A COMMON FIXED-POINT THEOREM IN LINEAR n-NORMED SPACE

T. MANI, R. KRISHNAKUMAR and D. DHAMODHARAN

Department of Mathematics
Trichy Engineering College
Affiliated to Anna University
Chennai, Tamilnadu, India
E-mail: tmanitmani111@gmail.com
PG and Research Department of Mathematics
Urumu Dhanalakshmi College
Affiliated to Bharathidasan University
Trichy, Tamilnadu, India
E-mail: srkudc7@gmail.com
PG and Research Department of Mathematics
Jamal Mohamed College (Autonomous)
Affiliated to Bharathidasan University
Trichy, Tamilnadu, India
E-mail: dharan_raj28@yahoo.co.in

Abstract

In this paper, we discuss for an existence and uniqueness of common fixed-point theorem for three self-independent operators mapping in linear n-normed space.

I. Introduction

In 1963, S. Gahler [2, 3] was introduced by 2 -norm and n-norm on a linear space. Raymond W. Freese and Y. J. Cho [1] gave as a survey of the latest results on the relations between linear 2 -normed spaces and normed linear spaces and conclusion of linear 2 -normed spaces. The idea on n-inner product spaces is also due to Misiak who had studied the same as early as 1980. Lateron A. Misiak [10] had also established the notion of an n-normin 1989.

[^0]Keywords: linear n-normed space, contraction principle, successive approximation, common fixed point.
Received June 3, 2020; Accepted August 13, 2020

A logical growth of linear n-normed spaces has been widely made by Hendra Ganawan and Mashadi [5], S.S. Kim, Y. J. Cho [7], R. Malceski [8] and A. Misiak [10]. For correlated works of n-metric spaces and n-inner product spaces see [4], [5] and [10]. In recent times, many authors establish the fixedpoint theorem in n-normed spaces and n-Banach spaces.

In this paper, the concept of existence and uniqueness of common fixedpoint theorem for three self-independent operators mapping in linear n normed space and illustrate the suitable corollary.

Now we will give some basic definitions and results in n-normed spaces before presenting our main results.

Definition 1.1 [1]. Let U be a genuine direct space with measurement of U is more prominent than 1 and $\|\cdot, \cdot\|: U \times U \rightarrow[0, \infty)$ be a function. Then
(i) $\|u, v\|=0$ if and just if u and v are linearly dependent,
(ii) $\|u, v\|=\|v, u\|$,
(iii) $\|\alpha u, v\|=|\alpha|\|u, v\|$,
(iv) $\|u+v, w\| \leq\|u, w\|+\|v, w\|$, where for all $u, v, w \in U$ and $\alpha \in R$.

If $\|\cdot, \cdot\|$ is Known as a 2 -norm and the pair $(U,\|\cdot, \cdot\|)$ is known as a linear 2 -normed space. So a 2 -norm $\|u, v\|$ always fulfils [13] $\|u, v+\alpha u\|=\|u, v\|$ for all $u, v \in U$ and all scalars α.

Definition 1.2 [6]. Let n be a natural number, let X be a genuine vector space of measurement $d \geq n$ (d might be endlessness). A real valued function $\|\cdot, \ldots, \cdot\|$ on X^{n} fulfilling four properties,
(i) $\left\|x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\|=0$ if and just if $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ are linearly dependent in X,
(ii) $\left\|x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\|$ is invariant under permutation of $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$,
(iii) $\quad\left\|x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}, \alpha x_{n}\right\|=|\alpha|\left\|x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}, x_{n}\right\| \quad$ for each $\alpha \in R$,

A COMMON FIXED-POINT THEOREM IN LINEAR n-NORMED... 1135
(iv)
$\left\|x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}, y+z\right\| \leq\left\|x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}, y\right\|+$ $\left\|x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}, z\right\|$ for all y and z in X, is called an n-norm over X and the pair $(X\|\cdot, \ldots, \cdot\|)$ is known as a linear n-normed spaces.

