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Abstract

The closed form analytical expressions for the stresses at any point of a monoclinic elastic

layer lying over an irregular isotropic elastic half-space are obtained by using Fourier

Transform technique. The perfect bonding interfacing of an infinite monoclinic elastic plate of

finite thickness with an irregular isotropic elastic half-space has been considered. In the present

study, the isotropic half-space is considered to have rectangular shaped irregularity as a result

of strip loading. Finally, we will discuss graphical representation of shearing stresses in both

the medium.

1. Introduction

The study of earthquakes is the most important concept of Seismology. It

explains a lot of information about how fracture occurs in the Earth and the
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complete deformation process. The concept of seismic waves helps us to make
inferences about certain properties of the parts of the earth through which
the waves travel. Although, from the study of earthquakes and earth
structures, it has been admitted that the Earth is anisotropic in nature. An
anisotropic medium of interest in Seismology has a horizontal plane of
symmetry. A medium having one plane of symmetry is called Monoclinic
medium. As discussed by Crampin [5], monoclinic symmetry is the symmetry
of two sets of non-orthogonal parallel cracks. Monoclinic symmetry of the
systems of cracks can be found near the surface of the Earth where lithostatic
pressure does not have closed cracks perpendicular to the maximum
compressional stress. The problems related to deformation theory have been
investigated by many researchers, like Steketee [16], Chinnery [4] etc. This
theory has been proved very useful to study the deformation field of Earth
produced by faulting and to observe the critical region where faulting often

occurs near or at the interface boundary.

The solution of the problem of the deformation of a horizontally layered
elastic material under the action of surface loads has been finding wide
applications in engineering, geophysics and soil mechanics. Garg et al. [6]
established the representations of seismic sources causing anti plane strain
deformations of orthotropic medium. After that, the same approach for the
corresponding plane strain deformation of an orthotropic elastic medium has
been obtained by Garg et al. [7]. Singh et al. [14] obtained the effect of
anisotropy and variation of dimensionless displacements of elastic materials.
Madan et al. [9] obtained the closed form analytic expressions for the stresses
of monoclinic elastic medium interfacing with the base due to strip loading.
The study of static deformation with irregularities present in the elastic
medium has been discussed by many researchers. Acharya et al. [1],
Chattopadhyay et al. [3], Madan et al. [10], Singh et al. [15], Kumar et al. [8]
obtained the effect of irregularities present in the medium with different
interfacing. Madan and Gaba [11] obtained the effects of rectangular and
parabolic irregularities on the orthotropic elastic medium due to normal line
load. Madan et al. [12] obtained a closed form analytic expression for stresses
in orthotropic elastic medium lying over an irregular isotropic elastic half

space.
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In this paper, we will discuss the closed form analytical expression for the
stresses in a horizontal monoclinic elastic layer of an infinite extent lying
over an irregular isotropic base due to strip loading. In Seismology, elastic
plate represents a particular type of crust of the earth. Earlier researches
have discussed that the interface between elastic plate and the base may be
either ‘perfectly bonded’, ‘smooth-rigid’, or ‘rough-rigid’. The deformation of
the monoclinic elastic plate corresponding to perfectly bonded interface with
irregular isotropic elastic half-space will be considered. Finally, we will study

the variation of stresses numerically and graphically.
2. Fundamental Equations

The constitutive equation in matrix form of a monoclinic material has the

following form [4]

7 a1 ¢z ¢z 0 0 cg||e
) g C2 c3 O 0 o5 ||e
B_|as s s 0 0 c)es] D
Ty 0 0 0 Cqs  C45 0 ey
15 0 0 0 C45  Cs5 0 es
Lt6] Llce € 3¢ O 0 cg6] €6

In equation (1), we use Voigt’s convention by which the tensional indices
are replaced by matrix indices in the expression of the stresses and shear
components 1; and e;(i =1, 2, 3, 4, 5, 6). The elements ¢;;(i,j=1,2,3,4,5,6)

of the stiffness matrix from (1) represent the elasticity of the monoclinic
material. The non-zero field equations for displacement, strain and stress of

a monoclinic material in anti-plane strain equilibrium state are:

uz = ug(x, ) @)
es1 =0usg [20x, e93 = dug [ 20y; 3)
T3] = C450U3 /0y + C550Ug/0x, Tog = C4q0u3/ Oy + cy450us/ Oy. 4)

