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Abstract 

In multivariate data analysis, Fisher‟s linear discriminant analysis is pretty common tool 

for classification of late, with the rise of machine learning techniques, advanced nonlinear 

classification tools like kernel Fisher discriminant Analysis, quadratic discriminant analysis etc. 

have also been introduced. In this article we try to revisit Fisher‟s trailblazing experiment of 

statistical classification on Irish data (1936), where measurement are recorded on four distinct 

variables of three species of Iris genus. We take a discourse to this classical experiment through 

several linear/nonlinear classification techniques, along with a comparative documentation on 

misclassification errors. Also we venture on the segregation of species via four variables, 

bunched in possible combinations, viz., taking single variable/two variables/three variables/four 

variables in construction of classification rule. 

1. Introduction 

Statistical Classification is a methodology where we endeavour to 

categorize a random observation under a specified class out of given number 

of classes. The main goal of a classification problem is to identify a category 

or class to which a new observation can be assigned to. An algorithm that 

enacts classification, especially in a concrete implementation, is known as a 

classifier. The term classifier refers to the mathematical function, validated 

by a classification algorithm that maps the input data to a prefixed category. 

The entire idea of classification theory originates from statistical learning 

mechanism where the system receives data (observations) as input and 
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outputs a function that can be used to predict some features of future data. So 

borrowing upon the idea of statistical learning theory, given, say a data set 

with two classes, the quest of classification is to label the best set of features 

of the classes in order to discriminating between the two classes. 

Statistically speaking, in classification theory we would search for a 

subspace (or sub-manifold) which separates the classes as much as possible 

while the data become as spread as possible. In computer sciences, support 

vector machine (SVM) (Vapnik [13]) works on almost same mechanism as 

statistical learning theory. In SVM, an optimal separating hyper plane is 

searched one subset of training samples, namely, the support vectors.  

However in particular case, this separating plane may be considered as a 

single dimension separating line, viz.,   .bxx  wf  The input vector x 

classifies to the first class if   0xf  and x falls to second class if   .0xf  

In statistics such a function is called a linear discriminant function (LDA). 

But it should be kept in mind that linear discriminant analysis produces the 

optimal discriminant linear functions when each of the labeled class data are 

assumed to be distributed normally. On the other hand, in SVM there is no 

such distributional assumption on the data. The seminal work in statistical 

learning theory is the inception of linear discriminant analysis which was 

first disseminated by Sir. Ronald Aylmer Fisher.  

In order to cater an objective of linear separation of two classes, Fisher 

(1890-1962) who adopted the idea of between class variance maximization. 

One can extend the two class Fisher‟s discriminant function in categorizing k 

classes as well. But this traditional Fisher‟s method fails in case of a 

nonlinear class separability. To extract the nonlinear discriminant features, 

Mika et al. (1999) used kernel function as a class separable tool and hence 

introduced a new area termed kernel discriminant analysis. A little later, 

taking the cue from SVM technique, Baudat et al. [4] improvised kernel 

method to Generalized Dicriminant Analysis (GDA) which provides a 

mapping of the input vectors into high dimensional feature space. Although 

the idea of discriminant analysis was set forth by R. A. Fisher the 

development of the same has been burgeoned by the computer scientists. 

Fisher‟s path breaking paper, on linear discriminant analysis [7] 

introduced the well-known Iris flower data set to the audience. Fisher‟s work 
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concentrates on the supervised classification methods for different 

morphologic variations of three related species of Iris flowering plants, 

namely, Iris setosa, Iris versicolor and Iris virginica, where the separation of 

the species have been done through four morphological characters (variables). 

Even though, Fisher‟s formative article harboured a novel statistical idea, 

stemmed from Iris flower set, till now no significant works have been invoked 

towards the further extensive classification study on the said data set. 