Example 1.1 [5]. Let $X=R^{n}$ with the norm $\|\cdot, \ldots, \cdot\|$ on X by

$$
\left\|x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\|\left|x_{i j}\right|=\left(\begin{array}{ccccc}
x_{11} & x_{12} & x_{13} & \ldots & x_{1 n} \\
x_{21} & x_{22} & x_{23} & \ldots & x_{2 n} \\
x_{31} & x_{32} & x_{33} & \ldots & x_{3 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_{n 1} & x_{n 2} & x_{n 3} & \ldots & x_{n n}
\end{array}\right)
$$

Where, $x_{i}=x_{i 1}, x_{i 2}, x_{i 3}, \ldots, x_{i n} \in R^{n}$ for each $i=1,2,3, \ldots, n$. Then $(X,\|\cdot, \ldots, \cdot\|)$ is a linear n-normed space.

Definition 1.3 [6]. An arrangement $\left\{x_{n}\right\}_{n \in N}$ in a n-normed space $(X,\|\cdot, \ldots, \cdot\|)$ is said to be a convergent to a component $x \in X$ if $\lim _{n \rightarrow \infty}\left\|x_{n}-x, a_{2}, a_{3}, \ldots, a_{n}\right\|=0$ for all $a_{2}, a_{3}, \ldots, a_{n} \in X$. The point x is called the limit of the sequence.

Definition 1.4 [11]. An arrangement $\left\{x_{n}\right\}_{n \in N}$ in a n-normed space $(X,\|\cdot, \ldots, \cdot\|)$ is said to be a Cauchy sequence if $\lim _{m, n \rightarrow \infty}\left\|x_{m}-x_{n}, a_{2}, a_{3}, \ldots, a_{n}\right\|=0$ for all $a_{2}, a_{3}, \ldots, a_{n} \in X$.

Definition 1.5 [6]. A n-normed space $(X,\|\cdot, \ldots, \cdot\|)$ is said to be complete if every Cauchy sequence in X is convergent. A complete n-normed space is called an n-Banach space.

Definition 1.6 [6]. Let X be a n-Banach space and T be a self-mapping of $X \cdot T$ is said to be continuous at x if for every sequence x_{n} in $X, x_{n} \rightarrow x$ as $n \rightarrow \infty$ implies $T x_{n} \rightarrow T x$ as $n \rightarrow \infty$ in X.

Definition 1.7 [9]. Let $(X,\|\cdot, \ldots, \cdot\|)$ be a linear n-normed space. Then the mapping $T: X \rightarrow X$ is said to be a contraction if there exists $k \in[0,1)$ such that

$$
\left\|T x-T y, u_{2}, u_{3}, \ldots, u_{n}\right\| \leq k\left\|x-y, u_{2}, u_{3}, \ldots, u_{n}\right\|,
$$

for all $x, y, u_{2}, u_{3}, \ldots, u_{n} \in X$.
In this paper we will utilize Picard iteration schema defined as following
Definition 1.8. Let A be any set and $T: A \rightarrow A$ a self-map. For any given $\quad x \in A$, we define $T^{n}(x)$ inductively by $T^{0}(x)=x \quad$ and $T^{n+1}(x)=T\left(T^{n}(x)\right)$, we recall $T^{n}(x)$ the $n^{\text {th }}$ iterative of x under T. For any $x_{0} \in X$, the sequence $\left\{x_{n}\right\}_{n \geq 0} \subset X$ given by $x_{n}=T x_{n-1}=T^{n} x_{0}$, $n=1,2,3, \ldots$ is called the sequence of successive approximations with the initial value x_{0}. It is also known as the Picard iteration starting at x.

Lemma 1.1 [12]. Let $\left\{x_{n}\right\}_{n \in N}$ be a sequence in a complete n-normed space $(X,\|\cdot, \ldots, \cdot\|) \quad$ then there exists $r \in(0,1)$ such that $\left\|x_{n}-x_{n+1}, a_{2}, a_{3}, \ldots, a_{n}\right\| \leq r\left\|x_{n-1}-x_{n}, a_{2}, a_{3}, \ldots, a_{n}\right\| \quad$ for all nonnegative integer n and every $a_{2}, a_{3}, \ldots, a_{n}$ in X then $\left\{x_{n}\right\}$ converges to a point in X.

