

SOME SEPARATION AXIOMS IN Ngds- CLOSED SETS

K. SAKTHIVEL and K. B. DEVAKI

Department of Mathematics Government Arts College Udumelpet-26, India

Department of Mathematics SNMV CAS Coimbatore-50, India E-mail: devimrudhu@gmail.com

Abstract

The basic objective of this paper is to introduce and investigate the properties of few $Ng\delta s$ -separation in nano topological spaces and studied some of its relation between the existing sets.

1. Introduction

In 1970, Levine [1] introduced the concept of generalized closed sets in topological spaces. The notion of Nano topology was introduced by Lellis Thivagar [2] which was defined in terms of approximations and boundary region of a subset of a universe using an equivalence relation on it and also defined Nano closed sets, Nano-interior and Nano-closure of a set. Sakthivel and Devaki introduced nano generalized δs -closed sets in nano topological spaces. The basic definitions are recalled from the following papers [1], [2], [3], [4], [5], [6], [7], [8], [9].

2. Separation Axioms

In this section, we introduce and study weak separation axioms such as $Ng\delta s T_0$, $Ng\delta s T_1$ and $Ng\delta s T_2$ spaces and obtain some of their properties.

²⁰¹⁰ Mathematics Subject Classification: 54A05.

Keywords: nano topology, Ngôs- closed, Ngôs- T_0 spaces. Ngôs- T_1 spaces, Ngôs- T_2 spaces. Received July 16, 2019; Accepted September 24, 2019

Definition 2.1. A nano topological space U is said to be $Ng\delta s T_0$ space if for each pair of distinct points x and y of U, there exists a $Ng\delta s$ -open set containing one point but not the other.

Theorem 2.2. A nano topological space U is a Ng δ s-T₀ space if and only if Ng δ s closures of distinct points are distinct.

Proof. Let x and y be distinct points of U. Since U is $Ng\delta s \cdot T_0$ space, there exists a $Ng\delta s$ -open set G such that $x \in G$ and $y \notin G$. Consequently, U-G is a $Ng\delta s$ -closed set containing y but not x. But $Ng\delta scl \{y\}$ is the intersection of all $Ng\delta s$ -closed sets containing y. Hence $y \in Ng\delta scl \{y\}$ but $x \notin Ng\delta scl \{y\}$ as $x \notin U-G$. Therefore, $Ng\delta scl \{x\} \neq Ng\delta scl \{y\}$.

Conversely, let $Ng\delta scl \{x\} \neq Ng\delta scl \{y\}$ for $x \neq y$. Then there exists at least one point $z \in U$ such that $z \in Ng\delta scl \{x\}$ but $z \notin Ng\delta scl \{y\}$. We claim $x \notin Ng\delta scl \{y\}$, because if $x \in Ng\delta scl \{y\}$ then $\{x\} \subset Ng\delta scl \{y\}$ implies $Ng\delta scl \{x\} \subset Ng\delta scl \{y\}$. So $z \in Ng\delta scl \{y\}$ which is a contradiction. Hence $x \notin Ng\delta scl \{y\}$, which implies $x \in U - Ng\delta scl \{y\}$, which is a $Ng\delta s$ -open set containing x but not y. Hence U is $Ng\delta s$ - T_0 space.

Theorem 2.3. If $f : U \to V$ is a bijection strongly Ng δs - open and U is Ng δs - T_0 space, then V is also Ng δs - T_0 space.

Proof. Let y_1 and y_2 be two distinct points of V. Since f is bijective there exist distinct points x_1 and x_2 of U such that $Ng\delta s$ - T_0 and $f(x_1) = y_1$ and $f(x_2) = y_2$. Since U is $Ng\delta s$ - T_0 space there exists a $Ng\delta s$ -open set G such that $x_1 \in G$ and $x_2 \notin G$.

Therefore $y_1 = f(x_1) \in f(G)$ and $y_2 = f(x_2) \notin f(G)$. Since f being strongly $Ng\delta s$ -open function, f(G) is $Ng\delta s$ -open in V. Thus, there exists a $Ng\delta s$ -open set f(G) in V such that $y_1 \in f(G)$ and $y_2 \notin f(G)$. Therefore V is $Ng\delta s$ - T_0 space.

Definition 2.4. A nano topological space U is said to be $Ng\delta s$ - T_1 space if for any pair of distinct points x and y, there exist a $Ng\delta s$ -open sets G and Hsuch that $x \in G$, $y \notin G$ and $x \notin H$, $y \in H$.

