
 

Advances and Applications in Mathematical Sciences 
Volume 21, Issue 5, March 2022, Pages 2781-2793 
© 2022 Mili Publications, India 

 

2020 Mathematics Subject Classification: 68T07. 

Keywords: MPPT, PV power, Reinforcement Learning, DQN. 

*Corresponding author; E-mail: ashtoshy12@gmail.com 

Received October 3, 2021; Accepted November 30, 2021 

DEEP Q REINFORCEMENT LEARNING TO IMPROVE 

THE MPPT IN SOLAR CELL 

ASHUTOSH YADAV* and ANINDITA ROY CHOWDHURY
 

School of Engineering and Sciences 

GD Goenka University, Gurugram, India 

E-mail: ashunirban@gmail.com 

anindita.roychowdhury@gdgoenka.ac.in  

Abstract 

The architecture of an MPPT controller assures a steady flow of energy despite having 

different external conditions. Designing a model that can generate the maximum power 

irrespective of the environmental or parametric conditions is most challenging. Reinforcement 

learning with fractional-order is used in this method to get over these drawbacks. Allowing the 

model to be parametric-free, it can be readily implanted in new situations, thanks to Deep Q-

learning Tracking time, peak oscillation, and overall harmonic distortion are all reduced by 

using fractional-order. The model has undergone rigorous testing in controlled environments 

with good outcomes. It is also compared to existing comparison algorithms to track time, THD 

and maximum power. Real-world data from the solcast is used to verify the idea, with New 

Delhi serving as the test site.  

I. Introduction 

Energy is a necessity for human survival and development, yet worldwide 

supply is in short supply. As a result, researchers are becoming more 

concerned about the environment and looking into renewable energy 

alternatives. Reducing environmental impact and reliance on fossil fuels can 

be accomplished by using a mix of renewable and non-renewable energy 

sources [1]. The sun, which is abundant in dry environments, is the primary 

source of energy [2]. It’s easy to get the most out of a PV generator. A DC/DC 

converter is used by MPPT algorithms to achieve this goal.  

They are known as Highest Power Point Tracking (MPPT) [3] because 
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they always send the maximum amount of power, no matter what the 

circumstances are. In response to variations in PV power, MPPT regulates 

output voltage shifts. In addition, PV systems suffer large losses because to 

output current-voltage nonlinearity. The most common MPPT control 

methods have been replaced by a variety of newer ones throughout time. In 

PV systems, a modified fuzzy-logic (FL) MPPT control scheme and an 

incremental conduction maximum power point tracking (MPPT) algorithm 

with fuzzy controller [4] and a hybrid MPPT control that incorporates a 

modified P&O and an upgraded PSO [6] are among the developed 

methodologies. New MPPT technology is now available for any application 

requiring rapidly changing Artificial Neural Networks (ANN) [7]. The 

majority of these technologies employ models to adapt various PV systems. 

Several issues that emerge when PV panels are connected in various ways 

may be addressed if an accurate model of the PV systems and its features is 

obtained. The author is motivated by a model-free approach.  

AI, machine learning, and robotics all rely on RL, or reinforcement 

learning. Using trial-and-error and self-learning, this technique can handle a 

wide range of real-time problems. Among other things, they’re typically found 

in the fields of robotics, gaming, and industrial control. It integrates adaptive 

control theory with optimal control and nature-inspired algorithms [8]. When 

an agent is constantly interacting with its surroundings, real-time learning 

takes place. It is up to us to either reward (via positive reinforcement) or 

penalise such behaviour (negative feedback for the wrong action). Hence, the 

ideal way to ensure growth and survival is learned by iterative RL [9]. It’s 

worth noting that RL doesn’t require a model of the system or its dynamics to 

reproduce it. Model settings have no effect on this.  

In recent years, the usage of RL to address MPPT issues has skyrocketed. 

A RL-based model was developed by [10] to improve the unpredictability of 

wind speed energy conversion. The MPPT for PV was solved in [11]. The 

learning agent kept an eye on the surrounding conditions and then calculated 

the amount of voltage variation in the PV array. This was understood as a 

command to perform deeds and get benefits in return. Reward-based learning 

takes place again and over again. In order to maximize power output from a 

particular solar array design using the RL MPPT agent, it may automatically 

adjust PV voltage. The learning process in every RL system is guided by the 
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reward function. Either a dense or a sparse reward system is considered to 

exist in the brain. It is difficult to develop dense functions because the state 

size in real-world applications is too large.  

Non-conventional MPP tracking methods have lately gained researchers’ 

interest because of their necessity for resilience and flexibility. The fractional-

order approach is one such example of this. Using fractional derivatives to 

increase tracking effectiveness in changing situations is common practice. 