II. Main Result

Theorem 2.1. If T, P and Q are three operators mapping a complete n normed space $(X,\|\cdot, \ldots, \cdot\|)$ to itself be sequentially continuous and if for all $x, y, u_{2}, u_{3}, \ldots, u_{n}$ in X
(i) $\min \left\{\left\|P^{p}(x)-Q^{q}(y), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|T_{x}-P^{p}\left(T_{x}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|\right.$, $\left\|T_{y}-Q^{q}\left(T_{y}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|$,

$$
\begin{gathered}
\left.\left\|P^{p}\left(T_{x}\right)-Q^{q} P^{p}\left(T_{x}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|T_{y}-Q^{q} P^{p}\left(T_{x}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|\right\} \\
+k \min \left\{\left\|T_{x}-Q^{q}\left(T_{y}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|T_{y}-P^{p}\left(T_{x}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\right. \\
\left.\left\|T_{x}-P^{p} Q^{q}\left(T_{y}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|Q^{q}\left(T_{y}\right)-Q^{q} P^{p}\left(T_{x}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|\right\} \\
\leq r\left\|x-y, u_{2}, u_{3}, \ldots, u_{n}\right\|
\end{gathered}
$$

A COMMON FIXED-POINT THEOREM IN LINEAR n-NORMED... 1137
where $r \in(0,1)$ and k is a real number.
(ii) $\left\|T_{x}-T_{y}, u_{2}, u_{3}, \ldots, u_{n}\right\| \leq\left\|x-y, u_{2}, u_{3}, \ldots, u_{n}\right\|$
(iii) $T P^{p}=P^{p} T$ and $T Q^{q}=Q^{q} T$ then there exists a unique common fixed point of T, P and Q if $k>r$.

Proof. Utilizing condition (ii) and (iii), condition (i) becomes,

$$
\begin{gathered}
\min \left\{\left\|P^{p}(x)-Q^{q}(y), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|x-P^{p}(y), u_{2}, u_{3}, \ldots, u_{n}\right\|\right. \\
\left\|y-Q^{q}(y), u_{2}, u_{3}, \ldots, u_{n}\right\| \\
\left.\left\|P^{p}\left(T_{x}\right)-Q^{q} P^{p}(x), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|y-Q^{q} P^{p}(x), u_{2}, u_{3}, \ldots, u_{n}\right\|\right\} \\
+k \min \left\{\left\|x-Q^{q}(y), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|y-P^{p}(x), u_{2}, u_{3}, \ldots, u_{n}\right\|\right. \\
\left.\left\|x-P^{p} Q^{q}(y), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|Q^{q}(y)-Q^{q} P^{p}(x), u_{2}, u_{3}, \ldots, u_{n}\right\|\right\} \\
\leq r\left\|x-y, u_{2}, u_{3}, \ldots, u_{n}\right\|
\end{gathered}
$$

Presently for given x_{0} in X, we consider a sequence $\left\{x_{n}\right\}_{n \in N}$ as

$$
x_{0}, x_{1}=P^{p}\left(x_{0}\right), x_{2}=Q^{q}\left(x_{1}\right), \ldots, x_{2 n}=Q^{q}\left(x_{2 n-1}\right), x_{2 n+1}=P^{p}\left(x_{2 n}\right)
$$

If for some $m, x_{m}=x_{m+1}$, then P^{p} and Q^{q} have a common fixed point x_{n} in X. Thus, we suppose that $x_{m} \neq x_{m+1}, \forall m=1,2,3, \ldots$. From the condition for $x=x_{2 n}$ and $y=x_{2 n+1}$, we have,

$$
\begin{gathered}
\min \left\{\left\|P^{p}\left(x_{2 n}\right)-Q^{q}\left(x_{2 n+1}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|x_{2 n}-P^{p}\left(x_{2 n+1}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|\right. \\
\left\|x_{2 n+1}-Q^{q}\left(x_{2 n+1}\right), u_{2}, u_{3}, \ldots, u_{n}\right\| \\
\left.\left\|P^{p}\left(x_{2 n}\right)-Q^{q} P^{p}\left(x_{2 n}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|x_{2 n+1}-Q^{q} P^{p}\left(x_{2 n}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|\right\} \\
+k \min \left\{\left\|x_{2 n}-Q^{q}\left(x_{2 n+1}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|x_{2 n+1}-P^{p}\left(x_{2 n}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|\right. \\
\left.\left\|x_{2 n}-P^{p} Q^{q}\left(x_{2 n+1}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|Q^{q}\left(x_{2 n+1}\right)-Q^{q} P^{p}\left(x_{2 n}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|\right\} \\
\leq r\left\|x_{2 n}-x_{2 n+1}, u_{2}, u_{3}, \ldots, u_{n}\right\|
\end{gathered}
$$

