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Abstract

We show a few typical fixed point theorems for sequences of mappings in complete fuzzy
metric spaces in this study.

1. Introduction

The concept of fuzzy metric spaces introduced by Kramosil and Michalek

was modified by George and Veeramani [2]. Fang proved some fixed point
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theorems in fuzzy metric spaces which improve and generalize the results of
Grabiec, also unify and extend some main results of V. M. Sehgal and A. T.
Bharucha-Reid [10]. We show a few typical fixed point theorems for

sequences of mappings in complete fuzzy metric spaces in this study.

Definition 2.1 [9]. A function *: [0, 1]x[0, 1] — [0, 1] is a continuous
triangular norm (t-norm) if for all a, b, ¢, d € [0, 1] the following condition

holds
(1) * is associative and commutative
(i1) * 1s continuous
(i) a*l=a
(iv) a*b <c+*d whenever a <c and b <d.

Definition 2.2 [2]. The 3-tuple (X, M, *) is said to be a Fuzzy metric

space where X is an arbitrary set, * is a continuous #-norm and M is a Fuzzy
set on X xXx|[0, o] satisfying the following conditions, for all

u,v,welX, st
@) M v,t)>0
() Mu,v,t) =1 u=v
(i) M(u, v, t) = M(v, u, t)
iv) M(u, v, t)* M(v, w, s) < M(u, w, t + s)
v) M(u, v, -) : (0, ©) — (0, 1] is continuous
(i) lim,,_ ., M(u, v, t) =1

Then M is called a Fuzzy metric on X. M(u, v, t) denotes the degree of

nearness between u and v with respect to ¢.

Definition 2.3 [2]. If (X, M, *) be a fuzzy metric space. Then
(a) {x,} in X converges to v in Xif lim,_,,, M(u,, v, t) =1 for all ¢ > 0.

(b) {x,} in Xis a Cauchy sequence if lim,_,,, M(u, p,, Uy, t) =1 for all
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t>0and p>0.

(c) A fuzzy metric space is complete if every Cauchy sequence converges.

Result 2.4 [3]. M(u, v, -) is a non-decreasing function.

Result 2.5 [8]. Let (X, M, *) be a fuzzy metric space. If there exist
q € (0, 1) such that

M(u, v, gt) > M(u, v, t) forall u,v e X, q €(0,1) and ¢ > 0, then u = v

Result 2.6 [8]. Take a sequence {x,} in fuzzy metric space (X, M, *). If

there exist a number ¢ € (0, 1) such that
M(uy,.9, Upiq, qt) = M(uyiq, uy,, t) forall t >0 and n € N.

Then {u,} is a Cauchy sequence in X.

3. Main Results

Theorem 3.1. Take a complete fuzzy metric space (X, M, *) and
T, : X - X a sequence of surjective functions with t>0 and ¢q >0

satisfying

. t t t
M(Tiu, Tjv, t) < mln{M(v, Tiu, Ej s M(v, T, E)’ M(u, v, Ej}

forall i # j and u, v € X, then {T,} has a unique fixed point in X which is

common for all x € X.
Proof of theorem 3.1. Choose x; in X
Since T, is surjective there exist point u; e T), (i), thatis Thu; = uo.
In this way a sequence {x,,} is defined in X as u,,_; = T u,
Ifu, =u,
Then w,,_; = Tyu, = u,

u,, is a fixed point of 7,
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Suppose u,_1 # u,

M(un—l’ Ups t) = M(Tnun’ Tn—o—lun’ t)
. t t
< mln{M(un+1’ Tnun’ j ( Up+1s n+1un+1’ Ej’ M(un’ Un+1s Ej}
= min{M(u u L) ( u L) M(u u i)}
n+1» n—l’ CI Un+1s Un, 2(] > n> Yn+l> q
= min{M(un_l, n+1’ * M( Up+1s Ups L)’ M(un’ Un+1s i)}
2q q

< min{M(un_l, Up, _ja (un’ Uni1s )}
= M(u u ij
ns> Yn+l> q

= M(u,,, u,,,1, kt) where k = % <1

Hence, M(u,,_1, u,, t) < M(u,, u,,,1, kt) forall ¢ > 0
Hence by Result (2.6) {u,,} is a Cauchy sequence in X
Since X is complete, {u,} converges to u in X

Now

M(T,u, u, t) =lim,_,,, M(T,u, u, t)

= lim,,_,, M(Tu, T, 1Un1s 1)

min

< lim,,_ ..

t t t
{M(urwlﬁ Tnu’ 2_qj * M(un+1’ Tn+1un+1’ 2_(]} M(u’ Un+1s aj}

. . t t t
=lim,,_,, mm{M(unH, T,u, %) * M(unﬂ, Uy, %j’ M(u, Upi1s 5)}

. . t 4 t
=lim,, ., rmn{M(Tnu, Upils %) * M(u,Hl, Uy, %), M(u, Upi1s aj}
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< lim,,_,, min{M(Tnu, Uy, é), M(u, Upis éj}

= min{M(Tnu, u, ij, M (u, u, i)}
q q
= min{M(T u, u ij 1}
n“ Yns q )

¢
= M(Tnu, u, Ej
1
= M(T,u, u, kt) where k = 4 <1

M(T,u, u, t) < M(T,u, u, kt)
Therefore by Result (2.5) T,,u = u for all n
Hence u is a common fixed point of {7},} for all n.

Uniqueness:

Let v # u be another common fixed point of {7}, }

Then
M, v, t) = M(T,u, T,v, t)

. t t t
< mm{M(v, T,u, %) * M(v, T,v, %), M(u, v, Ej}
. t t t
= mln{M(v, u, —) * M(v, v, —), M(u, v, —)}
2q 2q q
= min{M(u, v, L) * M(v, v, L), M(u, v, i)}
2q 2q q
. t t
= rmn{M(u, v, —j * M(u, v, —)}
q q
=M (u, v, ij
q
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= M(u, v, kt) where k = % <1

M(u, v, t) < M(u, v, kt)
Therefore by Remark (2.5) u = v.

Theorem 3.2. Take a complete fuzzy metric space (X, M, *) and
T, : X - X a sequence of surjective functions with t>0 and ¢q >0
satisfying
M(Tju, Tjv, t) < min

t t t t t
(o T g« Mo T 5 ) Mo T ) o Ty o L)

forall i # j and u, v € X, then {T,} has a unique fixed point in X which is

common for all x € X.
Proof of theorem 3.2. Proof is similar

Theorem 3.3. Take a complete fuzzy metric space (X, M, *) and
T,: X > X a sequence of surjective functions with t>0 and q >0
satisfying
M(T;u, Tjv, t) < min

t t t t t
(o T g )+ Mo T ) (o T ) (o T ot 2

for all i # jand u, v € X, then {T,} has a unique fixed point in X which is

common for all x € X.

Proof of theorem 3.3. Proof is similar
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