Theorem 2.5. A nano topological space U is Ng δs - T_1 space if and only if singletons are Ng δs - closed sets.

Proof. Let U be a Ng δs - T_1 space and $x \in K$. Let $y \in K - \{x\}$. Then for $x \neq y$, there exists Ng δs -open set K_y such that $y \in K_y$ and $x \notin K_y$. Consequently, $y \in K_y \subset U - \{x\}$. That is $U - \{x\} = [fK_y : y \in K - \{x\}g]$, which is Ng δs -open set. Hence $\{x\}$ is Ng δs -closed set.

Conversely, suppose $\{x\}$ is $Ng\delta s$ -closed set for every $x \in U$. Let x and $y \in U$ with $x \neq y$. Now $x \neq y$ implies $y \in K - \{x\}$. Hence $K - \{x\}$ is $Ng\delta s$ -open set containing y but not x. Similarly, $K - \{y\}$ is $Ng\delta s$ -open set containing x but not y. Therefore U is $Ng\delta s$ - T_1 space.

Theorem 2.6. The property being Ng δs - T_1 space is preserved under bijection and strongly Ng δs - open function.

Proof. Let f: U, V be bijective and strongly $Ng\delta s$ - open function. Let U be a $Ng\delta s$ - T_1 space and y_1, y_2 be any two distinct points of V. Since f is bijective there exist distinct points x_1, x_2 of U such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Now U being a $Ng\delta s$ - T_1 space, there exist $Ng\delta s$ - open sets G and H such that $x_1 \in G, x_2 \notin G$ and $x_1 \notin H, x_2 \in H$. Therefore $y_1 = f(x_1) \in f(G)$ but $y_2 = f(x_2) \notin f(G)$ and $y_2 = f(x_2) \in f(H)$ and $y_1 = f(x_1) \notin f(H)$. Now f being strongly $Ng\delta s$ -open, f(G) and f(H) are $Ng\delta s$ -open subsets of V such that $y_1 \in f(G)$ but $y_2 \notin f(G)$ and $y_2 \notin f(G)$ and $y_2 \in f(H)$ and $y_1 \notin f(H)$. Hence V is $Ng\delta s$ - T_1 space.

Theorem 2.7. Let $f: U \to V$ be bijective and Ng\deltas-open function. If U is Ng\deltas- T_1 and TNg\deltas space, then V is Ng\deltas- T_1 space.

Proof. Let y_1 , y_2 be any two distinct points of V. Since f is bijective there exist distinct points x_1 , x_2 of U such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$ Now U being a Ng δs - T_1 space, there exist Ng δs -open sets G and H such that $x_1 \in G$, $x_2 \notin G$ and $x_1 \notin H$, $x_2 \in H$. Therefore $y_1 = f(x_1) \in f(G)$ but $y_2 = f(x_2) \notin f(G)$ and $y_2 = f(x_2) \in f(H)$ and $y_1 = f(x_1) \notin f(H)$. Now U is

Ng δs -space which implies G and H are nano open sets in U and f is Ng δs -open function, f(G) and f(H) are Ng δs -open subsets of V. Thus there exist Ng δs -open sets such that $y_1 \in f(G)$ but $y_2 \notin f(G)$ and $y_2 \in f(H)$ and $y_1 \notin f(H)$. Hence V is Ng δs - T_1 space.

Theorem 2.8. If $f : U \to V$ is Ng δs -continuous injection and V is NT_1 then U is Ng δs - T_1 space.

Proof. Let $f: U \to V$ be Ng δ s- continuous injection and V be NT_1 . For any two distinct points x_1, x_2 of U there exist distinct points y_1, y_2 of V such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since V is NT_1 space there exist nano open sets G and H in V such that $y_1 \in G$, $y_2 \notin G$ and $y_1 \notin H$, $y_2 \in H$. That is $x_1 \in f^{-1}(G), x_1 \notin f^{-1}(H)$ and $x_2 \in f^{-1}(H), x_2 \notin f^{-1}(G)$. Since f is Ng δ s- continuous $f^{-1}(G), f^{-1}(H)$ are Ng δ s- open sets in U. Thus, for two distinct points x_1, x_2 of U there exist Ng δ s- open sets $f^{-1}(G)$ and $f^{-1}(H)$ such that $x_1 \in f^{-1}(G), x_1 \notin f^{-1}(H)$ and $x_2 \in f^{-1}(H), x_2 \notin f^{-1}(G)$. Therefore U is Ng δ s- T_1 space.