Consequently, Cauchy’s first two equations are identically satisfied and the

third equation becomes

8‘513 /6x + 6‘('23 /8_)/ =0. (5)
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Using equations (4) and (5), the equilibrium equation satisfied by ug can be

written in the following form:

0%us ) 0x? + ¢y [ess 02ug | Oxdy + cyy 5502 us /0yE = 0. (6)
3. Formulation and Solution of the Problem

Here, we consider a horizontal infinite monoclinic elastic plate of
thickness “I” lying over an infinite isotropic elastic medium with x-axis
vertically downwards. The origin of the cartesian coordinate system (x, y, z)
is taken at the upper boundary of the plate. The monoclinic elastic plate
occupying the region 0 < x < T is described as Medium I whereas x > 7' is

the region of isotropic elastic half space over which the plate is lying and is
described as Medium II (Figure 1).

L

Med.| //' Monoclinic Y

Med.II Isotropic

e

Y

X
Figure 1.

Suppose a shear load L per unit area is acting over the strip | y | < ¢ of
the surface x = 0 in the positive x-direction. The boundary condition at the

surface x = 0 is

-L; |y|<st
= 7
o {0; |y]>t, @

The irregularity is assumed to be rectangular with length 2/ and depth d. The
equation of the rectangular irregularity is represented as:
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d; |yl

x = ef(y) = 8
0, |yl>1

where ¢ = d/2] << 1 is the perturbation factor.

At the interface (y, x = &f(y)), the boundary conditions are

uf = ull

o —ief(y)edh. ©)

I Y I

a1 —ief(¥) T3

Taking the Fourier Transformation of equation (6), we get
d2—I

-y
“23 — 2(is cﬁ)dﬂ -l 2l . (10)
dx cs5 dx  csp

The solution of the above ordinary differential equation is
ub(Ae™Is Il  pemmlsfeygimasy 11)

where m; = Jmg —m3, mg = cy5 /55, My = €44 /c5; and A and B may be

functions of s.

Taking inverse Fourier Transformation of equation (11), we get

11 (% omslx -mq | slxy —i(y—mox)s
uz = — (A, + Be )e ds. (12)
21 J —w

By using equations (12) and (4), we get

= L[ (st gl ek a3

[eo] .
ty = % [mgj (Arlsle o pemmulsleyomily=max)s) g 1gs iy

—00

J'OO (A;nl\s\x + Be—ml\S\x)e—i(y—mzx)sds] (14)

—00

where 17 = mycx5.
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Taking Fourier Transform of equation (7), we get
T, = —2L/ssinst. (15)

Therefore,
%3{1 = ij. (sin st/s)eiisyds. (16)
T —00
From equations (13) and (15), we get

A - B =-2L/Ti(sinst/s| s|). %))

The displacement component in the isotropic elastic half space x > T is

obtained as
Wl % J'_wce*‘ sheg=ivs s, (18)

From equations (4) and (18), we get

_ 0 .
e Cel® ‘xeﬂys| s |ds (19)
2n J _»
7 o0 .
o =k _wCe—\s\xe—wssds. (20)

Equations (9), (12), (13), (14), (18), (19), (20) give the relations
(A5l 4 pemmilsbey s gprlshe _ g 21)
TA(s'—ief (y)mas' — ef (v)my )e™|* Fe ™%~ T'B(s' — iof (y)mas' + of (y)my)

el sl gimashe | cplsl (g 4 ery)) = 0 22)

where 7" = T /p and S’ = | s|/s. Solving (17), (21) and (22), we get
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(s +ef (YV' - iaf'(y)m2s’(1 * V) o-2mi] [5f(3)

2L sin st B)
4 (23)
IiSl S | (SIV _ Sf,(y) (V! + imzs'(l -;V)))
- (S’ +ef'(y) (V' - imzs’(l +2V) je_zml‘ s lef(v)
N e 1+ VY —omlsle

9L sin st (3 +&f (V)V' — isf (y)mgs( * De 2| s]6f()

" Tfs] | 1+V (24)
* (SV — &f'(y) (V’ T imzs'( : Dj

- (S, +¢f'(y) (V - imzs'(l _;V)D o~ 2mil s [ef ()

C - 2Lsinst T+ V)(s - igf'(y)mgs/)e—sf(y)(\ E |(mq —1)—imys) o5

sl s | (s'V —¢f'(y) (V' + im2s'(1 ;VJD
- (s + af'(y)(V’ - imﬁ’(%))) ¢~ 2ml slef(7)

where V = (I" = 1)/(T" +1) and V' = (T'm; — 1)/(T" —1).