Advances and Applications in Mathematical Sciences, Volume 19, Issue 11, September 2020
for every non-negative integer n, or,

$$
\begin{gathered}
\min \left\{\left\|x_{2 n+1}-x_{2 n+2}, u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|x_{2 n}-x_{2 n+1}, u_{2}, u_{3}, \ldots, u_{n}\right\|\right\} \\
\leq r\left\|x_{2 n}-x_{2 n+1}, u_{2}, u_{3}, \ldots, u_{n}\right\|
\end{gathered}
$$

for every non-negative integer n.
Since, $(X,\|\cdot, \ldots, \cdot\|)$ is an-normed space, $\left\|x_{2 n}-x_{2 n+1}, u_{2}, u_{3}, \ldots, u_{n}\right\| \neq 0$ for some $u_{2}, u_{3}, \ldots, u_{n}$ in X.

Hence if $\left\|x_{2 n}-x_{2 n+1}, u_{2}, u_{3}, \ldots, u_{n}\right\|<\left\|x_{2 n}-x_{2 n+2}, u_{2}, u_{3}, \ldots, u_{n}\right\|$.
Then we have $\left\|x_{2 n}-x_{2 n+1}, u_{2}, u_{3}, \ldots, u_{n}\right\| \leq r\left\|x_{2 n}-x_{2 n+1}, u_{2}, u_{3}, \ldots, u_{n}\right\|$ $\forall r \in(0,1)$ which is impossible and so, we have, $\left\|x_{2 n+1}-x_{2 n+2}, u_{2}, u_{3}, \ldots, u_{n}\right\| \leq r\left\|x_{2 n}-x_{2 n+1}, u_{2}, u_{3}, \ldots, u_{n}\right\|$.

Similarly, we have $\left\|x_{2 n}-x_{2 n+1}, u_{2}, u_{3}, \ldots, u_{n}\right\| \leq r \| x_{2 n+1}-x_{2 n}, u_{2}$, $u_{3}, \ldots, u_{n} \|$.

Therefore, $\left\|x_{m}-x_{m+1}, u_{2}, u_{3}, \ldots, u_{n}\right\| \leq r\left\|x_{m-1}-x_{m}, u_{2}, u_{3}, \ldots, u_{n}\right\|$ for every non-negative integer m and by Lemma (1.1).

The sequence $\left\{x_{n}\right\}$ converges to some point x_{0} in X, i.e., $\lim _{n \rightarrow \infty} x_{n}=x_{0}$.
Now,

$$
\begin{gathered}
\left\|x_{0}-P^{p}\left(x_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\| \leq\left\|x_{0}-P^{p}\left(x_{0}\right), x_{2 n}\right\|+\left\|x_{0}-x_{2 n}, u_{2}, u_{3}, \ldots, u_{n}\right\| \\
+\left\|x_{2 n+1}-P^{p}\left(x_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\| \\
=\left\|x_{0}-P^{p}\left(x_{0}\right), x_{2 n}\right\|+\left\|x_{0}-x_{2 n}, u_{2}, u_{3}, \ldots, u_{n}\right\| \\
+\left\|P^{p}\left(x_{2 n}\right)-P^{p}\left(x_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\| \\
\rightarrow 0 \text { as } n \rightarrow \infty .
\end{gathered}
$$

Therefore, $\left\|x_{0}-P^{p}\left(x_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|=0 \forall u_{2}, u_{3}, \ldots, u_{n} \in X$, thus x_{0} is a fixed point of P^{p}.

A COMMON FIXED-POINT THEOREM IN LINEAR n-NORMED... 1139

Similarly, x_{0} is also a fixed point of Q^{q} i.e., x_{0} is the common fixed point of P^{p} and Q^{q}.

Next let $k>r$ and to prove the uniqueness of a common fixed point of P^{p} and Q^{q} with $x_{0} \neq y_{0}$. Then, $\left\|x_{0}-y_{0}, u_{2}, u_{3}, \ldots, u_{n}\right\| \neq 0$, for all $u_{2}, u_{3}, \ldots u_{n}$ in X,

