

COMMON FIXED POINT RESULTS IN V-FUZZY METRIC SPACES USING *w*-COMPATIBLE MAPS

D. POOVARAGAVAN and M. JEYARAMAN

Part-Time Ph. D. Research Scholar PG and Research, Department of Mathematics Raja Doraisingam Govt. Arts College Sivagangai. Affiliated to Alagappa University Karaikudi, Tamil Nadu, India E-mail: poovaragavan87@gmail.com

PG and Research Department of Mathematics Raja Doraisingam Govt. Arts College Sivagangai. Affiliated to Alagappa University Karaikudi, Tamil Nadu, India E-mail: jeya.math@gmail.com

Abstract

The aim of this paper to prove a common fixed point theorem for two compatible maps in generalized \mathcal{V} -fuzzy metric spaces. The fundamental outcome is likewise outlined by a guide to exhibit the level of legitimacy of our speculation.

1. Introduction

Mustafa and Sims [8] brought the however of the thought of G-metric spaces as a speculation of metric spaces. Besides, Sedghi et al. [9] presented the idea of S-metric spaces as one of the speculations of the metric spaces. Abbas et al. [2] broadened the thought of S-metric spaces to A-metric space by stretching out the definition to n-tuple. In 1965, Zadeh [13] at first presented the idea of fuzzy sets. From that point forward, a few powerful mathematicians thought about the idea of fuzzy sets to present many

2020 Mathematics Subject Classification: Primary 47H10; Secondary 54H25. Keywords: V-fuzzy metric, w-compatible maps, Common fixed point. Received November 14, 2021; Accepted December 11, 2021

2138 D. POOVARAGAVAN and M. JEYARAMAN

energizing ideas in the field of science, like fuzzy differential equations, fuzzy logic and fuzzy metric spaces. A fuzzy metric space is notable to be a significant speculation of the metric space. In 1975, kramosil and Michalek [7] utilized the idea of fuzzy sets to present the thought of fuzzy metric spaces. George and Veeramani [3] modified the idea of fuzzy metric spaces in the feeling of Kramosil and Michalek [7]. Sun and Yang [11] begat the possibility of *G*-fuzzy metric spaces. Vishal Gupta and Ashima Kanwar [12] introduce the \mathcal{V} -fuzzy metric space. In 1986, Jungck [6] introduced the concept of compatible maps in metric spaces. We prove common fixed point theorem for *w*-compatible in \mathcal{V} -fuzzy metric spaces.

2. Preliminaries

Definition 2.1 [10]. A binary operation $*: [0, 1] \times [0, 1] \rightarrow [0, 1]$ is continuous *t*-norm if * is satisfying the following conditions:

(i) * is commutative and associative,

- (ii) * is continuous,
- (iii) a * 1 = a for all $a \in [0, 1]$,
- (iv) a * b < c * d whenever a < c and b < d, and $a, b, c, d \in [0, 1]$.

Definition 2.2 [12]. Consider \mathcal{X} be a non empty set. A triple $(\mathcal{X}, \mathcal{V}, *)$ is said to be \mathcal{V} -Fuzzy Metric Spaces $(\mathcal{V} - FMS)$ where * is a continuous norm and \mathcal{V} is a fuzzy set on $\mathcal{X}^n \times (0, \infty)$ satisfying the following conditions for all t, s > 0.

(V-1) $\mathcal{V}(v, v, \dots, v, u, t) > 0$ for all $v, u \in \mathcal{X}$ with $v \neq u$,

(V-2) $\mathcal{V}(v_1, v_1, \dots, v_1, v_2, t) \ge \mathcal{V}(v_1, v_2, \dots, v_{n-1}, v_n, t)$ for all $v_1, v_2, \dots, v_{n-1}, v_n \in \mathcal{X}$ with $v_2 \neq v_3 \neq \dots \neq v_n$,

(V-3) $\mathcal{V}(v_1, v_2, \dots, v_{n-1}, v_n, t) = 1 \Leftrightarrow v_1 = v_2 = \dots = v_n,$

(V-4) $\mathcal{V}(v_1, v_2, ..., v_{n-1}, v_n, t) = \mathcal{V}(p\{v_1, v_2, ..., v_{n-1}, v_n\}, t)$ where p is a permutation function,

(V-5) $\mathcal{V}(v_1, v_2, \dots, v_{n-1}, v_n, t+s) \ge \mathcal{V}(v_1, v_2, \dots, v_{n-1}, v_n, \ell, t)$

* $\mathcal{V}(\ell, \ell, ..., \ell, v_n, s)$,

(V-6) $\lim_{t\to\infty} \mathcal{V}(v_1, v_2, ..., v_{n-1}, v_n, t) = 1$,

(V-7) $\mathcal{V}(v_1, v_2, ..., v_{n-1}, v_n, \cdot) : (0, \infty) \to [0, 1]$ is continuous.