By applying Fourier Transformation technique on equation (8), we get
f(s) = (4/s) sin(sl). (26)
Therefore,
f(y) = sigh(l - y) + sigh(l + y), 27
where sign represents the signum function.

On substituting the values of constants A, B and C from equations (23),

(24), (25) in equations (12), (13), (14) for Medium I and in (18), (19), (20) for
Medium IT and also substituting the value of f(y) for rectangular irregularity
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from equation (27), we will obtain the following expression for the

displacement and stress component.

4. Displacement and Stresses for Medium I

1 L J'"" sin st (1+ Z“’j{nemﬂs\(2ns(sign(lfy)+sign(l+y))))

o Ty J o s|s |
(emﬂ s e—i(y-mox)s | y,~mls \x—i(y—mzx)S)ds (28)
L _ 2tmyx
= 21+ V)tan}( )+
n (y — mgx)™ + mix“ —t
i VAV tan! 2tmy (x — 2ne(sign (I — y) + sign (L + )))
— (mlz(x — 2ne(sign(l — y) + sign(l + y)))z) +(y - m2x)2 —¢?
~tan! 2tmy (x + 2ne(sign (I — y) + sign(l + y))) 1 29)
(mi (x + 2ne(sign(l — y) + sign(l + ¥))?) + (y — mox)? — ¢2
L _ 2tmyx
thy = — [meo[(t + V)tan i 57—
(y — mgx)” + mix* —t
N iV"(Vtan_l 2t my (x —2ne(sign (I-y)+sign(l+y)))
= (mf (x —2na(sign (- y)+ sign 1+ ¥)) )+ (y—max)? 1>
~tan! 2tmy (x — 2ne(sign (1 - y)+sign(l+ y))) ]

(m (x + 2ne(sign (I — y)+ sign (I + y)))? ) + (y — mgx)* —t2

mix® + (y — mox + t)°

2

m
+ 71 [(1 = V)log — 5
mix® + (y — mox —t)

N ivn(log (y — mgx + t)2 + m12(x + 2ne(sign(l — y) + sign(l + y)))2
— (y — mgx — t)2 + mi(x + 2ne(sign(l — y) + sign(l + y)))2

(y — mox + t)2 + m12(x — 2ng(sign(l — y) + sign(l + y)))2
(y — mgx — t)? + m¥(x — 2ne(sign(l — y) + sign(l + y)))*

+ V log

(30)
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5. Displacement and Stresses for Medium II

n_-L(* sinst S 1 2mine]slf(7)
ufl == LD T (1+V)(1+Z;V e )
n=

e\ s |e(my +1)siMl—y)siMl—y)+siMl+y)—x)eis(mgxfy) (31)

AL U ean ! 2h(x — (my + 1)e(sign (I — y) + sign (I + y)))
i =g VL (x — e(sign (1 - ) + sign (I + y))(2n + )my + 1))

+ (mgx — y)? — 2

o Vitan! 2t (x — e(sign (I — y) + sign (I + ¥))(2n + 1)my + 1)) (32)
’ ; { (x —e(sign(l—y)+sign(l + ) ((2n +1)m + 1))2 il
+ (mox — y)* — £
(mox — y =) + (x = (my +1)

7 L g(sign (I - y) + sign (L + y)))*
= @1+V)|1lo
’ ¢ (mox — y + t)z(x —(my +1)

32 = _ZnTl

e(sign(l — y) + sign (I + y)))2
(x —e(sign (I — y) + sign (I + y))

" (2n +1)my + 1)) (mgx — y + £
+ YV loe e S r s Ty ) (33)

