

UPPER TOTAL SPLIT DOUBLE GEODETIC NUMBER OF A GRAPH

T. JEBARAJ and D. SAJITHA

¹Assistant Professor
²Reg. no. 20213082092001
Department of Mathematics
Malankara Catholic College, Mariagiri
Kanyakumari District, 629153
Affiliated to Manonmaniam Sundaranar University
Abishekapatti, Tirunelveli-627012, Tamilnadu, India
E-mail: jebaraj.math@gmail.com
sajithajomrv@gmail.com

Abstract

A set $S_1 = \{a_1, a_2, a_3, ..., a_t\} \subset G, X \subseteq S_1, A, B$ and $C \subset S_1$ is said to be a minimal total split double geodetic set if only the improper subset X is the total split double geodetic set of G. Then $|S_1|$ is maximum, it is the upper total split dg-number $dgt_s^+(G)$ of G. The intend of this treatise is to deliver the perception about upper total split double geodetic number of a graph, yet we substantiate for non-negative integers n_1, d_1 and $k_1 \ge 4$ with $n_1 \le d_1 \le 2n_1$ in an unparted graph (connected) G, $Rad(G) = n_1$, $Diam(G) = d_1, dgt_s^+(G) = k_1$. As well, we derive $4 \le m_1 \le n_1$ such that $dgt_s = m_1$ and $dgt_s^+(G) = n_1$.

1. Introduction

In 2012, A. P. Santhakumaran et al., introduced the "Double geodetic number of a graph" [4] which is developed from the notion of geodetic number. In 2014, Venkanagouda M. Goudar and others established the Split geodetic concepts [6]. Moving from [4], [6], [12], [5] and [14], we formed the

Received Please provide.

²⁰²⁰ Mathematics Subject Classification: 05C12.

Keywords: double geodetic set, minimum double geodetic set, upper total split dg-set, minimal dg-set.

upper total split dg-set concept, which is based on the notion of minimal dgset. The below in formations needed to prove the results.

Theorem 1.1 [14]. Let G_1 be an unparted graph with |V(G)| = n, such that G_1 has a total split dg-set S_1 then $2 \le dg_s(G_1) \le dgt_s(G_1) \le n-2$.

Corollary 1.2. If $dg_t(G) = n$ or n-1 and |V(G)| = n then G has no total split dg-set.

Theorem 1.3 [15]

For the Gear graph

$$G_n, (n \ge 3), \, dgt_s(G_n) = \begin{cases} 4 & \text{if } n = 3, \, 4\\ \frac{3(n+1)}{2} & \text{if } n \text{ is odd and } n \ge 5\\ \frac{3n+2}{2} & \text{if } n \text{ is even and } n \ge 6 \end{cases}$$

ſ

2. The Upper Total Split Double Geodetic Number of a Graph

Definition 2.1. A set $S_1 = \{a_1, a_2, a_3, ..., a_t\} \subset G, X \subseteq S_1, A, B$ and $C \subset S_1$ is said to be a minimal total split double geodetic set if only the improper subset X is the total split double geodetic set of G. Then $|S_1|$ is maximum, it is the upper total split dg-number $dgt_s^+(G)$ of G.

Example 2.2. In Figure A, $S_1 = \{v_1, v_4, v_7, v_8\}$ forms a total split dg-set of G, $dgt_s(G) = 4$. Also $S_2 = \{v_3, v_7, v_8, v_6, v_2, v_5\}$ make a total split dg-set of G, as well only the improper subset of S_2 forms total split dg-set of G. Consequently, S_2 is an upper total split dg-set of G. Further we easily checked that, none of the proper subsets of S_2 forms a total split dg-set and so $dgt_s^+(G) = 6$.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 12, October 2022

6784

Figure A

Remark 2.3. In a graph G, every minimal total split dg-set is not a minimum total split dg-set but the contrary is true. In Figure $A, S_2 = \{v_3, v_7, v_8, v_6, v_2, v_5\}$ forms a minimal total split dg-set as well as it is not a least total split dg-set of G.