Example 2.3. Consider $\mathcal{X} = \mathbb{R}$ and $(\mathcal{X}, \mathcal{A})$ be a \mathcal{A} metric spaces. Define $\mathcal{V} : \mathcal{X}^n \times (0, \infty) \to [0, 1]$ such that

$$\mathcal{V}(v_1, v_2, \dots, v_{n-1}, v_n, t) = e^{-\frac{\mathcal{A}(v_1, v_2, \dots, v_{n-1}, v_n)}{t}}$$

for all $v_1, v_2, \ldots, v_{n-1}, v_n \in \mathcal{X}$ and t > 0. Then $(\mathcal{X}, \mathcal{V}, *)$ is a $\mathcal{V} - FMS$.

Lemma 2.4 [12]. Consider $(\mathfrak{X}, \mathcal{V}, *)$ be a \mathcal{V} - FMS. Then $\mathcal{V}(v_1, v_2, \ldots, v_{n-1}, v_n, t)$ is non-decreasing with respect to t.

Lemma 2.5 [12]. Consider $(\mathfrak{X}, \mathcal{V}, *)$ be a \mathcal{V} – FMS such that

 $\mathcal{V}(v_1, v_2, \dots, v_{n-1}, v_n, kt) \ge \mathcal{V}(v_1, v_2, \dots, v_{n-1}, v_n, t)$

with $k \in (0, 1)$. Then $v_1 = v_2 = \dots = v_n$.

Definition 2.6 [12]. Consider $(\mathcal{X}, \mathcal{V}, *)$ be a $\mathcal{V} - FMS$.

(i) A sequence $\{v_m\}$ is said to be convergent to v if

$$\lim_{m \to \infty} \mathcal{V}(v_m, v_m, \dots, v_m, v, t) = 1.$$

(ii) A sequence $\{v_m\}$ is said to be a Cauchy sequence if

$$\lim_{m, n \to \infty} \mathcal{V}(v_m, v_m, \dots, v_m, v_n, t) = 1.$$

(iii) $(\mathcal{X}, \mathcal{V}, *)$ is said to be complete if every Cauchy sequence in \mathcal{X} is convergent.

Definition 2.7 [12]. Let \mathcal{P} and \mathcal{Q} be two self maps on a $\mathcal{V} - FMS(\mathcal{X}, \mathcal{V}, *)$. If

$$\lim_{m \to \infty} \mathcal{V}(\mathcal{PQ}v_m, \mathcal{PQ}v_m, ..., \mathcal{PQ}v_m, \mathcal{QP}v_m, t) = 1$$

where $\{v_m\}$ is a sequence in \mathcal{X} which satisfies $\lim_{m\to\infty} \mathcal{P}v_m = \lim_{m\to\infty} \mathcal{Q}v_m = x$ for some point $x \in \mathcal{X}$ and t > 0, the maps \mathcal{P} and \mathcal{Q} are said to be *w*-compatible.

3. Main Results

Theorem 3.1. Let $(\mathfrak{X}, \mathcal{V}, *)$ be a complete $\mathcal{V} - FMS$. Let \mathcal{P} and \mathcal{Q} be two self maps from \mathfrak{X} into itself such that

$$\mathcal{P}(\mathcal{X}) \subset \mathcal{Q}(\mathcal{X}) \tag{3.1.1}$$

 \mathcal{P} and \mathcal{Q} is continuous (3.1.2)

$$\mathcal{V}(\mathcal{P}v_1, \mathcal{P}v_2, \dots, \mathcal{P}v_{n-1}, \mathcal{P}v_n, \rho t) \geq \mathcal{V}(\mathcal{Q}v_1, \mathcal{Q}v_2, \dots, \mathcal{Q}v_{n-1}, \mathcal{Q}v_n, t) \qquad for$$

each
$$v_1, v_2, \dots, v_{n-1}, v_n \in \mathcal{X}$$
 and $0 \le \rho < 1$ (3.1.3)

$$\mathcal{P}$$
 and \mathcal{Q} are w-compatible maps. (3.1.4)

Then, \mathcal{P} and \mathcal{Q} have a unique common fixed point in \mathfrak{X} .