$$
\begin{gathered}
\min \left\{\left\|P^{p}\left(x_{0}\right)-Q^{q}\left(y_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|x_{0}-Q^{q}\left(y_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\right. \\
\left\|x_{0}-P^{p}\left(y_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\| \\
\left.\left\|P^{p}\left(x_{0}\right)-Q^{q} P^{p}\left(x_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|x_{0}-Q^{q} P^{p}\left(x_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|\right\} \\
+k \min \left\{\left\|x_{0}-Q^{q}\left(y_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|y_{0}-P^{p}\left(x_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\right. \\
\left\|x_{0}-P^{p} Q^{q}\left(y_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|, \\
\left.\left\|Q^{q}\left(y_{0}\right)-Q^{q} P^{p}\left(x_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|\right\} \leq r\left\|x_{0}-y_{0}, u_{2}, u_{3}, \ldots, u_{n}\right\|
\end{gathered}
$$

or

$$
\begin{aligned}
& \quad k\left\|x_{0}-y_{0}, u_{2}, u_{3}, \ldots, u_{n}\right\| \leq r\left\|x_{0}-y_{0}, u_{2}, u_{3}, \ldots, u_{n}\right\| \\
& \text { i.e., }\left\|x_{0}-y_{0}, u_{2}, u_{3}, \ldots, u_{n}\right\| \leq \frac{r}{k}\left\|x_{0}-y_{0}, u_{2}, u_{3}, \ldots, u_{n}\right\| \text {, }
\end{aligned}
$$

which is impossible.
This proves that P^{p} and Q^{q} have a unique common fixed point. $P^{p}\left(P\left(x_{0}\right)\right)=P^{p}\left(P\left(x_{0}\right)\right)=P\left(x_{0}\right)$, but x_{0} is the unique fixed point of $P^{p}\left(x_{0}\right)$.

So, $P\left(x_{0}\right)=x_{0}$.
Similarly, $Q\left(x_{0}\right)=x_{0}$, and also x is the unique fixed point of P and Q.
Now, $\left\|x_{0}-T x_{0}, u_{2}, u_{3}, \ldots, u_{n}\right\|=\left\|P^{p}\left(x_{0}\right)-Q^{q}\left(T x_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|$.
So,
$\min \left\{\left\|P^{p}\left(x_{0}\right)-Q^{q}\left(T x_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|T x_{0}-P^{p}\left(T x_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|\right.$,

$$
\begin{gathered}
\left\|Q^{q}\left(x_{0}\right)-Q^{q}\left(T^{q} x_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|, \\
\left.\left\|P^{p}\left(T x_{0}\right)-Q^{q} P^{p}\left(T x_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|T^{q} x_{0}-Q^{q} P^{p}\left(T x_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|\right\} \\
+k \min \left\{\left\|T x_{0}-Q^{q}\left(T^{q} x_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|T^{q} x_{0}-P^{p}\left(T x_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\right. \\
\left\|T x_{0}-P^{p} Q^{q}\left(T^{q} x_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|, \\
\left.\left\|Q^{q}\left(T^{q} x_{0}\right)-Q^{q} P^{p}\left(T x_{0}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|\right\} \leq r\left\|x_{0}-T x_{0}, u_{2}, u_{3}, \ldots, u_{n}\right\|
\end{gathered}
$$

or,

$$
k\left\|T x_{0}-T^{q} x_{0}, u_{2}, u_{3}, \ldots, u_{n}\right\| \leq r\left\|x_{0}-T x_{0}, u_{2}, u_{3}, \ldots, u_{n}\right\|
$$

or

$$
k\left\|T x_{0}-T^{q} x_{0}, u_{2}, u_{3}, \ldots, u_{n}\right\| \leq \frac{r}{k}\left\|x_{0}-T x_{0}, u_{2}, u_{3}, \ldots, u_{n}\right\|
$$

which gives,

$$
\left\|x_{0}-T x_{0}, u_{2}, u_{3}, \ldots, u_{n}\right\|=0
$$

Thus,

$$
x_{0}=T x_{0}
$$

Hence x_{0} is the unique common fixed point of T, P and Q.
Corollary 2.1. If I, P and Q are three operators mapping a complete n normed space $(X,\|\cdot, \ldots, \cdot\|)$ to itself be sequentially continuous and if for all $x, y, u_{2}, u_{3}, \ldots, u_{n}$ in X
(i) $\quad \min \left\{\left\|P^{p}(x)-Q^{q}(y), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|I_{x}-P^{p}\left(I_{x}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|\right.$, $\left\|I_{y}-Q^{q}\left(I_{y}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|$, $\left.\left\|P^{p}\left(I_{x}\right)-Q^{q} P^{p}\left(I_{x}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|I_{y}-Q^{q} P^{p}\left(I_{x}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|\right\}$ $+k \min \left\{\left\|I_{x}-Q^{q}\left(I_{y}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|I_{y}-P^{p}\left(I_{x}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|\right.$,