Fractional calculus is used in this fractional-order control approach. It is one 

of the challenges of FOC to determine the best sequence in which to 

implement a system. Researchers recently studied fractional-order MPPT 

control. A FOINC-MPPT based on incremental conductance is proposed in 

[12]. The fractional integrator’s parameters are optimized using RMO. ESC 

controllers use an integrator and a low pass filter instead of a high pass filter 

[13]. EVSS control may also be used for photovoltaic (PV) systems, which 

employ an incremental conductance algorithm (VFOINC) [14]. Models with a 

sliding mode can be used in real-time applications like wind energy 

conversion [15]. Real-world applications of a POFOSMC [16] perturbation 

observer-based fractional-order sliding-mode controller have been 

documented. Real-world data has been used to validate a number of Artificial 

Neural Network-based models [17, 18].  

A. Research Gap and Contribution  

The author has compiled a list of research gaps that should be addressed.  

1. Reinforcement learning in MPPT reduces the model-parameter 

sensitivity, making the issue easier to solve. The model works well in a wide 

range of climatic conditions without any redesign or retuning of the 

parameters.  

2. This means that Q-learning does not require any models. The agent is 

now guided by their own experiences to take the next move. Method predicts 

state-action value function based on goal policy. This issue is under control 

till the search space is limited. A multi-dimensional search space necessitates 

a database with millions of records. A neural network selects the action using 

Deep Q-Learning, which eliminates this disadvantage.  

3. Non-integer-based fractional-order control systems are often preferred 
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over integer-based ones because they are more accurate and have a more 

distinct spatial domain. 3. The fractional-order approach can address this 

problem.  

The author is prompted by the research gap and propose a novel 

Fractional-order MPPT control algorithm with DQN in reinforcement 

learning for a solar system under partial shading. In order to maintain track 

of MPP, an agent known as RL gets data from 7 sources, including PV power 

and voltage, PV generated power diversion with PV’s planned capability, 

integral of power diversion, coupling voltage, and divergence per unit time 

with reference coupling DC. The agent’s tracking speed is boosted by the 

output of the fractional-order with error and derivative error terms, making 

the method more efficient. Also, it is tested using real data from New Delhi, 

India’s capital city, to confirm that it is accurate.  

Following the motivation, the paper is categorized further in the proposed 

work discussion (section II) and the results’ discussion (section III). The work 

is concluded in section (IV), followed by the references.  

II. Proposed Deep Q Reinforcement Learning to Control MPPT 

The author proposes a fractional RL order to handle the issue of 

maximum power point tracking (MPPT) in PV arrays. With RL, there is no 

need for parametric information on dynamic model parameters. The DQN 

(Deep Q-Network) model is used to explain the algorithm’s system parallels. 

The figure 1 is a depiction of the proposed model, whereas figure 2 reveals the 

architecture of the fractional blocks.  

Reward-based learning has four basic components; these are the state-

space X, the reward r, the transition probability p, and the action-space U. 

Any change to the variable VPV in corresponds to an action in the MPPT 

control issue. This system moves from state Xxt   to state 1tx  and the 

agent receives feedback, which is known as a reward, that quantifies the 

quality of the action or step taken by the agent through every contact it has 

with its surroundings. Put another way, the incentive serves as a sort of 

‘‘hint’’ to help you find the best possible solution to your problem. The goal of 

the RL approach is to find an optimum policy that satisfies. The expected 

reward J  for the policy  is  
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 xxrEJJ t  





 |maxmax  (1) 

The current, power and voltage govern the state-space of DQN in MPPT 

controllers. 

 

Figure 1. Proposed DQN with fractional order to improve the MPPT. 

 

Figure 2. Schematic design of the Fractional Block. 

    tePPPIV PVPVPVPVPV ,,,,,  and the coupling point DCV  

constitute the state space in this work. The integral of  DCV  is the duty 

cycle regulator in the interval of  .1,0  The action space is also populated by 

the 100 possible discrete duty cycle values in between  .1,0  The action space 

can also be increased to increase the complexity. However, we have set up a 

tradeoff between both in this work.  

Reward formulation requires careful study of the problem. In the MPPT 
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of PV array,     teexbtePV PVDC  ,,,,  are the decision elements of the 

reward. The violation of threshold level for these values is penalized and 

rewarded if the action goes along these. The pseudo code for the proposed 

work is listed in algorithm 1.  

Algorithm 1. Pseudo code for the proposed DQN MPPT controller. 

1. Set up the solar cell with open and short circuit voltage and 

current of 64.2 V and 5.96 A, respectively.  

2. Calculate the theoretical maximum power generated from an array 

of 1 PV in series and 12 in parallel by    mppPmppSnpp INVNP    

3. Set the initial state space, action and reward for the DQN-RL.  

4. Fraction of Error and change in the error of the PV power is 

regulated by the parameter .10    

5. Calculate the reward function by     teexbtePV PVDC  ,,,,   

6. Set the initial values of replay buffer R, learning rate  and 

discount factor .  