This article delivers a comparative testimony of the several statistical 

classification techniques exerted on Iris data. Apart from the usual 

traditional linear discriminant analysis here we include quadratic 

discriminant analysis from parametric classification methods. Additionally, 

as an advanced nonparametric classification tools, we execute Kernel Fisher‟s 

Discriminant Analysis (KFDA) and Kernel Discriminant Analysis (KDA) on 

the data. Not only the classification method employed on all variables (as 

done in Fisher‟s well acclaimed paper) but also we perform separation, 

bunching out every possible combination of variables, e.g., taking two 

variables one at a time, three variables one at a time and finally the entire 

group of variables. In each separative method, done by the virtue of several 

combinations of variables, we report misclassification errors as well. 

We believe that this way of critically re-excavating Iris data from the 

standpoint of several discriminant analysis schemes would train unlabeled 

information, (hidden in the data), to labeled classes which helps to 

understand the inter relationship of the flowering variable in identifying the 

species. Also, this effort would inspire budding researchers to introspect any 

data oriented classification problem through the traditional statistical 

techniques rather not hurling ideas from machine learning tools.  

This short article is organized as follows. A primary description on 

Fisher‟s Irish data is furnished in section 2. Section 3 briefly discusses the 

theories of separation techniques which are used. Section 4 unravels the 

analysis and exploration on Iris data with the corresponding misclassification 

errors. Finally, section 5 concludes this article with few directions to future 

studies.  

2. Brief Description of Iris Data 

Iris, named after the Greek Goddess, is easy-to-grow perennial plants 
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with elegant, colorful flowers. It grows during early summer in northern 

hemisphere zones, spreading across Europe, northern Asia and northern 

America, specially where the climate is cold, dry and semi-desert. There are 

some 300 species in the genus Iris. These distinctive, six-petaled flowers have 

three outer hanging petals (called “falls”) and three inner upright petals 

(called “standards”). 

Fisher, in his pioneering paper,” The use of multiple measurements in 

taxonomic problems” (1936), considered measurements of the flowers of fifty 

plants on each of the three species I. setosa, I. versicolor and I. virginica, 

found growing together in the same colony. For each of the flower, four 

flowering measurements, viz., sepal length  ,1X  sepal width  ,2X  petal 

length  3X  and petal width  4X  are furnished in the Fisher‟s data. All 

measurements are given in centimeters. 

As a beginner‟s stepping stone, first we furnish pairs plot which allows to 

visualize the distribution of single variable as well as relationship between 

two variables through the matrix of association. Three colors (red, green and 

blue) are used for setosa, versicolor, and virginica respectively. The figure 

below displays possible two-dimensional projections of multidimensional data 

(in this case, four dimensional). The plot projects the distinctiveness of each 

feature across the three species so that most of the variables could be used to 

predict the species. It is pretty clear that I. setosa (cluster of red dots) 

distinguishes itself from the other two by dint of those four variables. Also I. 

versicolor (blue) and I. virginica (green) are to some extent alike on the basis 

of the same. 

 

Also Person‟s product moment correlation for the pairs of four variables 
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are recorded on the top of each cell in pair matrix plot. The correlation exhibit 

the degree of association among the variables e.g., petal width  4x  and petal 

length  3x  are strongly positively associated whereas weak negative 

correlation is present between sepal length  1x  and sepal width  .2x  

Since the scatter matrix (pairs plot) reveals internal association within 

the variables whether weak or strong, an intuitive guess may be developed to 

introspect on the separation of species by means of two variables, three 

variables and finally by the set of four variables.  

3. Descriptions of the Techniques Adopted 

In effort to classify the species of Iris data through the successive 

bunching of four variables we employ four different types of techniques-

Linear Discriminant Analysis (LDA), Kernel Fisher‟s Discriminant Analysis 

(KFDA) or Generalized Discriminant Analysis (GDA) and Kernel 

Discriminant Analysis (KDA) among which LDA and QDA methods are 

parametric while KFDA / GDA and KDA methods are the nonparametric 

methods of classification. For each method, to gauge errors committed we 

report misclassification rate (probability). 