$$
\left.\left\|I_{x}-P^{p} Q^{q}\left(I_{y}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|Q^{q}\left(I_{y}\right)-Q^{q} P^{p}\left(I_{x}\right), u_{2}, u_{3}, \ldots, u_{n}\right\|\right\}
$$

$$
\leq r\left\|x-y, u_{2}, u_{3}, \ldots, u_{n}\right\|
$$

Advances and Applications in Mathematical Sciences, Volume 19, Issue 11, September 2020

A COMMON FIXED-POINT THEOREM IN LINEAR n-NORMED... 1141
where $r \in(0,1)$ and k is a real number and I is an Identity operator.
(ii) $\left\|I_{x}-I_{y}, u_{2}, u_{3}, \ldots, u_{n}\right\| \leq\left\|x-y, u_{2}, u_{3}, \ldots, u_{n}\right\|$
(iii) $I P^{P}=P^{p} I$

$$
I Q^{q}=Q^{q} I
$$

then there exists a unique common fixed point of I, P and Q if $k>r$.
Proof. If $I(x)=x \forall x \in X$, and we take $T=I$ theorem reduces to

$$
\begin{gathered}
\min \left\{\left\|P^{p}(x)-Q^{q}(x), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|x-P^{p}(x), u_{2}, u_{3}, \ldots, u_{n}\right\|\right. \\
\left\|y-Q^{q}(y), u_{2}, u_{3}, \ldots, u_{n}\right\| \\
\left.\left\|P^{p}(x)-Q^{q} P^{p}(x), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|y-Q^{q} P^{p}(x), u_{2}, u_{3}, \ldots, u_{n}\right\|\right\} \\
+k \min \left\{\left\|y-Q^{q}(y), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|y-P^{p}(x), u_{2}, u_{3}, \ldots, u_{n}\right\|\right. \\
\left.\left\|x-P^{p} Q^{q}(x), u_{2}, u_{3}, \ldots, u_{n}\right\|,\left\|Q^{q}(x)-Q^{q} P^{p}(x), u_{2}, u_{3}, \ldots, u_{n}\right\|\right\} \\
\leq r\left\|x-y, u_{2}, u_{3}, \ldots, u_{n}\right\|
\end{gathered}
$$

References

[1] R. W. Freese and Y. J. Cho, Geometry of Linear 2-Normed Space, Huntington, Nova Publishers, N. Y., 2001.
[2] S. Gahler, 2-metrische Raume und ihre topologische structure, Math. Nach. 26 (1963), 115-148.
[3] S. Gahler, Lineare 2-Normierte Raume, Math. Nachr. 28(7) (1964), 1-43.
[4] H. Ganawan and M. Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math. 27(3) (2001), 321-329.
[5] H. Ganawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 27(10) (2001), 631-639.
[6] M. Gangopadhyay, M. Saha and A. P. Baisnab, Some fixed point theorems for contractive type mapping in n-Banach spaces, Int. J. Stat. Math. 1(3) (2011), 58-64.
[7] S. S. Kim and Y. J. Cho, Strict convexity in linear n-normed spaces, Demonstr. Math. 29(4) (1996), 739-744.
[8] R. Malceski, Strong n-convex n-normed space, Mat. Bull. 21 (2004), 81-102.
[9] Mehmet KIR and Hukmi Kiziltunc, Some new fixed point theorems in 2-normed spaces, Int. Journal of Math. Analysis 7(58) (2013), 2885-2890.
[10] A. Misiak, n-inner product spaces, Math. Nachr. 140(1) (1989), 299-319.

1142

[11] B. E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Sci. 63 (2003), 4007-4013.
[12] S. L. Singh, Some contractive type principles on 2-metric space and applications, Math. Sem. Notes, Univ. 10 (1982), 197-208.
[13] B. Stephen John and S. N. Leena Nelson, Some fixed point theorems in quasi 2-banach space under quasi weak contractions, International Journal of Mathematical Archive 9(8) (2018), 7-13.

[^0]: 2010 Mathematics Subject Classification: 11D09, 11D99.

