Proof. Label the pendant edges as 1, 2, ..., n.

We get,

$$|V_h(0)| = \frac{n}{2} + 1$$

 $|V_h(1)| = \frac{n}{2}$

Hence the theorem.

Theorem 4.4. $P_n \circ K_1$ admits Product B_{LCL} .

Proof. Let $\{v_i\}_{i=1}^n$ and $\{e_i\}_{i=1}^n$ denote the vertices and edges of the path P_n respectively. Let $\{u_i\}_{i=1}^n$ and $\{f_i\}_{i=1}^n$ denote the pendant vertices and pendant edges respectively.

Let us consider, $e_i = v_i v_{i+1}; i = 1, 2, ..., n-1$

$$f_i = v_i u_i; i = 1, 2, ..., n$$

Define $h: E(G) \rightarrow \{1, 2, \dots, |E|\}$ as follows.

 $h(e_i) = 2i; i = 1, 2, ..., n - 1$

$$h(f_i) = 2i - 1; i = 1, 2, \dots, n$$

We get, $|V_h(0)| = |V_h(1)| = n$.

Hence, $P_n \circ K_1$ admits Product B_{LCL} .

Example 1.

Figure 4.1. $P_8 \circ K_1$.

Theorem 4.5. Dumbell graph Db_n admits Product B_{LCL} .

Proof. Let $C_1 = (v_1, v_2, ..., v_n, v_1)$ denote cycle with edges $e_i = (v_i v_{i+1})$; i = 1, 2, ..., n-1 and $e_n = v_n v_1$ and $C_2 = (w_1, w_2, ..., w_n, w_1)$ be the cycle with edges $g_i = (w_i w_{i+1})$; i = 1, 2, ..., n-1 and $g_n = w_n w_1$.

And let $k = v_1 w_1$. Now label the edges as below,

$$\begin{split} h(e_i) &= 2i-1; i=1,\,2,\,\dots,\,n\\ h(g_i) &= 2i; i=1,\,2,\,\dots,\,n\\ h(k) &= 2n+1\\ \end{split}$$
 We get, $\mid V_h(0) \mid = \mid V_h(1) \mid$

Hence Db_n admits Product B_{LCL} .

Example 2.

Figure 4.2. *Db*₇.

Theorem 4.6. Bull graph Bull (C_n) on odd vertices admits Product B_{LCL} .

Proof. Let $\{v_i \mid i = 1, 2, ..., n\}$ be the vertex set of the cycle C_n and $\{w_1, w_2\}$ be the set of pendant vertices. Let $\{e_i \mid i = 1, 2, ..., n\}$ be the edge set of the cycle C_n and $g_1 = (v_n, w_1)$ and $g_2 = (v_1, w_2)$ be the set of pendant edges.

Label the edges of the cycle as follows.

$$h(e_i) = 2i - 1; i = 1, 2, \dots, \left\lceil \frac{n}{2} \right\rceil$$
$$h(e_{\lceil \frac{n}{2} \rceil + i}) = 2i; i = 1, 2, \dots, \left\lfloor \frac{n}{2} \right\rfloor$$

Now, label the pendant edges as $h(g_1) = n + 1$ and $h(g_2) = n + 2$.

We get, $|V_h(1)| = |V_h(0)| + 1$.

Hence, Bull graph Bull (C_n) on odd vertices admits Product B_{LCL} . Example 3.

Figure 4.3. $Bull(C_9)$.

Theorem 4.7. Flag graph $Fl(C_n)$ admits Product B_{LCL} .

Proof. Let $\{v_i\}_{i=1}^n$ denote the vertex set and $\{e_i\}_{i=1}^n$ denote the edge set of

the cycle C_n . Let w and e denote the pendant vertex and pendant edge respectively.

Case 1. When 'n' is odd.

$$h(v_{i}v_{i+1}) = 2i; i = 1, 2, \dots, \left\lceil \frac{n}{2} \right\rceil$$
$$h(v_{\lceil \frac{n}{2} \rceil + i} v_{\lceil \frac{n}{2} \rceil + i+1}) = 2i + 1; i = 1, 2, \dots, \left\lfloor \frac{n}{2} \right\rfloor \text{ where } v_{n+1} = v_{1}$$

Let us label the pendant edge as h(e) = 1

Hence, $|V_h(0)| = |V_h(1)|$.

Case 2. When 'n' is even.

$$h(v_i v_{i+1}) = 2i - 1; i = 1, 2, ..., \frac{n}{2} + 1$$

$$h(v_{\frac{n}{2}+1+i}v_{\frac{n}{2}+i+2}) = 2i; i = 1, 2, ..., \frac{n}{2} - 1$$

Label the pendant edges as h(e) = n.

We get, $|V_h(0)| = |V_h(1)| + 1$

Hence the theorem.

Theorem 4.8. Crown graph admits Product B_{LCL} .

Proof. Let the cycle C_n be defined as $(v_1, c_1, v_2, c_2, \dots, v_{n-1}, c_n, v_n)$.

Let $\{w_i\}_{i=1}^n$ denote the pendant vertices and $\{e_i/i = 1, 2, ..., n\}$ denote the pendant edges.

Label the pendant edges as follows.

$$h(e_i) = 2i - 1; i = 1, 2, ..., n$$

Now, label the edges of the cycle as below.

 $h(c_i) = 2i; i = 1, 2, 3, \dots, n$

Hence, we get $|V_h(0)| = |V_h(1)|$

Hence proved.

5. Conclusion

In the above assessment we have defined B_{LCL} and have shown some graphs admit Product B_{LCL} with needed examples.

References

- Mukund V. Bapat, Some vertex prime graphs and a new type of graph labeling, International Journal of Mathematics Trends and Technology (IJMTT) 47(1) (2017), 49-55.
- [2] Mukund V. Bapat, New results on L-cordial labeling of graphs, International Journal of Statistics and Applied Mathematics 3(2) (2018), 641-644.
- [3] Mukund V. Bapat, A note on L-cordial labeling of graphs, International Journal of Mathematics and It's Applications 5(4-D) (2017), 457-460.
- [4] J. Arthy, Cycle and path related graphs on L-cordial labeling 4(6) (2019).
- [5] J. A. Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatories (2018)#DS6.
- [6] S. Nila Steffi and J. Subhashini, Sum Binary L-Cordial labeling, AIP Conference Proceedings, (Communicated).

Advances and Applications in Mathematical Sciences, Volume 21, Issue 3, January 2022

1462