Theorem 2.4. If G has a total split dg-set S and |V(G)| = n then $3 \le dgt_s(G) \le dgt_s^+(G) \le n-2.$

Proof. Any total split dg-set requires at least 3 vertices, consequently $dgt_s(G) \ge 3$. More over $dgt_s(G) \le dgt_s^+(G)$, since the cardinality is maximum in upper total split dg-set and only the improper subset of $S \subset G$ forms a total split dg-set. Also by Theorem [1.1] and corollary [1.2], we get $dgt_s^+(G) \le n-2$.

Corollary 2.5. If G has a total split dg-set S with |V(G)| = n and $dgt_s(G) = n - 2$ then $dgt_s^+(G) = n - 2$.

Proof. From [2.4] and remark [2.3], we acquire $dgt_s^+(G) = n - 2$.

Theorem 2.6. In a ladder graph $L_n = G$, $dgt_s^+(G) = \begin{cases} 4 & \text{if } n = 3 \\ 5 & \text{if } n = 4 \\ 6 & \text{if } n \ge 5 \end{cases}$

Proof. Let $V(L_n) = \{a_1, a_2, a_3, ..., a_{2n}\}, n \ge 3$.

Case (i) n = 3.

Let $M = \{a_1, a_2, a_6\}$ be the split double geodetic set of L_n . Since it

covers all the pair of vertices α , β in L_n as well α , $\beta \in I[M]$ and $\langle V - M \rangle$ is disconnected. Further the induced subgraph $\langle M \rangle$ has one isolated vertex, consequently M doesn't form a total split dg-set of L_n . Add a vertex a_5 to Mwhich is an appropriate neighborhood of a_6 . Therefore $M' = \{a_1, a_2, a_6, a_5\}$ and only the improper subset of M' form a total split dg-set of L_n . Hence M' is an upper total split double geodetic set of L_n , $dgt_s^+(G) = 4$.

Case (ii) n = 4.

Let $N = \{a_1, a_8, a_i\}$ be the split double geodetic set of L_n . Since it covers all the pair of vertices x, y in L_n , as well $x, y \in I[N]$. Moreover $\langle V - N \rangle$ is detached. But the induced subgraph $\langle N \rangle$ has isolated vertices. Add the appropriate neighborhood of each vertex in N, to form a total split double geodetic set of L_n . Clearly $N' = \{a_1, a_8, a_i, a_2, a_j\}$ is the minimal total split dg-set of L_n . Obviously N is an upper total split dg-set of $L_n, dgt_s^+(G) = 5$.

Case (iii) $n \ge 5$.

Let $L = \{a_1, a_{2n}, a_i, a_j\}$ be the split dg-set of $L_n; a_i, a_j$ are the cut vertices of L_n , which are adjacent with each other. Clearly $\langle V - N \rangle$ is disconnected and the induced subgraph $\langle L \rangle$ has isolated vertices. Add the appropriate neighborhood of a_1 and a_{2n} , to form a total split dg-set of L_n . Obviously $L' = \{a_1, a_2, a_{2n}, a_i, a_j, a_{2n-1}\}$ is the minimal total split dg-set of L_n . Hence $dgt_s^+(G) = 6$.

Theorem 2.7. For non-negative integers r_1 , d_1 , $r_1 \le d_1 \le 2r_1$ and $k_1 \ge 4$ in G then

$$Rad(G) = r_1, diam(G) = d_1 and dgt_s^+(G) = k_1.$$

Proof. If $r_1 = 2$, obviously know $d_1 = 2$, 3 and 4.

Case (i) $r_1 = 2$. Then $d_1 = 2$.

Assume that $2r_1 + 1 = k_1$. Consider two paths P and Q, its vertices are

Advances and Applications in Mathematical Sciences, Volume 21, Issue 12, October 2022

6786

 q_1, q_2, q_3 and p_1, p_2, p_3 respectively. Take one more new vertex t and connect with q_2 and p_2 . Also q_1 and q_3 are connected with p_1, p_2 and p_3 . Now we get Figure *B*, which is named as *G* then *G* has radius 2 and diameter 2.

Let $S' = \{p_1, p_2, p_3, t, q_2\}$ be a total split dg-set of G. Since G[S'] incited by S' has no detached vertices and $\langle V - S' \rangle$ is detached. More over, only the improper subset of S' is a total split dg-set of G and hence S' is an upper total split dg-set of G. From [2.3], conspicuously know S' is not a least total split dg-set of G. Thus $dgt_s^+(G) = 5 = 2r_1 + 1 = k_1$.

