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Abstract 

Here, we introduced the Binary -Cordial labeling and Product Binary -Cordial labeling. 

We have shown that Path, ,1KPn   Dumbell graph, Flag graph, Crown graph and some other 

simple graphs admit Product Binary -Cordial labeling. 

1. Introduction 

-Cordial labeling was first presented in [1]. In [2, 3] they discussed 

about the -Cordial labeling of standard graphs. Here, we utilize the graph  

on p vertices and q edges which are undirected, finite and simple. A detailed 

review of graph labeling is given in [5]. The basic definitions needed for this 

assessment is given in [2]. In this work we introduced the definition of Binary 

-Cordial labeling and Product Binary -Cordial labeling. We have studied 

that some simple graphs admit Product Binary -Cordial labeling. 
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2. Preliminaries 

Definition 2.1. “Let nP  be a path graph with n vertices. The comb graph 

is defined as .1KPn   It has n2  vertices and 12 n  edges”. 

Definition 2.2. “The graph obtained by joining disjoint cycles 

121 ,,,, uuuu n  and 121 ,,,, vvvv n  with an edge 11, vu  is called dumbbell 

graph nDb ”. 

3. We Characterize another Sort of Labeling 

Definition 3.1. A graph  with vertex set  and edge set , together with 

the binary operation is said to have Binary -Cordial labeling if it has a 

bijection    EGEh ,,2,1:   and each vertex u is given the label 1 if 

   ji uvhuvh   is odd and 0 otherwise for any binary operation , where 

ji uvuv ,  have the smallest and the greatest h values respectively. Now  1hV   

represents the total number of u‟s labeled as 1 and  0hV  represents the total 

number of u‟s labeled as 0 then h is called binary -Cordial labeling of a 

graph if     110  hh VV  and it is denoted by .LCLB  A graph is called 

binary -Cordial graph on the off chance that concedes the above labeling. 

Definition 3.2. If a graph  has a bijection    EGEh ,,2,1:   

and for each vertex u, assign the label as 1 if    ji uvhuvh  is odd and 0 

otherwise where ji uvuv ,  have the smallest and the greatest h values. This 

graph is said to be Product LCLB  if it also satisfies the condition that 

    110  hh VV  where  0hV  denote the number of vertices labeled with 0 

and  ,1hV  the number of vertices labeled with 1. The graph is called Product 

Binary -Cordial graph on the off chance that admits product .LCLB  

4. Main Results 

Theorem 4.1. Any Path nP  admits product LCLB  for .3n   
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Proof. Let us consider a Path of length n. 

Let  niiv 1  denote the vertices of the path nP  and   1
1



n
iie  denote the 

edges of the path .nP  When ,3n   

The result is obvious. 

When ,3n  

For even n, 

 






2

,,3,2,1;12
n

iieh i   

 





 








 2

1
,,3,2,1;2

2

n
iieh

i
n   

We get,     .
2

10
n

VV hh   

For odd n, 

 






2

,,2,1;12
n

iieh i   

 












 2
,,2,1;2

2

n
iieh

i
n   

We get,     .110  hh VV   

Hence the path nP  admits Product .LCLB  

Theorem 4.2. Odd Cycles admit Product .LCLB  

Proof. Let  niivV 1  denote the vertices and   1
1




n
iieE  denote the 

edges of the cycle. 

Define    EGEh ,,2,1:   as follows. 

 






2

,,2,1;12
n

iieh i   
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 
2

1
,,2,1;2

2












n
iieh

i
n   

We get,  






2

0
n

Vh   

 






2

1
n

Vh  

Hence,     .110  hh VV  

Theorem 4.3. nK ,1  satisfies Product LCLB  for even values of n. 

Proof. Label the pendant edges as .,,2,1 n   

We get, 

  1
2

0 
n

Vh  

 
2

1
n

Vh   

Hence the theorem. 

Theorem 4.4. 1KPn   admits Product .LCLB  

Proof. Let  niiv 1  and  niie 1  denote the vertices and edges of the path 

nP  respectively. Let  niiu 1  and  niif 1  denote the pendant vertices and 

pendant edges respectively. 

Let us consider, 1,,2,1;1   nivve iii   

niuvf iii ,,2,1;   

Define    EGEh ,,2,1:   as follows. 

  1,,2,1;2  niieh i   

  niifh i ,,2,1;12   

We get,     .10 nVV hh    
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Hence, 1KPn   admits Product .LCLB  

Example 1.  

 

Figure 4.1. .18 KP   

Theorem 4.5. Dumbell graph nDb  admits Product .LCLB  

Proof. Let  1211 ,,,, vvvvC n  denote cycle with edges  ;1 iii vve  

1,,2,1  ni   and 1vve nn   and  1212 ,,,, wwwwC n  be the cycle 

with edges   1,,2,1;1   niwwg iii   and .1wwg nn   

And let .11wvk   Now label the edges as below, 

  niieh i ,,2,1;12   

  niigh i ,,2,1;2   

  12  nkh  

We get,    10 hh VV    

Hence nDb  admits Product .LCLB  

Example 2.  

 

Figure 4.2. .7Db  
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Theorem 4.6. Bull graph Bull  nC  on odd vertices admits Product 

.LCLB  

Proof. Let  nivi ,,2,1   be the vertex set of the cycle nC  and 

 21, ww  be the set of pendant vertices. Let  niei ,,2,1   be the edge 

set of the cycle nC  and  11 , wvg n  and  212 , wvg   be the set of pendant 

edges. 

Label the edges of the cycle as follows. 

 






2

,,2,1;12
n

iieh i   

 












 2
,,2,1;2

2

n
iieh

i
n   

Now, label the pendant edges as   11  ngh  and   .22  ngh  

We get,     .101  hh VV  

Hence, Bull graph Bull  nC  on odd vertices admits Product .LCLB  

Example 3. 

 

Figure 4.3.   .9CBull  

Theorem 4.7. Flag graph  nCFl  admits Product .LCLB  

Proof. Let  niiv 1  denote the vertex set and  niie 1  denote the edge set of 
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the cycle .nC  Let w and e denote the pendant vertex and pendant edge 

respectively. 

Case 1. When „n‟ is odd. 

 





 2
,,2,1;21

n
iivvh ii   

 



















 2
,,2,1;12

1
22

n
iivvh

i
n

i
n   where 11 vvn    

Let us label the pendant edge as   1eh   

Hence,     .10 hh VV   

Case 2. When „n‟ is even. 

  1
2

,,2,1;121 
n

iivvh ii   

  1
2

,,2,1;2
2

2
1

2




n
iivvh

i
n

i
n   

Label the pendant edges as   .neh   

We get,     110  hh VV  

Hence the theorem. 

Theorem 4.8. Crown graph admits Product .LCLB  

Proof. Let the cycle nC  be defined as  .,,,,,,, 12211 nnn vcvcvcv   

Let  niiw 1  denote the pendant vertices and  niei ,,2,1   denote 

the pendant edges. 

Label the pendant edges as follows. 

  niieh i ,,2,1;12   

Now, label the edges of the cycle as below. 

  niich i ,,3,2,1;2   
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Hence, we get    10 hh VV   

Hence proved. 

5. Conclusion 

In the above assessment we have defined LCLB  and have shown some 

graphs admit Product LCLB  with needed examples. 
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