UPPER TOTAL SPLIT DOUBLE GEODETIC NUMBER OF A GRAPH

T. JEBARAJ and D. SAJITHA

${ }^{1}$ Assistant Professor
${ }^{2}$ Reg. no. 20213082092001
Department of Mathematics
Malankara Catholic College, Mariagiri
Kanyakumari District, 629153
Affiliated to Manonmaniam Sundaranar University
Abishekapatti, Tirunelveli-627012, Tamilnadu, India
E-mail: jebaraj.math@gmail.com
sajithajomrv@gmail.com

Abstract

A set $S_{1}=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{t}\right\} \subset G, X \subseteq S_{1}, A, B$ and $C \subset S_{1}$ is said to be a minimal total split double geodetic set if only the improper subset X is the total split double geodetic set of G. Then $\left|S_{1}\right|$ is maximum, it is the upper total split dg-number $d g t_{s}^{+}(G)$ of G. The intend of this treatise is to deliver the perception about upper total split double geodetic number of a graph, yet we substantiate for non-negative integers r_{1}, d_{1} and $k_{1} \geq 4$ with $r_{1} \leq d_{1} \leq 2 r_{1}$ in an unparted graph (connected) $G, \operatorname{Rad}(G)=r_{1}, \operatorname{Diam}(G)=d_{1}, d g t_{s}^{+}(G)=k_{1}$. As well, we derive $4 \leq m_{1} \leq n_{1}$ such that $\operatorname{dgt}_{s}=m_{1}$ and $\operatorname{dgt}_{s}^{+}(G)=n_{1}$.

1. Introduction

In 2012, A. P. Santhakumaran et al., introduced the "Double geodetic number of a graph" [4] which is developed from the notion of geodetic number. In 2014, Venkanagouda M. Goudar and others established the Split geodetic concepts [6]. Moving from [4], [6], [12], [5] and [14], we formed the

Keywords: double geodetic set, minimum double geodetic set, upper total split dg-set, minimal dg-set.
Received Please provide.
upper total split dg-set concept, which is based on the notion of minimal dgset. The below in formations needed to prove the results.

Theorem 1.1 [14]. Let G_{1} be an unparted graph with $|V(G)|=n$, such that G_{1} has a total split dg-set S_{1} then $2 \leq \operatorname{dg}_{s}\left(G_{1}\right) \leq \operatorname{dgt}_{s}\left(G_{1}\right) \leq n-2$.

Corollary 1.2. If $d g_{t}(G)=n$ or $n-1$ and $|V(G)|=n$ then G has no total split dg-set.

Theorem 1.3 [15]

For the Gear graph

$$
G_{n},(n \geq 3), d g t_{s}\left(G_{n}\right)= \begin{cases}4 & \text { if } n=3,4 \\ \frac{3(n+1)}{2} & \text { if } n \text { is odd and } n \geq 5 \\ \frac{3 n+2}{2} & \text { if } n \text { is even and } n \geq 6\end{cases}
$$

2. The Upper Total Split Double Geodetic Number of a Graph

Definition 2.1. A set $S_{1}=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{t}\right\} \subset G, X \subseteq S_{1}, A, B$ and $C \subset S_{1}$ is said to be a minimal total split double geodetic set if only the improper subset X is the total split double geodetic set of G. Then $\left|S_{1}\right|$ is maximum, it is the upper total split dg-number $d g t_{s}^{+}(G)$ of G.

Example 2.2. In Figure $A, S_{1}=\left\{v_{1}, v_{4}, v_{7}, v_{8}\right\}$ forms a total split dg-set of $G, d g t_{s}(G)=4$. Also $S_{2}=\left\{v_{3}, v_{7}, v_{8}, v_{6}, v_{2}, v_{5}\right\}$ make a total split dg-set of G, as well only the improper subset of S_{2} forms total split dg-set of G. Consequently, S_{2} is an upper total split dg-set of G. Further we easily checked that, none of the proper subsets of S_{2} forms a total split dg-set and so $d g t_{s}^{+}(G)=6$.

Figure A
Remark 2.3. In a graph G, every minimal total split dg-set is not a minimum total split dg-set but the contrary is true. In Figure $A, S_{2}=\left\{v_{3}, v_{7}, v_{8}, v_{6}, v_{2}, v_{5}\right\}$ forms a minimal total split dg-set as well as it is not a least total split dg-set of G.

Theorem 2.4. If G has a total split dg-set S and $|V(G)|=n$ then $3 \leq \operatorname{dgt}_{s}(G) \leq d g t_{s}^{+}(G) \leq n-2$.

