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Abstract 

The closed form analytical expressions for the stresses at any point of a monoclinic elastic 

layer lying over an irregular isotropic elastic half-space are obtained by using Fourier 

Transform technique. The perfect bonding interfacing of an infinite monoclinic elastic plate of 

finite thickness with an irregular isotropic elastic half-space has been considered. In the present 

study, the isotropic half-space is considered to have rectangular shaped irregularity as a result 

of strip loading. Finally, we will discuss graphical representation of shearing stresses in both 

the medium. 

1. Introduction 

The study of earthquakes is the most important concept of Seismology. It 

explains a lot of information about how fracture occurs in the Earth and the 
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complete deformation process. The concept of seismic waves helps us to make 

inferences about certain properties of the parts of the earth through which 

the waves travel. Although, from the study of earthquakes and earth 

structures, it has been admitted that the Earth is anisotropic in nature. An 

anisotropic medium of interest in Seismology has a horizontal plane of 

symmetry. A medium having one plane of symmetry is called Monoclinic 

medium. As discussed by Crampin [5], monoclinic symmetry is the symmetry 

of two sets of non-orthogonal parallel cracks. Monoclinic symmetry of the 

systems of cracks can be found near the surface of the Earth where lithostatic 

pressure does not have closed cracks perpendicular to the maximum 

compressional stress. The problems related to deformation theory have been 

investigated by many researchers, like Steketee [16], Chinnery [4] etc. This 

theory has been proved very useful to study the deformation field of Earth 

produced by faulting and to observe the critical region where faulting often 

occurs near or at the interface boundary. 

The solution of the problem of the deformation of a horizontally layered 

elastic material under the action of surface loads has been finding wide 

applications in engineering, geophysics and soil mechanics. Garg et al. [6] 

established the representations of seismic sources causing anti plane strain 

deformations of orthotropic medium. After that, the same approach for the 

corresponding plane strain deformation of an orthotropic elastic medium has 

been obtained by Garg et al. [7]. Singh et al. [14] obtained the effect of 

anisotropy and variation of dimensionless displacements of elastic materials. 

Madan et al. [9] obtained the closed form analytic expressions for the stresses 

of monoclinic elastic medium interfacing with the base due to strip loading. 

The study of static deformation with irregularities present in the elastic 

medium has been discussed by many researchers. Acharya et al. [1], 

Chattopadhyay et al. [3], Madan et al. [10], Singh et al. [15], Kumar et al. [8] 

obtained the effect of irregularities present in the medium with different 

interfacing. Madan and Gaba [11] obtained the effects of rectangular and 

parabolic irregularities on the orthotropic elastic medium due to normal line 

load. Madan et al. [12] obtained a closed form analytic expression for stresses 

in orthotropic elastic medium lying over an irregular isotropic elastic half 

space.  
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In this paper, we will discuss the closed form analytical expression for the 

stresses in a horizontal monoclinic elastic layer of an infinite extent lying 

over an irregular isotropic base due to strip loading. In Seismology, elastic 

plate represents a particular type of crust of the earth. Earlier researches 

have discussed that the interface between elastic plate and the base may be 

either ‘perfectly bonded’, ‘smooth-rigid’, or ‘rough-rigid’. The deformation of 

the monoclinic elastic plate corresponding to perfectly bonded interface with 

irregular isotropic elastic half-space will be considered. Finally, we will study 

the variation of stresses numerically and graphically. 

2. Fundamental Equations 

The constitutive equation in matrix form of a monoclinic material has the 

following form [4] 
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In equation (1), we use Voigt’s convention by which the tensional indices 

are replaced by matrix indices in the expression of the stresses and shear 

components i  and  .6,5,4,3,2,1iei  The elements  6,5,4,3,2,1, jicij  

of the stiffness matrix from (1) represent the elasticity of the monoclinic 

material.  The non-zero field equations for displacement, strain and stress of 

a monoclinic material in anti-plane strain equilibrium state are:  

 ;,33 yxuu   (2) 

;2,2 323331 yuexue   (3) 

., 3453442335534531 yucyucxucyuc   (4) 

Consequently, Cauchy’s first two equations are identically satisfied and the 

third equation becomes  

.02313  yx  (5) 
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Using equations (4) and (5), the equilibrium equation satisfied by 3u  can be 

written in the following form:  

.02
3

2
55443

2
5545

2
3

2  yuccyxuccxu  (6) 

3. Formulation and Solution of the Problem 

Here, we consider a horizontal infinite monoclinic elastic plate of 

thickness ‘T’ lying over an infinite isotropic elastic medium with x-axis 

vertically downwards. The origin of the cartesian coordinate system  zyx ,,  

is taken at the upper boundary of the plate. The monoclinic elastic plate 

occupying the region Tx 0  is described as Medium I whereas Tx   is 

the region of isotropic elastic half space over which the plate is lying and is 

described as Medium II (Figure 1). 

 

Figure 1. 

Suppose a shear load L per unit area is acting over the strip ty   of 

the surface 0x  in the positive x-direction. The boundary condition at the 

surface 0x  is  








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,;0

;
31

ty

tyL
  (7) 

The irregularity is assumed to be rectangular with length 2l and depth d. The 

equation of the rectangular irregularity is represented as: 
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where 12  ld  is the perturbation factor. 

At the interface   ,, yfxy   the boundary conditions are 

III uu 33   

    .32313231
IIIIII yfiyfi    (9) 

Taking the Fourier Transformation of equation (6), we get  
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The solution of the above ordinary differential equation is  

  sximxsmxsmI eBeAeu 211
3


  (11) 

where 5544355452
2
231 ,, ccmccmmmm   and A and B may be 

functions of s.  