Definition 1. Misclassification Rate. In statistical terminology, 

„misclassified‟ explains that one object coming from one class gets assigned to 

a different class by means of a classification technique. Misclassification rate 

is calculated using the following formula. 

Misclassification rate 
n

a

n

b
 1  

where n  total number of object to be classified, a  number of object 

classified correctly and b  number of objects. Quite intuitively lower the 

misclassified error better is the classification rule. 

The following subsections sketch a brief theoretical discussion on each 

methods of classification, adopted here.  

Linear Discriminant Analysis (LDA) 3.1. Suppose we have N classes 

and thi   class denoted by the class level i  where .,,2,1 Ni   The 

objects are classified on the basis of q associated random variables 
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 .,,, 21 qXXX X  The observed values of X differ from one class to 

another if  and Nipi ,,2,1,   denoted the probability density function 

and the prior probability respectively of the thi  class. In case of 

nonavailability of prior probabilities, pi‟s are considered equi-probable for 

each class. Let X be the observation to be assigned among any of N classes. In 

LDA the parametric assumption to be undertaken is that probability density 

function for any thi  family is multivariate Gaussian, i.e.    ,,~ iii Nxf    

Ni ,,2,1   where i  and i  are the mean vector and covariance matrix 

correspond to thi  class. Consider that, the covariance matrices are equal for 

all class which is ., 21 n   The linear discriminant scores 

are thereby calculated through the following formula  

  .,,2,1,lnˆˆ
2

1
ˆ 11 Nipd iiiiiii    xx  

A specific observation x will be allocated to the g  if the linear score 

        .,,,Largest 21 xxxx Ng dddd   

In general the mean vector i  and covariance matrix i  are unknown. 

For classification of training data set, the mean vectors and covariance 

matrices for each class are estimated from training sample date. i̂  and i̂  

are the sample mean vector and sample covariance matrix of the ith class and 

  is replaced by the pooled estimate .pooled  

    1 2
1 2

1 ˆ ˆ1 1 .pooled N N
N

n n
n n n N

       
  




 

ip  is replaced by the sample proportion ,ˆ
n

n
p i

i   where 
1

.
N

ii
n n


  

The estimated linear discriminant score, then  xid̂  is given by 

  .,2,1,lnˆˆ
2

1
ˆˆ 11 Nipd iipoolediii    xx  

x will be allocated to the g if the linear score   xgd̂ Largest 

      .ˆ,,ˆ,ˆ
21 xxx Nddd   Fisher proposed an extension of LDA where 
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discrimination of the population can be done by taking few linear 

combination of the observed variables, viz., ,,, 321 XXX    The 

advantages of this method are dimension reduction, visual inspection of the 

population groups and also helping to find any abnormalities in the data by 

plotting against the first two discriminants. 

The Fisher‟s criterion is the maximization of the following ratio with 

respect to ,  

  ,










V

B
J  

where B is the between class sum of square,       ii
N
iB 1  

where, i
N
i  1  and V is the within class sum of square, 

  .11 ii
N
i nV    ‟s are taken as the eigenvectors of the BV 1  matrix 

which maximize the ratio   ,,,, 21 sJ    where   ppNs ,,1min   

is the number of variables, are the eigenvalues .1BV   then x1  is the first 

discriminant, whereas x2  being the second discriminant and so on. In 

linear discriminant plot, LD1 and LD2 denote the first and second 

discriminant respectively.  

Quadratic Discriminant Analysis (QDA) 3.2. Similar to LDA, in 

Quadratic discriminant analysis method, probability density function thi  

class is also considered as the normal density. 