Proof. Any total split dg-set requires at least 3 vertices, consequently $d g t_{s}(G) \geq 3$. More over $d g t_{s}(G) \leq d g t_{s}^{+}(G)$, since the cardinality is maximum in upper total split dg-set and only the improper subset of $S \subset G$ forms a total split dg-set. Also by Theorem [1.1] and corollary [1.2], we get $d g t_{s}^{+}(G) \leq n-2$.

Corollary 2.5. If G has a total split dg-set S with $|V(G)|=n$ and $d g t_{s}(G)=n-2$ then $d g t_{s}^{+}(G)=n-2$.

Proof. From [2.4] and remark [2.3], we acquire $d g t_{s}^{+}(G)=n-2$.
Theorem 2.6. In a ladder graph $L_{n}=G, d g t_{s}^{+}(G)= \begin{cases}4 & \text { if } n=3 \\ 5 & \text { if } n=4 \\ 6 & \text { if } n \geq 5\end{cases}$
Proof. Let $V\left(L_{n}\right)=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{2 n}\right\}, n \geq 3$.
Case (i) $n=3$.
Let $M=\left\{a_{1}, a_{2}, a_{6}\right\}$ be the split double geodetic set of L_{n}. Since it
covers all the pair of vertices α, β in L_{n} as well $\alpha, \beta \in I[M]$ and $\langle V-M\rangle$ is disconnected. Further the induced subgraph $\langle M\rangle$ has one isolated vertex, consequently M doesn't form a total split dg-set of L_{n}. Add a vertex a_{5} to M which is an appropriate neighborhood of a_{6}. Therefore $M^{\prime}=\left\{a_{1}, a_{2}, a_{6}, a_{5}\right\}$ and only the improper subset of M^{\prime} form a total split dg-set of L_{n}. Hence M^{\prime} is an upper total split double geodetic set of $L_{n}, d g t_{s}^{+}(G)=4$.

Case (ii) $n=4$.
Let $N=\left\{a_{1}, a_{8}, a_{i}\right\}$ be the split double geodetic set of L_{n}. Since it covers all the pair of vertices x, y in L_{n}, as well $x, y \in I[N]$. Moreover $\langle V-N\rangle$ is detached. But the induced subgraph $\langle N\rangle$ has isolated vertices. Add the appropriate neighborhood of each vertex in N, to form a total split double geodetic set of L_{n}. Clearly $N^{\prime}=\left\{a_{1}, a_{8}, a_{i}, a_{2}, a_{j}\right\}$ is the minimal total split dg -set of L_{n}. Obviously N^{\prime} is an upper total split dg-set of $L_{n}, d g t_{s}^{+}(G)=5$.

Case (iii) $n \geq 5$.

Let $L=\left\{a_{1}, a_{2 n}, a_{i}, a_{j}\right\}$ be the split dg-set of $L_{n} ; a_{i}, a_{j}$ are the cut vertices of L_{n}, which are adjacent with each other. Clearly $\langle V-N\rangle$ is disconnected and the induced subgraph $\langle L\rangle$ has isolated vertices. Add the appropriate neighborhood of a_{1} and $a_{2 n}$, to form a total split dg-set of L_{n}. Obviously $L^{\prime}=\left\{a_{1}, a_{2}, a_{2 n}, a_{i}, a_{j}, a_{2 n-1}\right\}$ is the minimal total split dg-set of L_{n}. Hence $d g t_{s}^{+}(G)=6$.

Theorem 2.7. For non-negative integers $r_{1}, d_{1}, r_{1} \leq d_{1} \leq 2 r_{1}$ and $k_{1} \geq 4$ in G then

$$
\operatorname{Rad}(G)=r_{1}, \operatorname{diam}(G)=d_{1} \text { and } \operatorname{dgt}_{s}^{+}(G)=k_{1} .
$$

Proof. If $r_{1}=2$, obviously know $d_{1}=2,3$ and 4 .
Case (i) $r_{1}=2$. Then $d_{1}=2$.
Assume that $2 r_{1}+1=k_{1}$. Consider two paths P and Q, its vertices are
q_{1}, q_{2}, q_{3} and p_{1}, p_{2}, p_{3} respectively. Take one more new vertex t and connect with q_{2} and p_{2}. Also q_{1} and q_{3} are connected with p_{1}, p_{2} and p_{3}. Now we get Figure B, which is named as G then G has radius 2 and diameter 2.

Figure B
Let $S^{\prime}=\left\{p_{1}, p_{2}, p_{3}, t, q_{2}\right\}$ be a total split dg-set of G. Since $G\left[S^{\prime}\right]$ incited by $S^{\prime \prime}$ has no detached vertices and $\left\langle V-S^{\prime}\right\rangle$ is detached. More over, only the improper subset of $S^{\prime \prime}$ is a total split dg-set of G and hence $S^{\prime \prime}$ is an upper total split dg-set of G. From [2.3], conspicuously know S^{\prime} is not a least total split dg-set of G. Thus $d g t_{s}^{+}(G)=5=2 r_{1}+1=k_{1}$.