Theorem 2.9. If $f : U \to V$ is Ng δs -irresolute injective function and V is Ng $\delta s T_1$ space then U is Ng δs - T_1 space.

Proof. Let x_1, x_2 be pair of distinct points in U. Since f is injective there exist distinct points y_1, y_2 of V such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since Vis $Ng\delta s$ - T_1 space there exist $Ng\delta s$ -open sets G and Y in V such that $y_1 \in G, y_2 \notin G$ and $y_1 \notin H, y_2 \in H$. That is $x_1 \in f^{-1}(G), x_1 \notin f^{-1}(H)$ and $x_2 \in f^{-1}(H), x_1 \notin f^{-1}(G)$. Since f is $Ng\delta s$ -irresolute $f^{-1}(G), f^{-1}(H)$ are $Ng\delta s$ -open sets in U. Thus, for two distinct points x_1, x_2 of U there exist $Ng\delta s$ -open sets $f^{-1}(G)$ and $f^{-1}(H)$ such that $x_1 \in f^{-1}(G), x_1 \notin f^{-1}(H)$ and $x_2 \in f^{-1}(H), x_2 \notin f^{-1}(G)$. Therefore U is $Ng\delta s$ - T_1 space.

Definition 2.10. A nano topological space U is said to be $Ng\delta s$ - T_2 space if for any pair of distinct points x and y, there exist disjoint $Ng\delta s$ -open sets Gand H such that $x \in G$ and $y \in H$.

1524

Advances and Applications in Mathematical Sciences, Volume 18, Issue 11, September 2019

Theorem 2.11. If $f : U \to V$ is Ng δs -continuous injection and V is NT_2 then U is Ng δs - T_2 space.

Proof. Let $f: U \to V$ be Ng δ s- continuous injection and V be NT_2 . For any two distinct points x_1, x_2 of U there exist distinct points y_1, y_2 of V such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since V is NT_2 space there exist disjoint nano open sets G and H in V such that $y_1 \in G$ and $y_2 \in H$. That is $x_1 \in f^{-1}(G)$ and $x_2 \in f^{-1}(H)$. Since f is Ng δ s- continuous $f^{-1}(G), f^{-1}(H)$ are Ng δ s- open sets in U. Further f is injective, $f^{-1}(G)f^{-1}(H) = f^{-1}(GH)$ $= f^{-1}(\emptyset) = \emptyset$. Thus, for two disjoint points x_1, x_2 of U there exist disjoint Ng δ s- open sets $f^{-1}(G)$ and $f^{-1}(H)$ such that $x_1 \in f^{-1}(G)$ and $x_2 \in f^{-1}(H)$. Therefore U is Ng δ s-T₂ space.

Theorem 2.12. If $f : U \to V$ is Ngδs-irresolute injective function and V is Ngδs- T_2 space then U is Ngδs- T_2 space.

Proof. Let x_1, x_2 be pair of distinct points in U. Since f is injective there exist distinct points y_1, y_2 of V such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since Vis $Ng\delta s \cdot T_2$ space there exist disjoint $Ng\delta s$ open sets G and H in V such that $y_1 \in G$ and $y_2 \in H$. That is $x_1 \in f^{-1}(G)$ and $x_2 \in f^{-1}(H)$. Since f is $Ng\delta s$ -irresolute injective $f^{-1}(G), f^{-1}(H)$ are distinct $Ng\delta s$ -open sets in U. Thus, for two disjoint points x_1, x_2 of U there exist disjoint $Ng\delta s$ -open sets $f^{-1}(G)$ and $f^{-1}(H)$ such that $x_1 \in f^{-1}(G)$ and $x_2 \in f^{-1}(H)$. Therefore U is $Ng\delta s \cdot T_2$ space.

Definition 2.13. A nano topological space U is called $N\delta$ - $T_3/4$ if every Ng\deltas- closed set in it is N\delta- closed.

Theorem 2.14. For a nano topological space U, if U is a $N\delta$ - $T_3/4$ space, then every nano singleton set $\{x\}$ is N δ -open or N δ -closed.

Proof. Suppose U is a $N\delta T_3/4$ space. If $\{x\}$ is not N δ -closed, then $U - \{x\}$ is not N δ -open. Then the only N δ -open set containing $U - \{x\}$ is U.