Proof. Let v_0 be an arbitrary point in \mathcal{X} . Choose a point $v_1 \in \mathcal{X}$ such that $\mathcal{P}v_0 = \mathcal{Q}v_1$ with $\mathcal{P}(\mathcal{X}) \subset \mathcal{Q}(\mathcal{X})$. Construct a sequence $\{v_h\}$ in \mathcal{X} as follows:

$$u_h = \mathcal{P}v_h = \mathcal{Q}v_{h+1}, h = 0, 1, \dots$$

From (3.1.3), we have

$$\begin{split} \mathcal{V}(\mathcal{P}v_{h}, \mathcal{P}v_{h}, \dots, \mathcal{P}v_{h}, \mathcal{P}v_{h+1}, t) &\geq \mathcal{V}\left(\mathcal{Q}v_{h}, \mathcal{Q}v_{h}, \dots, \mathcal{Q}v_{h}, \mathcal{Q}v_{h+1}, \frac{t}{\rho}\right) \\ &= \mathcal{V}\left(\mathcal{P}v_{h-1}, \mathcal{P}v_{h-1}, \dots, \mathcal{P}v_{h-1}, \mathcal{P}v_{h}, \frac{t}{\rho}\right) \\ &\geq \mathcal{V}\left(\mathcal{Q}v_{h-1}, \mathcal{Q}v_{h-1}, \dots, \mathcal{Q}v_{h-1}, \mathcal{Q}v_{h}, \frac{t}{\rho^{2}}\right) \\ &= \mathcal{V}\left(\mathcal{P}v_{h-2}, \mathcal{P}v_{h-2}, \dots, \mathcal{P}v_{h-2}, \mathcal{P}v_{h}, \frac{t}{\rho^{2}}\right) \end{split}$$

$$\mathcal{V}(\mathcal{P}v_h, \mathcal{P}v_h, \dots, \mathcal{P}v_h, \mathcal{P}v_{h+1}, t) \ge \mathcal{V}\left(\mathcal{P}v_0, \mathcal{P}v_0, \dots, \mathcal{P}v_0, \mathcal{P}v_1, \frac{t}{\rho^h}\right) \quad (3.1.5)$$

÷

For any $m \in \mathbb{N}$, $t = \frac{t}{m} + \frac{t}{m} + \ldots + \frac{t}{m}$ and using (V-5) frequently many times,

 $\mathcal{V}(\mathcal{P}v_h, \mathcal{P}v_h, ..., \mathcal{P}v_h, \mathcal{P}v_{h+m}, t)$

$$= \mathcal{V}\left(\mathcal{P}v_{h}, \mathcal{P}v_{h}, \dots, \mathcal{P}v_{h}, \mathcal{P}v_{h+m}, \frac{t}{m} + \frac{(m-1)t}{m}\right)$$

$$\geq \mathcal{V}\left(\mathcal{P}v_{h}, \mathcal{P}v_{h}, \dots, \mathcal{P}v_{h}, \mathcal{P}v_{h+1}, \frac{t}{m}\right)$$

$$* \mathcal{V}\left(\mathcal{P}v_{h+1}, \mathcal{P}v_{h+1}, \dots, \mathcal{P}v_{h+1}, \mathcal{P}v_{h+m}, \frac{(m-1)t}{m}\right)$$

$$= \mathcal{V}\left(\mathcal{P}v_{h}, \mathcal{P}v_{h}, \dots, \mathcal{P}v_{h}, \mathcal{P}v_{h+1}, \frac{t}{m}\right)$$

$$* \mathcal{V}\left(\mathcal{P}v_{h+1}, \mathcal{P}v_{h+1}, \dots, \mathcal{P}v_{h+1}, \mathcal{P}v_{h+m}, \frac{t}{m} + \frac{(m-2)t}{m}\right)$$

$$* \mathcal{V}\left(\mathcal{P}v_{h+2}, \mathcal{P}v_{h+2}, \dots, \mathcal{P}v_{h+2}, \mathcal{P}v_{h+m}, \frac{(m-2)t}{m}\right)$$
:

$$\geq \mathcal{V} \Big(\mathcal{P}v_h, \mathcal{P}v_h, \dots, \mathcal{P}v_h, \mathcal{P}v_{h+1}, \frac{t}{m} \Big) * \mathcal{V} \Big(\mathcal{P}v_{h+1}, \mathcal{P}v_{h+1}, \dots, \mathcal{P}v_{h+1}, \mathcal{P}v_{h+2}, \frac{t}{m} \Big)$$
$$* \dots * \mathcal{V} \Big(\mathcal{P}v_{h+m-1}, \mathcal{P}v_{h+m-1}, \dots, \mathcal{P}v_{h+m-1}, \mathcal{P}v_{h+m}, \frac{t}{m} \Big).$$