Case (ii) $r_{1}=2$. Then $d_{1}=3$.
Let $G=G_{3}$ (Gear graph with $n=3$) and $n+1=k_{1}$ then by Theorem $[1.3], d g t_{s}^{+}(G)=k_{1}$.

Case (iii) $r_{1}=2$. Then $d_{1}=4$.
Set up a graph G as follows. Let u_{1}, u_{2}, u_{3} be the vertices of a path P_{3}. Take r new vertices $w_{1}, w_{2}, \ldots, w_{r}$ and join each $w_{i}(1 \leq i \leq r)$ to u_{1} and u_{3} and obtain the graph H. Also add some K_{2} and join one end of each K_{2} to u_{3} which is denoted by $v_{1}, v_{2}, \ldots, v_{k_{1}-l}\left(3<l<k_{1}\right)$ and the other ends of K_{2} is denoted by $x_{1}, x_{2}, \ldots \ldots, x_{l-3}$ respectively and get the graph G in Figure C.

Figure C
Then G has radius $r_{1}=2$ and diameter $d_{1}=4$. Obviously $S=\left\{u_{1}, u_{3}, x_{1}, x_{2}, \ldots \ldots, x_{l-3}\right\}$ is a least split dg-set of G, yet the subgraph $G[S]$ incited by S has detached vertices with degree zero. Therefore to make a total split dg-set of G from S, the appropriate neighborhood of each vertex is to be added. Clearly $S^{\prime}=\left\{u_{1}, u_{3}, w_{1}, x_{1}, x_{2}, \ldots \ldots, x_{l-3}, v_{1}, v_{2}, \ldots \ldots, v_{k_{1}-l}\right\}$ and only the improper subset of S^{\prime} forms a total split dg -set of G. Thus $d g t_{s}^{+}(G)=k_{1}$.

Figure D
Case (iv) $r_{1} \geq 3$.
If $k_{1} \geq 4$. Put up a graph G as follows. Consider $\alpha_{1}, \alpha_{2}, \ldots \ldots, \alpha_{r_{1}}, \alpha_{r_{1}+1}, \ldots \alpha_{2 r_{1}}, \alpha_{2 r_{1}+1}$ be the vertices of odd cycle $C_{2 r_{1}+1}$. Take $K_{1}-l$ new vertices $\beta_{1}, \beta_{2}, \ldots, \beta_{k_{1}-l}$ and append each $\beta_{i}\left(1 \leq i \leq K_{1}-l\right)$ to α_{q} and α_{t}, where α_{q}, α_{t}, are the two adjacent vertices
of cycle $C_{2 r_{1}+1}$. Further more add on $l-2$ new vertices $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{l-2}$ and connect each $\gamma_{i}(1 \leq i \leq l-2)$ to α_{p} such that $d\left(\alpha_{p}, \beta_{i}\right)=r_{1}+1$ and acquire Figure D. Then G has radius r_{1} and diameter d_{1}. Also $S=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{k_{1}-1}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{l-2}, \alpha_{p}, \alpha_{t}\right\}$ forms a total split dg-set and only the improper subset of S make a total split dg-set of G. Consequently S is the minimal total split dg-set of $G, d g t_{s}^{+}(G)=k_{1}$.

Case (v) $r_{1}=d_{1}$.
Let $V\left(C_{2 r_{1}}\right): u_{1}, u_{2}, \ldots, u_{r_{1}+1}, \ldots, u_{2 r_{1}}$. Take $k_{1}-l-1$ new vertices $v_{1}, v_{2}, \ldots, v_{k_{1}-l-1}$ to $C_{2 r_{1}}$ and append each $v_{i}\left(1 \leq i \leq k_{1}-l-1\right)$ to u_{2} and $u_{2 r_{1}}$. Also add $l-3$ new vertices $w_{1}, w_{2}, \ldots, w_{l-3}$ and connect each $w_{j}(1 \leq j \leq l-3)$ to $u_{r_{1}}$ and $u_{r_{1}+2}$. Now attain the graph G of Figure E. From figure E , We clear that eccentricity of each vertex of G is r_{1} so that Rad $(G)=\operatorname{Diam}(G)=r_{1} . \quad$ The weak extreme vertices of G are $E=\left\{u_{1}, u_{r_{1}+1}, v_{1}, v_{2}, \ldots, v_{k_{1}-l-1}, w_{1}, w_{2}, \ldots, w_{l-3}\right\}$. Also E is the dg-set of G and $\langle V-E\rangle$ is a detached graph. Consequently define another set $E^{\prime}=E \cup\left\{u_{r_{1}}, u_{2 r_{1}}\right\}$, where $u_{r_{1}}$ and $u_{2 r_{1}}$ are the neighbors of some elements of E. Clearly E^{\prime} forms a total split dg-set of G, and only the improper subset of E^{\prime} forms a total split dg-set of G. Hence E^{\prime} is an upper total split dg-set of G. It is easily verified that, no other subsets with more than k_{1} elements forms a minimal total split dg-set of $G, d g t_{s}^{+}(G)=k_{1}$.