    ,,,2,1,,~ NiNf iii x  

where i  and i  are the mean vector and covariance matrix correspond 

to thi  class. But, in this method Nisi ,,2,1,'   are not assumed to be 

equal for all classes. The quadratic discriminant scores are calculated by the 

following formula  

      .,,2,1ln
2

1
 ln

2

1 1
Nipd ii

i
ii

Q
i




 


 xxx  

x will be allocated to the g  if the quadratic score    xQ
gd Largest of 

     .,, 21 xxx Q
N

QQ ddd  Similar to LDA, the mean vector and covariance matrix 

for thi  are unknown and need to be estimated from train sample data set. In 
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case of nonavailability of true discriminant score, the estimated quadratic 

discriminant score,  xdQ
i

ˆ  might be given by  

      ,,,2,1ˆlnˆˆˆ
2

1
 ln

2

1ˆ 1 Nipd iiiii
Q
i




   xxx  

where ii ̂,̂  and the estimates. 

Kernel Fisher’s Discriminant Analysis (KFDA) 3.3. Kernel Fisher‟s 

discriminant Analysis is a kernelized version of Linear discriminant Analysis 

where kernel function is taken as Gaussian kernel in order to perform 

nonlinear mapping on input data set to the high dimensional feature space 

with linear properties, i.e.,  

  ,: xxxFRn   

where  being the mapping function. In the feature space classes are 

emerged as linearly separable classes (Baudat et al. [4]) Note that the 

mapped observations are centered in the feature space (Schölkopf et al. [11]). 

According to the Fisher‟s classification criterion, maximizing the intra-class 

inertia and minimizes the within-class inertia would produce the following 

ratio measuring the variability between groups values to common variability 

within group values in feature space,  

,
vv

vv

B

V



 (3.1) 

where V and B are the following intra-classes inertia and inter-classes 

inertia in the feature space. We can select a v to maximize the ratio. The 

eigenvector of the largest eigenvalue of VB 1  gives the maximum of the 

above ratio. As because the eigenvectors are linear combinations of feature 

elements, there exist coefficients  ppq nqNp ,,2,1,,2,1,    for 

which 

 
 


N

p

n

q

pqpq

p

x

1 1

v  (3.2) 

Due to the high dimensionality structure directly solving (3.1) is difficult. 
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In order to address this, dot product kernel  ji xxk ,  is used on Hilbert space 

(Aizerman et al. [2], Boser et al. [3]) which can be proposed as follows. 

     jiijji xxkxxk ,  (3.3) 

Dot product kernel requires normalization of the data required, i.e., mean 

zero and equal variance. In terms of the dot product kernel, (3.1) can be 

written as, 

.




KK

KWK




  (3.4) 

Where K is the kernel matrix,   NqNppqKK ,2,1,,,2,1    where 

 
qp njniijpq KK ,,2,1,,,2,1    and W is the block diagonal matrix, 

  NllWW ,,2,1   where lW  the  ll nn   matrix whose all terms are equal 

to .
1

ln
 Using eigenvalue decomposition of kernel matrix,  can be derived 

maximizing (3.4). For detailed derivation of the process, the readers are 

recommended to see Boudat et al. [4]. The projection of the test observation z 

on feature space can be expressed as 

   
 



N

p

n

q

pqpq

p

xkz

1 1

., zv  (3.5) 

Kernel Discriminant Analysis (KDA) 3.4. Kernel discriminant 

analysis is a broader concept which is an extension of Bayesian classification 

rule. Suppose we have N populations (classes) and the class levels are 

denoted by .i  Each population is associated with the probability density 

function if  and the prior probability of the thi  class is .ip  We have an 

unknown test point x and we are to allocate an unknown test point x to one of 

those populations. The Bayes discriminant rule is to allocate x to the 0
j

  class 

if    .maxarg ,2,1
0 xiiNij

fp  

The Kernel Discriminant Rule (KDR) is the Bayes discriminant rule just 

via replacement of if  by its kernel density estimates  
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   


 

i

i

n

j

ijHiii XxKnHxf

1

1;ˆ  

and ip  is replaced by the sample proportion ,
n

ni  where 
1

.
N

ii
n n


  The 

kernel function  xKH  is the probability density function and H is the chosen 

bandwidth matrix which is 7 symmetric and positive definite. The commonly 

used kernel functions are Gaussian, uniform, triangular, Epanechnikov, etc. 