7. Start the loop for 1 to M do 

8. Initialize the state 0x   

9. Form the discrete set of actions, select the action  

10. Observe the new state 0x  and reward r  

11. IF NR    

12. Change the Q learning policy  

13.         ttt
a

ttttt
new uxQaxQruxQuxQ ,,max,, 1     

14.           end if  

15.        Set 1 tt xx   

16. End the loop  

17. Save the final tuned policy for maximum MPPT  
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III. Results and Discussion 

In order to test the hypothesis, the 330-Watt solar module is used. It is 

also tested using the New Delhi region’s data set in normal circumstances. 

The Simulink model of the PV cell’s performance is shown in Figure 3. This 

graph depicts the temperature of 25 °C under various irradiation conditions. 

0.2 kW is the cell's maximum output at 200 watts/sq. m. Its efficiency rises as 

solar radiation increases. The RL agent’s action space is scheduled to be 

1100   matrices in size over the step size (0:0.01:1). The learning rate is set 

at 0.01 since L2 regularisation has values of 0.0001 and a mini-batch size of 

.64N  300M  episodes are utilized for training the model with a step 

size of sTT  (total simulation time incurred and sampling time). The model 

considers the values of fractional order in between 0 and 1. 

 

Figure 3. Current and voltage under standard environmental conditions for 

330 watt solar module.  

The RL training of DQN network for the proposed model is shown in 

figure 4 for the episodes of 300. The figure indicates the early training 

convergence, which is possible due to the fractional-order scheme. The 

proposed scheme is compared with other schemes such as perturbation and 

Observation (P&O) [23], a fuzzy logic controller (FLC) [24], and fractional 

order fuzzy logic controller (FOFLC) [25]. The harmonic distortion is the 

evaluation parameter here. Table 1 shows the comparative results with the 

state-of-the-art schemes. The New Delhi region’s temperature and solar 

irradiance are collected from the solcast API toolkit to validate the real data. 
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They have temperatures ranging from 2 to 47 degrees Celsius (35.6 to 116.6 

Fahrenheit), with the lowest and highest temperatures ever recorded being 

2.2 and 48.4 degrees Celsius (28.0 to 119.1 degrees Fahrenheit). Summers are 

hotter than winters, with average temperatures ranging from 13 to 32 

degrees Celsius (55 to 90 degrees Fahrenheit).  

Table 1. Comparison with the state-of-the-art schemes. 

Parameters  Proposed  

FODQN  

DQNFR  FOFLC  FLC  P&O  

Power  2mkw   2.7  2.8  2.26  2.28  1.5  

THD  -15.48  -26.1506  -6.6345  -5.250  2.23  

Settling Time (s)  0.121  0.231  0.1847  0.1847  0.3225  

Temperature : C50-0   

Irradiance   1000680
2


m

W
 

In order to meet the model’s input criteria, the data was pre-processed. 

The testing is done for a day in 2019, for which the data was gathered. Figure 

4 depicts the data that was gathered for analysis. Once trained and evaluated 

under regular settings, this model is ready to be used in real-world scenarios. 

Once these conditions have been replicated, the model is retested in a variety 

of real-world settings, including varied temperatures and levels of irradiance.  

 

Figure 4. Episodes training for the FODQN MPPT controller for 330 watt 

Solar module. 
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Figure 5. Testing data for a day in winter and summer. 

Only the application of the pre-processed data and the observation of the 

outcome is required for testing. To ensure the model’s validity, the author has 

run it through both the hot and cold seasons in New Delhi. For testing 

reasons, the severe weather conditions of the winter and summer months are 

chosen.  

In light of the findings, the model may be applied in a number of settings. 

It is possible to utilize a field model in the same way that a computer-

simulated model is used. As a further advantage, this design requires no 

more training after it has been implemented. Summer and winter simulation 

results are shown in Figures 5 and 6, respectively. 
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Figure 5. Photovoltaic power and coupling DC voltage for the summer data 

of New Delhi by FODQN MPPT. 

 

Figure 5. Photovoltaic power and coupling DC voltage for the winter data of 

New Delhi by FODQN MPPT.  

Conclusion 

Reinforcement learning and the fractional-order notion are used to 

develop a new model that monitors the highest power tracking point. A Deep 

Q-learning technique employs reinforcement learning to make the model 

independent of parametric design modifications for adjusting to 
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environmental impacts. In addition, once the MPP has been taught, the 

network will continue to do so accurately. Tracking time for peak level, stable 

output, and minimal THD component are all predicted to benefit from the 

addition of fractional order in tracking time. This is done in two stages: first, 

by comparing the design to other existing algorithms, and then by evaluating 

it on an actual data set to see how it performs under various scenarios. 

FODQN has the lowest THD component, the fastest tracking time, and the 

biggest MPP power output when compared to other algorithms. According to 

the comparison study, energy harvesting may be maximized across a wide 

variety of radiation circumstances. As long as solar energy is at its lowest 

recorded level, you may still use this model in any place without adjusting its 

parameters and still get the most power out of it.  
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