Figure E

Theorem 2.8. For any non-negative integers $4 \leq m_{1} \leq n_{1}$ in G, such that $d g t_{s}(G)=m_{1}$ and $d g t_{s}^{+}(G)=n_{1}$.

Proof.

Case (i) If $m_{1}=n_{1}$.

Let $G=C_{2 n}, n \geq 3$, then $d g t_{s}(G)=d g t_{s}^{+}(G)=m_{1}$.
Case (ii) If $m_{1}<n_{1}$.
Take $n_{1}-1=m_{1}$. Consider a series connection of ' k ' number of cycle C_{4} and append $m_{1}-4$ new vertices to C_{k+1}. Also consider $\left\{l_{1}, l_{2}, \ldots, l_{n_{1}-m_{1}-1}\right\}$ new vertices and connect each $l_{i}\left(1 \leq i \leq n_{1}-m_{1}-1\right)$ to x_{1} and y_{1}, then acquire G in Figure F.

Figure F

It follows that $T=\left\{l_{1}, l_{2}, \ldots, l_{n_{1}-m_{1}-1}, h_{1}, h_{2}, \ldots, h_{m_{1}-4}, C_{1}\right\}$ is the set of weak extreme vertices of given G. Therefore to make a total split dg-set of G, add the appropriate neighborhood of each isolated vertex in T. Hence $T^{\prime}=\left\{l_{1}, l_{2}, \ldots, l_{n_{1}-m_{1}-1}, h_{1}, h_{2}, \ldots, h_{m_{1}-4}, c_{1}, c_{2}, c_{k+1}, x_{1}\right\}$ is a least total split dg-set of G, and hence $d g t_{s}(G)=n_{1}-1=m_{1}$.

Further $T^{\prime \prime}=\left\{l_{1}, l_{2}, \ldots, l_{n_{1}-m_{1}-1}, h_{1}, h_{2}, \ldots, h_{m_{1}-4}, c_{1}, c_{j}\left(\neq c_{2}\right), c_{k+1}, x_{1}, x_{i}\right\}$ and none of the proper subsets of $T^{\prime \prime}$ forms a total split dg-set of G, thus $d g t_{s}^{+}(G)=n_{1}$.

References

[1] B. Bresar, S. Klavzar and A. T. Horvat, On the geodetic number and related metric sets in Cartesian product graphs, Discrete mathematics 308 (2008), 5555-5561.
[2] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002), 1-6.
[3] F. Harary, Graph Theory, Addision - Wesley, 1969.
[4] A. P. Santhakumaran and T. Jebaraj, Double geodetic number of a Graph, Discussions Mathematicae Graph Theory 32 (2012), 109-119.
[5] P. A. Ostrand, Graphs with specified radius and diameter, Discrete Math. 4 (1973), 7175.
[6] Venkanagouda M. Goudar, K. S. Ashalatha and Venkatesha, Split geodetic number of a graph, Advances and Applications in Discrete mathematics 13(1) (2014), 9-22.
[7] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modeling 17 (1993), 89-95.
[8] R. Muntean and P. Zhang, On geodomonation in graphs, Congr. Numer. 143 (2000), 161174.
[9] Z. Mihalic and N. Trinajstic, A graph theoretical approach to structure-property relationships, J. Chem. Educ. 69 (1999), 701-712.
[10] G. Chartrand and P. Zhang, Introduction to Graph Theory, Tata McGraw Hill Pub. Co. Ltd., 2006.
[11] M. Atici, Graph operations and geodetic numbers, Congressus Numerantium 141 (1999), 95-110.
[12] A. P. Santhakumaran and T. Jebaraj, The total double geodetic number of a graph, Proyecciones (Antofagasta, Online) 39(1) (2020).
[13] A. P. Santhakumaran, T. Jebaraj and S. V. Ullas Chandran, The linear geodetic number of a graph, Discrete Mathematics, Algorithms and Applications 3(3) (2011), 357-368. DOI: 10.1142/s1793830911001279.
[14] T. Jebaraj and D. Sajitha, Split double geodetic number of a graph, (communicated).
[15] T. Jebaraj and D. Sajitha, Total Split double geodetic number of a graph, Stochastic Modeling and Applications 25(3) (July-December, Special Issue 2021 Part-3).