(2n + 1)my + 1)) + (mox — y + £

n=1

6. Numerical Results

In this section, we want to analyze the effect of rectangular irregularity
on the stresses due to shear line load acting at any point of the monoclinic
elastic layer lying over an irregular isotropic half space. For numerical
calculations we take the values of elastic constants for Dolomite in monoclinic
medium given by Rasolofosaon and Zinszner [13] and for Glass in Isotropic
medium given by love [8]. Here we will calculate all stresses
wh, tdy, <l <E for T = -1 for different strip length ‘indicated by | y | < ¢'
on upper boundary of monoclinic layer. Figures (2)-(5) represent the variation

of shearing stresses rél with horizontal distance for different values of

t=1,23,1.6, 2 and for different depth levels x = 0.25, 0.5, 0.75, 1. It is
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observed that shearing stresses for ¢t =1 and ¢t =1.3 overlap over entire
depth. For ¢t =1.6 and ¢t = 2, the difference between shearing stresses in
magnitude significantly decreases as depth increases. Similarly figures (6)-(9)
represent the variation of shearing stresses ‘E?Iﬂ with horizontal distance for
different values of ¢=1,1.31.6,2 and for different depth levels
x = 0.25, 0.5, 0.75, 1 respectively. The shearing stresses for ¢ =1 and ¢ = 2,
overlap over entire depth. Clearly the stresses coincide at zero on horizontal
distance for all different depth levels. Figures (10)-(13) represent the
variation of shearing stresses ré"l with horizontal distance for different

values of ¢t =1, 1.3, 1.6, 2 and for different depth levels x = 0.25, 0.5, 0.75, 1

respectively. It is observed from these curves that stresses for different values
of t decrease for negative horizontal distance and further increase for positive

horizontal distance. Figures (14)-(17) represent the variation of shearing
stresses rgé with horizontal distance for different values of ¢ =1, 1.3, 1.6, 2
and for different depth levels x = 0.25, 0.5, 0.75, 1 respectively. Stresses for

different values of ¢ coincide in neighborhood of zero horizontal distance.

1 |

2 A5 B 0.5 v} 05
Horizontal Distance

Figure 2. Variation of the shearing stress t3; in Med. I with horizontal

distance y at x =0.25.
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Figure 3. Variation of the shearing stress t3; in Med. I with horizontal

distance y at x =0.5.
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Figure 4. Variation of the shearing stress t3; in Med. I with horizontal

distance y at x =0.75.
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Figure 5. Variation of the shearing stress t3; in Med. I with horizontal

distance y at x =1.
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Figure 6. Variation of the shearing stress 13, in Med. I with horizontal

distance y at x =0.25.
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Figure 7. Variation of the shearing stress 13y in Med. I with horizontal
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Figure 8. Variation of the shearing stress 13 in Med. I with horizontal

distance y at x =0.75.
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Figure 9. Variation of the shearing stress 13 in Med. I with horizontal

distance y at x =1.
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Figure 10. Variation of the shearing stress t3; in Med. II with horizontal

distance y at x =0.25.
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Figure 11. Variation of the shearing stress t3; in Med. II with horizontal

distance y at x =0.5.
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Figure 12. Variation of the shearing stress t3; in Med. II with horizontal

distance y at x =0.75.
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Figure 13. Variation of the shearing stress t3; in Med. II with horizontal

distance y at x =1.
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Figure 14. Variation of the shearing stress 13y in Med. II with horizontal

distance y at x =0.25.
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Figure 15. Variation of the shearing stress 13y in Med. II with horizontal

distance y at x =0.5.
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Figure 16. Variation of the shearing stress t3y in Med. II with horizontal

distance y at x =0.75.
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Figure 17. Variation of the shearing stress 13y in Med. II with horizontal

distance y at x =1.

7. Conclusions

The closed form expressions for the stresses in an elastic medium
consisting of Monoclinic elastic layer lying over an irregular isotropic half
space due to shearing load has been concluded. The results are useful to
study the effect of irregularity lying between two or more mediums.
Graphically, it has been concluded that the stress is distributed in an infinite
layer with irregularity present at the interface with a half space and is
affected by not only the presence of irregularity but also by anisotropy of the
elastic medium as a result of shear load acting over the strip of a monoclinic
elastic medium. Also, the obtained results are useful to study the static

deformation around different crust of the earth.
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