Therefore $U - \{x\}$ is Ng δs -closed set of U. Since U is a N δ - $T_3/4$ space, $U - \{x\}$ is N δ -closed, which implies $\{x\}$ is N δ -open.

Theorem 2.15. Every $N\delta$ - $T_3/4$ space is $NT_3/4$ space.

Proof. Follows from the fact that every $N\delta g$ -closed set is $Ng\delta s$ -closed set.

Definition 2.16. A subset A of U is No-nowhere dense if Nint $(Ncl(A)) = \emptyset$.

Lemma 2.17. For a nano topological space U the following are valid

(1) Every nano singleton set is $N\delta$ - pre closed or $N\delta$ - open in U.

(2) Every nano singleton set is Nô-nowhere dense or Nô-pre open in U.

Theorem 2.18. For a nano topological space the following are equivalent U is $N\delta$ - $T_3/4$ space.

(1) Every $N\delta$ -pre closed singleton set of U is $N\delta$ -closed.

(2) Every non N δ - open singleton set of U is N δ - closed.

Proof (i) \Rightarrow (ii) Let $x \in U$ and $\{x\}$ be $N\delta$ -pre closed in U. By above lemma, $\{x\}$ is not $N\delta$ -open and hence by theorem 2.3.2, $\{x\}$ is $N\delta$ -closed. (ii) \Rightarrow (i) If $\{x\}$ is not $N\delta$ -open for some $x \in U$, then by lemma 2.3.5, it is $N\delta$ -pre closed and by (ii) it is $N\delta$ -closed. Hence U is $N\delta$ - $T_3/4$ space.

(ii) \Rightarrow (iii) If $\{x\}$ is not N δ -open for some $x \in U$, by lemma 2.3.5, $\{x\}$ is N δ -pre closed and by (ii), it is N δ -closed.

(iii) \Rightarrow (ii) Let $\{x\}$ be N δ -pre closed in $\{x\}$. By lemma 2.3.5, $\{x\}$ is not N δ - open and hence by (iii), it is N δ - closed.

Definition 2.19. A nano topological space U is called $N\delta$ - $T_{1/2}$ space if every Ng\deltas- closed set in it is nano semi closed.

Theorem 2.20. For a nano topological space U the following conditions are equivalent

(1) U is $N\delta$ - $T_{1/2}$ space.

(2) Every nano singleton set is either N δ - closed or nano semi open.

Proof (i) \Rightarrow (ii). If $\{x\}$ is not N\delta-closed, then $U - \{x\}$ is not N\delta-open. Then the only N\delta-open set containing $U - \{x\}$ is U. Therefore $U - \{x\}$ is Ng δ s-closed set in U. By (i), $U - \{x\}$ is nano semi closed, which implies $\{x\}$ is nano semi open.

(ii) \Rightarrow (i) Let $A \subseteq U$ be $Ng\delta s$ -closed set and $x \in NScl(A)$. Then consider the following cases

Case (1). Let $\{x\}$ be $N\delta$ -open. Since $x \in NScl(A)$, then $\{x\} \cap NScl(A) \neq \emptyset$. This implies $x \in A$.

Case (2): Let $\{x\}$ be $N\delta$ -closed. Assume that $x \notin A$, then $x \in NScl(A) - A$, which implies $\{x\} \subset NScl(A) - A$. This is not possible according to Theorem 2.2.9. This shows that, $x \in A$.

So in both cases, $NScl(A) \subset A$. Since the reverse inclusion is trivial, implies NScl(A) = A. Therefore A is nano semi closed.

Theorem 2.21. Every Ng δs - $T_{1/2}$ space is Ng δs - $T_{1/2}$ space.

Proof. Let U be a $N\delta$ - $T_{3/4}$ space. Then by Theorem 2.3.2, every nano singleton set of U is $N\delta$ -open or $N\delta$ -closed. But every $N\delta$ -open set is nano semi open set. Thus every nano singleton set of U is nano semi open or $N\delta$ -closed. By Theorem 2.3.8, U is $Ng\delta s$ - $T_{1/2}$ space.

Theorem 2.22. Every Ng δs - $T_{1/2}$ space is nano semi - $T_{1/2}$ space.

Proof. Let A be Nsg-closed subset of U. Since every Nsg-closed set is Ng δ s-closed and U is Ng δ s- $T_{1/2}$ space, implies A is nano semi closed. Hence U is nano semi $-T_{1/2}$.