Case (ii) $r_1 = 2$. Then $d_1 = 3$.

Let $G = G_3$ (Gear graph with n = 3) and $n + 1 = k_1$ then by Theorem [1.3], $dgt_s^+(G) = k_1$.

Case (iii) $r_1 = 2$. Then $d_1 = 4$.

Set up a graph G as follows. Let u_1, u_2, u_3 be the vertices of a path P_3 . Take r new vertices $w_1, w_2, ..., w_r$ and join each $w_i(1 \le i \le r)$ to u_1 and u_3 and obtain the graph H. Also add some K_2 and join one end of each K_2 to u_3 which is denoted by $v_1, v_2, ..., v_{k_1-l}(3 < l < k_1)$ and the other ends of K_2 is denoted by $x_1, x_2, ..., x_{l-3}$ respectively and get the graph G in Figure C.

Figure C

Then G has radius $r_1 = 2$ and diameter $d_1 = 4$. Obviously $S = \{u_1, u_3, x_1, x_2, \dots, x_{l-3}\}$ is a least split dg-set of G, yet the subgraph G[S] incited by S has detached vertices with degree zero. Therefore to make a total split dg-set of G from S, the appropriate neighborhood of each vertex is to be added. Clearly $S' = \{u_1, u_3, w_1, x_1, x_2, \dots, x_{l-3}, v_1, v_2, \dots, v_{k_1-l}\}$ and only the improper subset of S' forms a total split dg-set of G. Thus $dgt_s^+(G) = k_1$.

Figure D

Case (iv) $r_1 \ge 3$.

If $k_1 \ge 4$. Put up a graph G as follows. Consider $\alpha_1, \alpha_2, \ldots, \alpha_{r_1}, \alpha_{r_1+1}, \ldots \alpha_{2r_1}, \alpha_{2r_1+1}$ be the vertices of odd cycle C_{2r_1+1} . Take $K_1 - l$ new vertices $\beta_1, \beta_2, \ldots, \beta_{k_1-l}$ and append each $\beta_i(1 \le i \le K_1 - l)$ to α_q and α_t , where α_q, α_t , are the two adjacent vertices

of cycle C_{2n+1} . Further more add on l-2 new vertices $\gamma_1, \gamma_2, ..., \gamma_{l-2}$ and connect each $\gamma_i(1 \le i \le l-2)$ to α_p such that $d(\alpha_p, \beta_i) = r_1 + 1$ and acquire Figure D. Then G has radius r_1 and diameter d_1 . Also $S = \{\beta_1, \beta_2, ..., \beta_{k_1-1}, \gamma_1, \gamma_2, ..., \gamma_{l-2}, \alpha_p, \alpha_t\}$ forms a total split dg-set and only the improper subset of S make a total split dg-set of G. Consequently S is the minimal total split dg-set of G, $dgt_s^+(G) = k_1$.

Case (v) $r_1 = d_1$.

Let $V(C_{2r_1}): u_1, u_2, ..., u_{r_1+1}, ..., u_{2r_1}$. Take $k_1 - l - 1$ new vertices $v_1, v_2, \ldots, v_{k_1-l-1}$ to C_{2r_1} and append each $v_i(1 \le i \le k_1 - l - 1)$ to u_2 and $u_{2\eta}$. Also add l-3 new vertices $w_1, w_2, \ldots, w_{l-3}$ and connect each $w_j(1 \le j \le l-3)$ to u_{r_l} and u_{r_l+2} . Now attain the graph G of Figure E. From figure E, We clear that eccentricity of each vertex of G is r_1 so that Rad $(G) = Diam(G) = r_1$. The weak of Gextreme vertices are $E = \{u_1, u_{r_1+1}, v_1, v_2, \dots, v_{k_1-l-1}, w_1, w_2, \dots, w_{l-3}\}.$ Also E is the dg-set of G and $\langle V-E\rangle$ is a detached graph. Consequently define another set $E' = E \bigcup \{u_{\eta}, u_{2\eta}\}, \text{ where } u_{\eta} \text{ and } u_{2\eta} \text{ are the neighbors of some elements}$ of E. Clearly E' forms a total split dg-set of G, and only the improper subset of E' forms a total split dg-set of G. Hence E' is an upper total split dg-set of G. It is easily verified that, no other subsets with more than k_1 elements forms a minimal total split dg-set of G, $dgt_s^+(G) = k_1$.