Evidently the choice of bandwidth H plays crucial role for the performance of 

kernel density estimates. Optimal bandwidth can be selected by using the 

Mean Integrated Squared Error (MISE) criterion 

       
d

dfHfEHMISE
R

.;ˆ 2
xxx  (3.6) 

The kernel discriminant rule of classification is hence proposed as to 

allocate x to the 0
j

   class if    .,ˆˆmaxarg ,,2,1
0

iiiij Hfp x  

Usually, standard normal kernel function is employed for estimating 

density function ,if  where  

 

 

,
2

1
exp

2

1

2












 xxxK T

d
 

d being the dimension of the variable x. 

The bandwidth matrix is selected by using the method of Smoothed Cross 

Validation (SCV) (Hall, Marron and Park [9]). The SCV is defined by starting 

with modified version of least square cross validation. HSCV is the minimizer 

of  

      


R
,ˆ21

hBKnhhSCV gg  

where 

 
 

    





ji
jigghhhg XXKKKKKK

nn
hB .2

1

1ˆ
0  

0K  is the Dirac delta function, hK  kernel function with bandwidth h 

and gK  the possibly different kernel functions with bandwidth g. 
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4. Analysis and Exploration on Iris Data Set 

Linear Discriminant Analysis (LDA), Kernel Fisher‟s Discriminant 

Analysis (KFDA), Quadratic Discriminant Analysis (QDA), and Kernel 

Discriminant Analysis (KDA) methods are performed on the entire Iris data 

set by means of four morphological variables 321 ,, XXX  and .4X  For each 

case, misclassification rate tables are reported along with the classification 

plots. 

 classification by taking each of the variable  .,,, 4321 XXXX  

 classification by taking pair of variables  ,,, 413121 XXXXXX  

.,, 434232 XXXXXX   

 classification by taking three variables one at the time 

 .,,, 431432421321 XXXXXXXXXXXX  

 finally classification by taking four variables together 

 .,,, 4321 XXXX  

Misclassification errors are given in the format of fraction. They may be 

otherwise, re-expressed in percentage format. Moreover, which classifying 

rule works best is also enlisted in the misclassification table. Clearly, each 

classification method would provide 1464
4

4

3

4

2

4

1

4




































 

15  plots. Therefore, for the four aforementioned techniques one can expect 

60415   classification plots altogether. Due to space limitation each and 

every plot is not furnished in this article. As a thrusting spirit, we present 

only the separating plot of Linear Discriminant (LDA) function as well as 

Fisher‟s Kernel Discriminant Analysis (KDA) taking all features (variables) 

in formulating classification rule. In contrast to LDA by four variables, KFDA 

using Gaussian kernel successfully separates out three species where I. 

setosa is way apart from the other two species. To be more specific, I. 

versicolor and I. virginica behave almost alike to each other but still, KFDA 

analysis skillfully manages to figure out a separating line in between them. 
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To keep the visual acceleration up, all of the plots are placed in Appendix. 

Note that, since KDA involves estimating density functions we can portray 

KDA separative plot up to three dimensional structure. Beyond three 

dimension drawing plot is impossible. 

Few Technical Details 4.1. The entire exercise is executed by R version 

4:1:0. In LDA and QDA analysis we use the package „MASS‟ while for KFDA 

and KDA, the package „KFDA‟ and „KS‟ are used respectively. In KFDA and 

KDA we use Gaussian kernel,   ,exp,

2






















ji xx

ji xxk  where the scale 

parameter    is chosen as 07. In contrast to KFDA, in KDA we consider 

sample proportions as the estimates of prior probabilities while bandwidth is 

selected by smoothed cross validation technique. For calculating 

misclassification error under KDA we use compare.kda.cv function from the 

package KDA. R codes used for the analysis are available in Github 

repository (https://github.com/Bodhoditya/Iris-R-Codes.git). 