Theorem 2.23. For any nano topological space U

(1) NSO $(U) \subset Ng \, \delta sO(U)$.

(2) A space U is $N\delta T_{1/2}$ space if and only if $NSO(U) = Ng\delta sO(U)$.

Proof. (i) if U is nano semi open, then U - A is nano semi closed. So U - A is $Ng\delta s$ -closed, this implies A is $Ng\delta s$ -open. Hence $SO(U) \subset Ng\delta sO(U)$. (ii) Let A be a $Ng\delta s$ - $T_{1/2}$ space and $A \in Ng\delta sO(U)$. Then U - A is $Ng\delta s$ -closed set. By hypothesis, U - A is nano semi closed and hence $A \in SO(U)$. Therefore $Ng\delta sO(U) \subset NSO(U)$. By (i), $NSO(U)C \subset Ng\delta sO(U)$. Therefore $NSO(U) = Ng\delta sO(U)$.

Conversely, let $NSO(U) = Ng \delta sO(U)$ and A be a $Ng \delta s$ -closed set. Then U - A is $Ng \delta s$ - open. Hence U - A is nano semi open, which implies A is nano semi closed. Thus every $Ng \delta s$ - closed set is nano semi closed. Therefore U is $Ng \delta s$ - $T_{1/2}$ -space.

Lemma 2.24. For a space U the following are equivalent

(1) Every $N\delta$ - pre open singleton set is $N\delta$ - closed.

(2) Every nano singleton set is $N\delta$ -nowhere dense or $N\delta$ -closed.

Proof (i) \Rightarrow (ii). By Lemma 2.3.5, every nano singleton set is either $N\delta$ -nowhere dense or $N\delta$ - pre open. In the first case we are done and in the second case $N\delta$ -closedness follows from the assumption.

(ii) \Rightarrow (i) Let $\{x\}$ be N\delta-pre open. Assume that $\{x\}$ is not N\delta-closed. Then by (ii), it is N\delta-nowhere dense. Thus $\{x\} \subset N$ int $(N\delta cl\{x\}) = \emptyset$, which is not possible. Hence $\{x\}$ is N\delta-closed.

Theorem 2.25. For a space U the following are equivalent

(1) U is $N\delta$ - T_1 space.

(2) U is $N\delta$ - $T_{3/4}$ space and every singleton set is $N\delta$ -nowhere dense or $N\delta$ -closed.

(3) U is $N\delta T_{3/4}$ space and every $N\delta$ - pre open singleton set is $N\delta$ - closed.

Proof (i) \Rightarrow (ii). Obvious.

(ii) \Rightarrow (i) If nano singleton set is not $N\delta$ - closed, then it must be $N\delta$ - open, since U is $N\delta$ - $T_{3/4}$ - space. But nano singleton set is $N\delta$ - open if and only if it is nano regular open, which implies singleton set is nano regular open. Moreover, by rest of assumption U is $N\delta$ - nowhere dense at the same time, U must be $N\delta$ - T_1 - space. (ii) \Rightarrow (iii) Follows from Lemma 2.3.15.

References

- [1] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, (2),19, 89.
- [2] Thivagar Lellis and C. Richard, On nano forms of weekly open sets, Int. J. Math. Stat. Invev. 1(1) (2013), 31-37.
- [3] Thivagar Lellis, Saeid Jafari and V. Sutha Devi, On New Class of Contra Continuity in Nano Topology.
- [4] M. Mohammed, Khalaf and Karal N. Nimer, Nano PS-open sets and nano PS-continuity, International Journal of Contemporaray Mathematical Sciences 10 (1) (2015), 1-11.
- [5] A. Nasef, A. I. Aggour and S. M. Darwesh, On some classes of nearly open sets in nano topological space, Journal of Egyptian Mathematical Society 24 (2016), 585-589.
- [6] Z. Pawalk, Rough sets, Int. J. Comput. Inf. Sci. 11(5) (1982), 341-356.
- [7] Z. Pawalk, Rough sets, Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Boston, 1991.
- [8] A. Revathy and G. Illango, On nano-open sets, Int. J. Eng. Contemp. Math. Sci. 1(2) (2015), 1-6.
- [9] P. Sathishmohan, V. Rajendran, A. Devika and R. Vani, On nano semicontinuityandnano pre-continuity, International Journal of Applied Research 3(2) (2017), 76-79.