Taking inverse Fourier Transformation of equation (11), we get 
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By using equations (12) and (4), we get  
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where .5511 cmT   
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Taking Fourier Transform of equation (7), we get  

.sin231 stsLI   (15) 

Therefore, 

  .sin31 









 dsesst

L isyI  (16) 

From equations (13) and (15), we get  

 .sin2 1 ssstTLBA   (17) 

The displacement component in the isotropic elastic half space Tx   is 

obtained as 


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From equations (4) and (18), we get  
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Equations (9), (12), (13), (14), (18), (19), (20) give the relations  

  0,,211 
 xsimxsmxsm

e CeeBeA xs  (21) 
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 (22) 

where  1TT  and .ssS   Solving (17), (21) and (22), we get  
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where    11  TTV  and    .111  TmTV  

By applying Fourier Transformation technique on equation (8), we get  

     .sin4 slslsf   (26) 

Therefore,  

     ,ylsighylsighyf   (27) 

where sign represents the signum function.  

On substituting the values of constants BA,  and C from equations (23), 

(24), (25) in equations (12), (13), (14) for Medium I and in (18), (19), (20) for 

Medium II and also substituting the value of  yf  for rectangular irregularity 
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from equation (27), we will obtain the following expression for the 

displacement and stress component. 

4. Displacement and Stresses for Medium I 
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5. Displacement and Stresses for Medium II 
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6. Numerical Results 

In this section, we want to analyze the effect of rectangular irregularity 

on the stresses due to shear line load acting at any point of the monoclinic 

elastic layer lying over an irregular isotropic half space. For numerical 

calculations we take the values of elastic constants for Dolomite in monoclinic 

medium given by Rasolofosaon and Zinszner [13] and for Glass in Isotropic 

medium given by love [8]. Here we will calculate all stresses 

IIIIII
32313231 ,,,   for 1T  for different strip length ‘indicated by ty  ' 

on upper boundary of monoclinic layer. Figures (2)-(5) represent the variation 

of shearing stresses I
31  with horizontal distance for different values of 

2,6.1,3.2,1t  and for different depth levels .1,75.0,5.0,25.0x  It is 
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observed that shearing stresses for 1t  and 3.1t  overlap over entire 

depth. For 6.1t  and ,2t  the difference between shearing stresses in 

magnitude significantly decreases as depth increases. Similarly figures (6)-(9) 

represent the variation of shearing stresses I
31  with horizontal distance for 

different values of 2,6.1,3.1,1t  and for different depth levels 

1,75.0,5.0,25.0x  respectively. The shearing stresses for 1t  and ,2t  

overlap over entire depth. Clearly the stresses coincide at zero on horizontal 

distance for all different depth levels. Figures (10)-(13) represent the 

variation of shearing stresses II
31  with horizontal distance for different 

values of 2,6.1,3.1,1t  and for different depth levels 1,75.0,5.0,25.0x  

respectively. It is observed from these curves that stresses for different values 

of t decrease for negative horizontal distance and further increase for positive 

horizontal distance. Figures (14)-(17) represent the variation of shearing 

stresses II
32  with horizontal distance for different values of 2,6.1,3.1,1t  

and for different depth levels 1,75.0,5.0,25.0x  respectively. Stresses for 

different values of t coincide in neighborhood of zero horizontal distance.  

 

Figure 2. Variation of the shearing stress 31  in Med. I with horizontal 

distance y at .25.0x  
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Figure 3. Variation of the shearing stress 31  in Med. I with horizontal 

distance y at .5.0x  

 

Figure 4. Variation of the shearing stress 31  in Med. I with horizontal 

distance y at .75.0x  
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Figure 5. Variation of the shearing stress 31  in Med. I with horizontal 

distance y at .1x  

 

Figure 6. Variation of the shearing stress 32  in Med. I with horizontal 

distance y at .25.0x  
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Figure 7. Variation of the shearing stress 32  in Med. I with horizontal 

distance y at .5.0x  

 

Figure 8. Variation of the shearing stress 32  in Med. I with horizontal 

distance y at .75.0x  
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Figure 9. Variation of the shearing stress 32  in Med. I with horizontal 

distance y at .1x  

 

Figure 10. Variation of the shearing stress 31  in Med. II with horizontal 

distance y at .25.0x  
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 Figure 11. Variation of the shearing stress 31  in Med. II with horizontal 

distance y at .5.0x  

 

Figure 12. Variation of the shearing stress 31  in Med. II with horizontal 

distance y at .75.0x  
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Figure 13. Variation of the shearing stress 31  in Med. II with horizontal 

distance y at .1x  

 

Figure 14. Variation of the shearing stress 32  in Med. II with horizontal 

distance y at .25.0x  
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Figure 15. Variation of the shearing stress 32  in Med. II with horizontal 

distance y at .5.0x  

 

Figure 16. Variation of the shearing stress 32  in Med. II with horizontal 

distance y at .75.0x  
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Figure 17. Variation of the shearing stress 32  in Med. II with horizontal 

distance y at .1x  

7. Conclusions 

The closed form expressions for the stresses in an elastic medium 

consisting of Monoclinic elastic layer lying over an irregular isotropic half 

space due to shearing load has been concluded. The results are useful to 

study the effect of irregularity lying between two or more mediums. 

Graphically, it has been concluded that the stress is distributed in an infinite 

layer with irregularity present at the interface with a half space and is 

affected by not only the presence of irregularity but also by anisotropy of the 

elastic medium as a result of shear load acting over the strip of a monoclinic 

elastic medium. Also, the obtained results are useful to study the static 

deformation around different crust of the earth. 
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