Using (3.1.5) we obtain,

$$\mathcal{V}(\mathcal{P}v_h, \mathcal{P}v_h, \dots, \mathcal{P}v_h, \mathcal{P}v_{h+m}, t)$$

$$\geq \mathcal{V}\left(\mathcal{P}v_0, \mathcal{P}v_0, \dots, \mathcal{P}v_0, \mathcal{P}v_1, \frac{t}{\rho^h m}\right) * \mathcal{V}\left(\mathcal{P}v_0, \mathcal{P}v_0, \dots, \mathcal{P}v_0, \mathcal{P}v_1, \frac{t}{\rho^{h+1}m}\right)$$

...
$$\mathcal{V}\left(\mathcal{P}v_0, \mathcal{P}v_0, \ldots, \mathcal{P}v_0, \mathcal{P}v_1, \frac{t}{\rho^{h+m-1}m}\right).$$

Taking limit as $h, m \to \infty$, on both side

$$\lim_{h, m \to \infty} \mathcal{V}(\mathcal{P}v_h, \mathcal{P}v_h, \dots, \mathcal{P}v_h, \mathcal{P}v_{h+m}, t) = 1 * 1 * \dots * 1 = 1.$$

Thus, $\{\mathcal{P}v_h\}$ is a Cauchy sequence in \mathcal{X} . Since $(\mathcal{X}, \mathcal{V}, *)$ is complete $\mathcal{V} - FMS$, it has a limit in \mathcal{X} such that

$$\lim_{h\to\infty} u_h = \lim_{h\to\infty} \mathcal{P}v_h = \lim_{h\to\infty} \mathcal{Q}v_{h+1} = \mathfrak{z}.$$

Since the maps Q and Q is continuous (assume that Q is continuous), $\lim_{h\to\infty} Q \mathcal{P} v_h = Q_3$. Further, the maps \mathcal{P} and Q are w-compatible,

 $\lim_{h\to\infty} \mathcal{V}(\mathcal{QP}v_h, \mathcal{QP}v_h, \dots, \mathcal{QP}v_h, P\mathcal{Q}v_h, t) = 1$

Implies $\lim_{h\to\infty} \mathcal{PQ}v_h = \mathcal{Q}_{\mathfrak{Z}}$. From (3.1.3), we have

$$\begin{split} \mathcal{V}(\mathcal{Q}_{\mathfrak{Z}}, \mathcal{Q}_{\mathfrak{Z}}, \dots, \mathcal{Q}_{\mathfrak{Z}}, \mathfrak{z}, \rho t) &= \mathcal{V}(\mathcal{P}\mathcal{Q}v_{h}, \mathcal{P}\mathcal{Q}v_{h}, \dots, \mathcal{P}\mathcal{Q}v_{h}, \mathcal{P}v_{h}, \rho t) \\ &\geq \mathcal{V}(\mathcal{Q}\mathcal{Q}v_{h}, \mathcal{Q}\mathcal{Q}v_{h}, \dots, \mathcal{Q}\mathcal{Q}v_{h}, \mathcal{Q}\mathfrak{z}, t). \end{split}$$

Proceeding limit as $h \to \infty$, we have $Q_{\mathfrak{Z}} = \mathfrak{z}$. Again by (3.1.1), we obtain

$$\mathcal{V}(\mathcal{P}v_h, \mathcal{P}v_h, \dots, \mathcal{P}v_h, \mathcal{P}_{\mathfrak{Z}}, \rho t) \geq \mathcal{V}(\mathcal{Q}v_h, \mathcal{Q}v_h, \dots, \mathcal{Q}v_h, \mathcal{Q}_{\mathfrak{Z}}, t)$$

and taking limit as $h \to \infty$, we have $\mathcal{P}_{\mathfrak{z}} = \mathfrak{z}$. Hence, $\mathcal{P}_{\mathfrak{z}} = \mathcal{Q}_{\mathfrak{z}} = \mathfrak{z}$ and \mathfrak{z} is a common fixed point of \mathcal{P} and \mathcal{Q} . Eventually, the uniqueness of \mathfrak{z} as the common fixe point of \mathcal{P} and \mathcal{Q} as follows:

Suppose that $z(\neq \cdot \mathfrak{z})$ be another common fixed point of \mathcal{P} and \mathcal{Q} . Then

$$\mathcal{V}(\mathfrak{z}, \mathfrak{z}, \ldots, \mathfrak{z}, t) = \mathcal{V}(\mathcal{P}\mathfrak{z}, \mathcal{P}\mathfrak{z}, \ldots, \mathcal{P}\mathfrak{z}, t) \geq \mathcal{V}\left(\mathcal{Q}\mathfrak{z}, \mathcal{Q}\mathfrak{z}, \ldots, \mathcal{Q}\mathfrak{z}, \mathcal{Q}\mathfrak{z}, \frac{t}{\rho}\right)$$
$$= \mathcal{V}\left(\mathfrak{z}, \mathfrak{z}, \ldots, \mathfrak{z}, \frac{t}{\rho}\right)$$

for $0 \le \rho < 1$, so this is a contraction. Therefore, $z = \mathfrak{z}$. Hence, the common

Advances and Applications in Mathematical Sciences, Volume 21, Issue 4, February 2022

2142

fixed point of \mathcal{P} and \mathcal{Q} is unique.

