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Abstract 

A set   BASXGaaaaS t ,,,,,,, 13211    and 1SC   is said to be a minimal total 

split double geodetic set if only the improper subset X is the total split double geodetic set of G. 

Then 1S  is maximum, it is the upper total split dg-number  Gdgts
  of G. The intend of this 

treatise is to deliver the perception about upper total split double geodetic number of a graph, 

yet we substantiate for non-negative integers 11, dr  and 41 k  with 111 2rdr   in an 

unparted graph (connected) G,       .,, 111 kGdgtdGDiamrGRad s    As well, we derive 

114 nm   such that  1mdgts   and   .1nGdgts 
 

1. Introduction 

In 2012, A. P. Santhakumaran et al., introduced the “Double geodetic 

number of a graph” [4] which is developed from the notion of geodetic 

number. In 2014, Venkanagouda M. Goudar and others established the Split 

geodetic concepts [6]. Moving from [4], [6], [12], [5] and [14], we formed the 
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upper total split dg-set concept, which is based on the notion of minimal dg- 

set. The below in formations needed to prove the results. 

Theorem 1.1 [14]. Let 1G  be an unparted graph with   ,nGV   such 

that 1G  has a total split dg-set 1S  then      .22 11  nGdgtGdg ss  

Corollary 1.2. If   nGdgt   or 1n  and   nGV   then G has no 

total split dg-set. 

Theorem 1.3 [15] 

For the Gear graph  
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2. The Upper Total Split Double Geodetic Number of a Graph 

Definition 2.1. A set   BASXGaaaaS t ,,,,,,, 13211    and 

1SC   is said to be a minimal total split double geodetic set if only the 

improper subset X is the total split double geodetic set of G. Then 1S  is 

maximum, it is the upper total split dg-number  Gdgts
  of G. 

Example 2.2. In Figure  87411 ,,,, vvvvSA   forms a total split dg-set 

of   .4, GdgtG s  Also  5268732 ,,,,, vvvvvvS   make a total split dg-set 

of G, as well only the improper subset of 2S  forms total split dg-set of G. 

Consequently, 2S  is an upper total split dg-set of G. Further we easily 

checked that, none of the proper subsets of 2S  forms a total split dg-set and 

so   .6 Gdgts  
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Figure A 

Remark 2.3. In a graph G, every minimal total split dg-set is not a 

minimum total split dg-set but the contrary is true. In Figure 

 5268732 ,,,,,, vvvvvvSA   forms a minimal total split dg-set as well as it 

is not a least total split dg-set of G. 

Theorem 2.4. If G has a total split dg-set S and   nGV   then 

    .23   nGdgtGdgt ss  

Proof. Any total split dg-set requires at least 3 vertices, consequently 

  .3Gdgts  More over    ,GdgtGdgt ss
  since the cardinality is maximum 

in upper total split dg-set and only the improper subset of GS   forms a 

total split dg-set. Also by Theorem [1.1] and corollary [1.2], we get 

  .2 nGdgts  

Corollary 2.5. If G has a total split dg-set S with   nGV   and 

  2 nGdgts  then   .2 nGdgts  

Proof. From  4.2  and remark  ,3.2  we acquire   .2 nGdgts  

Theorem 2.6. In a ladder graph  
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Proof. Let     .3,,,,, 2321  naaaaLV nn   

Case (i) .3n  

Let  621 ,, aaaM   be the split double geodetic set of .nL  Since it 
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covers all the pair of vertices ,  in nL  as well  MI,  and MV   is 

disconnected. Further the induced subgraph M  has one isolated vertex, 

consequently M doesn‟t form a total split dg-set of .nL  Add a vertex 5a  to M 

which is an appropriate neighborhood of .6a  Therefore  5621 ,,, aaaaM   

and only the improper subset of M   form a total split dg-set of .nL  Hence 

M   is an upper total split double geodetic set of   .4,  GdgtL sn  

Case (ii) .4n  

Let  iaaaN ,, 81  be the split double geodetic set of .nL  Since it covers 

all the pair of vertices yx,  in ,nL  as well  ., NIyx   Moreover NV   is 

detached. But the induced subgraph N  has isolated vertices. Add the 

appropriate neighborhood of each vertex in N, to form a total split double 

geodetic set of .nL  Clearly  ji aaaaaN ,,,, 281  is the minimal total split 

dg-set of .nL  Obviously N' is an upper total split dg-set of   .5,  GdgtL sn  

Case (iii) .5n  

Let  jin aaaaL ,,, 21  be the split dg-set of jin aaL ,;  are the cut 

vertices of ,nL  which are adjacent with each other. Clearly NV   is 

disconnected and the induced subgraph L  has isolated vertices. Add the 

appropriate neighborhood of 1a  and ,2na  to form a total split dg-set of .nL  

Obviously  12221 ,,,,,  njin aaaaaaL  is the minimal total split dg-set of  

.nL  Hence   .6 Gdgts  

Theorem 2.7. For non-negative integers 11111 2,, rdrdr   and 41 k  

in G then  

    11, dGdiamrGRad   and   .1kGdgts   

Proof. If ,21 r  obviously know 3,21 d  and 4. 