Figure E

Advances and Applications in Mathematical Sciences, Volume 21, Issue 12, October 2022

Theorem 2.8. For any non-negative integers $4 \le m_1 \le n_1$ in G, such that $dgt_s(G) = m_1$ and $dgt_s^+(G) = n_1$.

Proof.

Case (i) If $m_1 = n_1$.

Let $G = C_{2n}$, $n \ge 3$, then $dgt_s(G) = dgt_s^+(G) = m_1$.

Case (ii) If $m_1 < n_1$.

Take $n_1 - 1 = m_1$. Consider a series connection of 'k' number of cycle C_4 and append $m_1 - 4$ new vertices to C_{k+1} . Also consider $\{l_1, l_2, ..., l_{n_1-m_1-1}\}$ new vertices and connect each $l_i(1 \le i \le n_1 - m_1 - 1)$ to x_1 and y_1 , then acquire G in Figure F.

Figure F

It follows that $T = \{l_1, l_2, ..., l_{n_1-m_1-1}, h_1, h_2, ..., h_{m_1-4}, C_1\}$ is the set of weak extreme vertices of given G. Therefore to make a total split dg-set of G, add the appropriate neighborhood of each isolated vertex in T. Hence $T' = \{l_1, l_2, ..., l_{n_1-m_1-1}, h_1, h_2, ..., h_{m_1-4}, c_1, c_2, c_{k+1}, x_1\}$ is a least total split dg-set of G, and hence $dgt_s(G) = n_1 - 1 = m_1$.

Further $T'' = \{l_1, l_2, ..., l_{n_1-m_1-1}, h_1, h_2, ..., h_{m_1-4}, c_1, c_j \neq c_2\}, c_{k+1}, x_1, x_i\}$ and none of the proper subsets of T'' forms a total split dg-set of G, thus $dgt_s^+(G) = n_1.$

References

- [1] B. Bresar, S. Klavzar and A. T. Horvat, On the geodetic number and related metric sets in Cartesian product graphs, Discrete mathematics 308 (2008), 5555-5561.
- [2] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002), 1-6.
- [3] F. Harary, Graph Theory, Addision Wesley, 1969.
- [4] A. P. Santhakumaran and T. Jebaraj, Double geodetic number of a Graph, Discussions Mathematicae Graph Theory 32 (2012), 109-119.
- [5] P. A. Ostrand, Graphs with specified radius and diameter, Discrete Math. 4 (1973), 71-75.
- [6] Venkanagouda M. Goudar, K. S. Ashalatha and Venkatesha, Split geodetic number of a graph, Advances and Applications in Discrete mathematics 13(1) (2014), 9-22.
- [7] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modeling 17 (1993), 89-95.
- [8] R. Muntean and P. Zhang, On geodomonation in graphs, Congr. Numer. 143 (2000), 161-174.
- [9] Z. Mihalic and N. Trinajstic, A graph theoretical approach to structure-property relationships, J. Chem. Educ. 69 (1999), 701-712.
- [10] G. Chartrand and P. Zhang, Introduction to Graph Theory, Tata McGraw Hill Pub. Co. Ltd., 2006.
- M. Atici, Graph operations and geodetic numbers, Congressus Numerantium 141 (1999), 95-110.
- [12] A. P. Santhakumaran and T. Jebaraj, The total double geodetic number of a graph, Proyecciones (Antofagasta, Online) 39(1) (2020).
- [13] A. P. Santhakumaran, T. Jebaraj and S. V. Ullas Chandran, The linear geodetic number of a graph, Discrete Mathematics, Algorithms and Applications 3(3) (2011), 357-368. DOI: 10.1142/s1793830911001279.
- [14] T. Jebaraj and D. Sajitha, Split double geodetic number of a graph, (communicated).
- [15] T. Jebaraj and D. Sajitha, Total Split double geodetic number of a graph, Stochastic Modeling and Applications 25(3) (July-December, Special Issue 2021 Part-3).