Example 3.2. Let
$$\mathcal{X} = [-1, 1]$$
 with $\mathcal{V}(v_1, v_2, \dots, v_{n-1}, v_n, t)$
= $\frac{t}{t + \mathcal{A}(v_1, v_2, \dots, v_{n-1}, v_n)}$. Clearly, $(\mathcal{X}, \mathcal{V}, *)$ is a complete $\mathcal{V} - FMS$. Let

 \mathcal{P} and \mathcal{Q} be maps from \mathfrak{X} into itself defined as $\mathcal{P}(v) = \frac{v}{6}$ and $\mathcal{Q}(v) = \frac{v}{6}$ for all $v \in \mathfrak{X}$. Then,

$$\mathcal{P}(\mathfrak{X}) = \left[-\frac{1}{6}, \frac{1}{6}\right] \subset \left[-\frac{1}{4}, \frac{1}{4}\right] = \mathcal{Q}(\mathfrak{X})$$

and the maps \mathcal{P}, \mathcal{Q} are continuous. Also,

$$\mathcal{V}(\mathcal{P}v_1, \mathcal{P}v_2, \dots, \mathcal{P}v_{n-1}, \mathcal{P}v_n, t) \geq \mathcal{V}(\mathcal{Q}v_1, \mathcal{Q}v_2, \dots, \mathcal{Q}v_{n-1}, \mathcal{Q}v_n, t)$$

satisfies for all $v_1, v_2, v_{n-1}, v_n \in \mathcal{X}$ and $\frac{4}{6} \leq \rho < 1$. Also, the maps \mathcal{P} and \mathcal{Q} are *w*-compatible since

$$\lim_{h \to \infty} \mathcal{V}(\mathcal{QP}v_h, \mathcal{QP}v_h, \dots, \mathcal{QP}v_h, \mathcal{PQ}v_h, t) = 1$$

where $\{v_h\} = \frac{1}{h}$ is a sequence for h = 1, 2, ... in \mathfrak{X} such that

$$\lim_{h \to \infty} \mathcal{Q}v_h = \lim_{h \to \infty} \frac{1}{6h} = 0$$

and

$$\lim_{h \to \infty} \mathcal{P}v_h = \lim_{h \to \infty} \frac{1}{6h} = 0$$

for $0 \in \mathcal{X}$. Thus, 0 is the unique common fixed point of \mathcal{P} and \mathcal{Q} .

Conclusion

In this paper, verified the existence of unique common fixed point for wcompatible maps in $\mathcal{V} - FMS$ with suitable example.

References

- M. Aamri and D. Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 270 (2002), 181-188.
- [2] M. Abbas, B. Ali and Y. I. Suleiman, Generalized coupled common fixed point results in partially ordered A-metric spaces, Fixed Point Theory and Applications 64 (2015), 1-24.
- [3] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), 395-399.
- [4] D. Guo and V. Lakshmikhantham, Coupled fixed points of non linear operators with applications, Non linear Anal. 11 (1987), 623-632.
- [5] M. Jeyaraman, S. Sowndrarajan and A. Ramachandran, Common fixed point theorems for compatible maps in generalized fuzzy metric spaces, Journal of Advances in Mathematics and Computer Science 36(6) (2021), 88-96.
- [6] G. Jungck, Compatible mappings and common fixed points, International Journal of Mathematics and Mathematical Sciences 9(4) (1986), 771-779.
- [7] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 336-344.
- [8] M. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289-297.
- [9] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in Smetric spaces, Mat. Vesn. 64 (2012), 258-266.
- [10] B. Schweizer and A. Sklar, Statistical metric spaces, Pac. J. Math. 10 (1960), 314-334.
- [11] G. Sun and K. Yang, Generalized fuzzy metric spaces with properties, Res. J. Appl. Sci. 2 (2010), 673-678.
- [12] Vishal Gupta and Ashima Kanwar, V-fuzzy metric space and related fixed point theorems, Fixed point theory and applications 51 (2016), 1-17.
- [13] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.