Case (i) .21 r  Then .21 d  

Assume that .12 11 kr   Consider two paths P and Q, its vertices are 
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321 ,, qqq  and 321 ,, ppp  respectively. Take one more new vertex t and 

connect with 2q  and .2p  Also 1q  and 3q  are connected with 21, pp  and .3p  

Now we get Figure B, which is named as G then G has radius 2 and diameter 

2. 

 

Figure B 

Let  2321 ,,,, qtpppS   be a total split dg-set of G. Since  SG    

incited by S' has no detached vertices and SV   is detached. More over, 

only the improper subset of S' is a total split dg-set of G and hence S' is an 

upper total split dg-set of G. From [2.3], conspicuously know S' is not a least 

total split dg-set of G. Thus   .125 11 krGdgts   

Case (ii) .21 r  Then .31 d  

Let 3GG   (Gear graph with 3n  and 11 kn   then by Theorem 

    .,3.1 1kGdgts   

Case (iii) .21 r  Then .41 d  

Set up a graph G as follows. Let 321 ,, uuu  be the vertices of a path .3P  

Take r new vertices rwww ,,, 21   and join each  riwi 1  to 1u  and 3u  

and obtain the graph H. Also add some 2K  and join one end of each 2K  to 

3u  which is denoted by  121 3,,,
1

klvvv lk   and the other ends of 2K  

is denoted by 321 ,,, lxxx   respectively and get the graph G in Figure C.  
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Figure C 

Then G has radius 21 r  and diameter .41 d  Obviously 

 32131 ,,,,,  lxxxuuS   is a least split dg-set of G, yet the subgraph 

 SG  incited by S has detached vertices with degree zero. Therefore to make 

a total split dg-set of G from S, the appropriate neighborhood of each vertex is 

to be added. Clearly  lkl vvvxxxwuuS 
1

,,,,,,,,,, 21321131   and 

only the improper subset of S  forms a total split dg-set of G. Thus 

  .1kGdgts   

 

Figure D 

Case (iv) .31 r  

If .41 k  Put up a graph G as follows. Consider 

122121 1111
,,,,,,   rrrr   be the vertices of odd cycle .12 1 rC  

Take lK 1  new vertices lk 
1

,,, 21   and append each 

 lKii  11   to q  and ,t  where ,, tq   are the two adjacent vertices 
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of cycle .12 1 rC  Further more add on 2l  new vertices 221 ,,,  l  and 

connect each  21  lii  to p  such that   1, 1  rd ip  and acquire 

Figure D. Then G has radius 1r  and diameter .1d  Also  

 tplkS   ,,,,,,,,, 221121 1
  forms a total split dg-set and 

only the improper subset of S make a total split dg-set of G. Consequently S 

is the minimal total split dg-set of   ., 1kGdgtG s   

Case (v) .11 dr   

Let   .,,,,,:
111 21212 rrr uuuuCV    Take 11  lk  new vertices 

121 1
,,, lkvvv   to 

12rC  and append each  11 1  lkivi  to 2u  and 

.
12ru  Also add 3l  new vertices 321 ,,, lwww   and connect each 

 31  ljwj  to 
1r

u  and .21 ru  Now attain the graph G of Figure E. From 

figure E, We clear that eccentricity of each vertex of G is 1r  so that Rad 

    .1rGDiamG   The weak extreme vertices of G are  

 .,,,,,,,,, 32112111 11  llkr wwwvvvuuE   Also E is the dg-set of G 

and EV   is a detached graph. Consequently define another set 

 ,,
11 2rr uuEE    where 

1r
u  and 

12ru  are the neighbors of some elements 

of E. Clearly E  forms a total split dg-set of G, and only the improper subset 

of E  forms a total split dg-set of G. Hence E  is an upper total split dg-set of 

G. It is easily verified that, no other subsets with more than 1k  elements 

forms a minimal total split dg-set of   ., 1kGdgtG s   

 

Figure E 
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Theorem 2.8. For any non-negative integers 114 nm   in G, such that 

  1mGdgts   and   .1nGdgts   

 Proof. 

Case (i) If .11 nm   

 Let ,3,2  nCG n  then     .1mGdgtGdgt ss    

Case (ii) If .11 nm   

Take .1 11 mn   Consider a series connection of „k‟ number of cycle 4C   

and append 41 m  new vertices to .1kC  Also consider  121 11
,,, mnlll   

new vertices and connect each  11 11  mnili  to 1x  and ,1y  then 

acquire G in Figure F. 

 

Figure F 

It follows that  1421121 ,,,,,,,,
111

ChhhlllT mmn    is the set of 

weak extreme vertices of given G. Therefore to make a total split dg-set of G, 

add the appropriate neighborhood of each isolated vertex in T. Hence 

 1121421121 ,,,,,,,,,,,
111

xccchhhlllT kmmn    is a least total 

split dg-set of G, and hence   .1 11 mnGdgts   

Further    ikjmmn xxcccchhhlllT ,,,,,,,,,,,, 1121421121 111      

and none of the proper subsets of T   forms a total split dg-set of G, thus 

  .1nGdgts   
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