Analysis and Discussion 4.2. 

4.2.1. Case 1 

The classification of four species is done by each of  .,,, 4321 XXXX  

Misclassification errors rates are recorded in the following table. For each 

row(variable), minimum entry is marked by an asterisk  .  
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Table 1. Misclassification rate taking single variable for classification. 

Variable 

taken as 

classifier 

LD

A 

K

FDA 

QD

A 

KD

A 

1X  0.2

533* 

- 0.27

33 

0.2

533* 

2X  0.4

467 

- 0.44

67 

0.4

133* 

3X  0.0

533 

- 0.44

67* 

0.0

467* 

4X  0.0

400* 

- 0.04

00* 

0.0

400* 

For single variable classification KFDA is not possible. The other three 

methods run successfully. Misclassification rate is maximum uniformly in 

every method while separation is done by sepal width  2X  of Iris flower 

while least misclassification error occurs uniformly in classification by petal 

width (X4). KDA appears as the best method retaining minimum 

classification error in all categories over LDA and QDA. 

4.2.2. Case 2  

Next we club any two variables as the key to form a classification rule. 

The possible combinations are  

 .,,,,, 434232413121 XXXXXXXXXXXX  

The misclassification error rate table is given below. Asterisk    means 

for the minimum entry. 

Table 2. Misclassification rate taking pair of variables for classification. 

Variabl

e taken as 

classifier 

LD

A 

KF

DA 

QD

A 

K

DA 

21, XX  0.2

000 

0.1

867* 

0.2

000 

0.

2067 

31, XX  0.0 0.0 0.0 0.
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330* 333* 400 0400 

41, XX  0.0

400 

0.0

330* 

0.0

330* 

0.

0400 

32, XX  0.0

467 

0.0

400* 

0.0

467 

0.

0533 

42, XX  0.0

330* 

0.0

467 

0.0

467 

0.

0600 

43, XX  0.0

400 

0.0

330 

0.0

200* 

0.

0267 

The misclassification rate is minimum for LDA when sepal length  1X  

and sepal width  2X  are combined and the other methods are performing 

neck by neck. 

4.2.3. Case 3 

Now we are considering three features at a time, and                              

the possible combinations are  .,,, 431432421321 XXXXXXXXXXXX  The 

misclassification error rate table given below. 

Table 3. Misclassification rate taking three variables together for 

classification. 

Variable  

taken as 

classifier 

LD

A 

KF

DA 

Q

DA 

KDA 

321 ,, XXX

 

0.0

333 

0.0

267* 

0.0

530 

0.0533 

421 ,, XXX

 

0.0

400 

0.0

200* 

0.0

400 

0.0733 

431 ,, XXX

 

0.0

267 

0.0

200* 

0.0

200* 

0.0267 

432 ,, XXX

 

0.0

200 

0.0

133* 

0.0

267 

0.0400 

Prominently, as the number of variables involved in classifier goes up the 

performance of KFDA grows better in terms of misclassification error over 
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the other techniques. 

4.2.4. Case 4 

Ultimately, we involve all four features together in shaping up a 

classification rule for separating the three Iris species. The misclassification 

error rate table is given below. 

Table 4. Misclassification rate taking four variables together for 

classification. 

Variable LD

A 

KFDA QDA KDA 

4321 ,,, XXXX

 

0.02

00 

0.0067* 0.020

0 

0.0330 

In terms of misclassification error KFDA secures the lowest value, only a 

mere .0067, even though LDA hits closest to KFDA. This is quite persuasive 

as the underlying distribution of Iris data is more or less predominated by 

multivariate Gaussian distribution. Note that, the multivariate Shapiro-Wilk 

test on Iris data yields p-value 0.023(R package mvnormtest). Also, Mardia‟s 

Multivariate normal test based on multivariate skewness and kurtosis 

ensures the multivariate normality of iris data at both 1% and 5% 

significance level. Furthermore, KFDA, defined via Gaussian kernel function, 

would most efficiently handle the non-linearly separable variables in input 

space by having a transformation to the high dimensional, linearly separable 

feature space. 

5. Conclusion 

In this article, we effort to dissect the „famous‟ Iris data through the light 

of few potential statistical classification techniques. The motivation of this 

discourse is to introspect the alikeness and incongruity of three species of Iris 

flower, captured by dint of four distinguished variables, chosen in single, in 

pairs, in threes and ultimately taking all four. Although LDA is 

computationally easier it fails to discriminate three species exclusively by the 

linear combination made on two variables, three variable and four variables 

cases. Specifically, it manages to part I. setosa from the other two in each 

case but falls short in separating I. versicolor and I. virginica. Partition plot, 

done on QDA, affirms below average effectiveness in separative analysis. In 
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contrast, kernel density analysis defined through Gaussian weight function, 

displays fairly distinct separation among three species. Separation by KDA is 

visually reflected by 2D-contour plots and 3D-perspective cubes (vide 

Appendix). Classification plot based on KDA can only be possible for one 

variable case (1-D), two variables case (2-D) and three variables case (3-D). 

Beyond three variables, drawing plot is not possible. Kernel Fisher‟s 

Discriminant Analysis (KFDA) with Gaussian kernel emerges as the most 

efficient classifier for Iris data set. The more the inclusion of variables, better 

is the performance of classification of KFDA. For instance, KFDA plot on 

three variables projects more arrayed arrangement of points than the KFDA 

plot by two variables. In fact in binding three variables, viz., sepal width, 

petal length and petal width, KFDA shows up with minimum 

misclassification error .0133 among all other possible combination of 

variables. Also, while using all four variables in classification KFDA retains 

its superiority with reference to lowest misclassification error. Additionally, it 

is justified from misclassification error tables that for Iris data, sepal width, 

petal length and petal width are the essential morphological traits, inclusion 

of which enhances the effectivity of separating rule. In fact, classification 

among the species would be equally effective if we drop out sepal width from 

3-variable bunching and include sepal length instead (See diagram in 

Annexure 9 for understanding). 

In Iris data set, the association between sepal length and sepal width is 

low just –0.12. This near non-association boosts a reasoning on the non-

importance of both of the sepal measurements (length/width) during analysis. 

In fact a statistician‟s take-home message may be framed as for Iris species 

separation, petal length and petal width play much influential role in 

comparison with the sepal measurements. 

In this analysis we employ Gaussian kernel (symmetric) both in KFDA 

and KDA. But for the interested readers, choice of other types of kernels, 

(symmetric / asymmetric) would always be open. However, the possibility to 

use any desired kernels allows generalizing the method of separation which 

might involve complex algorithm as well as lengthy time. Also one might be 

inquisitive to look forward the best classifier over KFDA. Probabilistic neural 

network (PNN) which is a mapping operator built on a set of input-output 

observations might be a potential recipe. In fact KFDA defines a hyperplane 
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separation globally while PNN surfaces to more specific locally fitted, 

separative hyperplane. 
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Annexure 

1. Classification based on a single variable 

 

2. Classification by Kernel Density Analysis (KDA) 
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3. LDA Classification based on two variables 

 

4. QDA plot taking two variables as classifying rule 

Here, each classification plot is divided by three colors indicating three 

species. Approximate error is also mentioned on top of each graph. 
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5. KFDA plot taking two variables 

 

6. KDA plot taking two variables 
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7. LDA plot taking three variables as classifying rule 

 

8. KFDA plot taking three variables as classifying rule 

 

9. KDA plot taking three variables as classifying rule 

 

 


