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Abstract 

The aim of this paper is to introduce operators on bipolar intuitionistic fuzzy soft sets 

(BIFSS). Properties of operators on BIFSS are established. An information measure on BIFSS is 

proposed. Making use of the proposed information measure a decision making concept is 

constructed. Finally, this concept is illustrated by an example. 

1. Introduction 

Zadeh [6] introduced fuzzy sets and Atanassov [2] introduced the IFS. 

Chiranjibe et.al.,[3] developed the notion of BIFS set. Information measure in 

fuzzy sets is certainly a measure of fuzziness, while for intuitionistic fuzzy 

sets information measure measures both the fuzziness and intuitionism. 

Srinivasan et.al., [5] introduced some operations on intuitionistic fuzzy sets of 

root type. Anita shanthi et.al., [1] introduced information measure of 

IVIFSSRT. Mishra [4] developed the intuitionistic fuzzy information 

measure. 

Now, we define operators on BIFSS and study some of its properties. We 

propose the concept of an information measure of BIFSS. Further decision 

making concept on information measure of BIFSS is developed. 
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2. Operations on BIFSS 

In this section, we define operators on BIFSS. Some properties of these 

operators are discussed. 

Definition 2.1. Let 
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Definition 2.2. Let  1,0  be a fixed number. Given an BIFSS  EF ,  

the operator D  is defined as 
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Definition 2.3. For   1,1,0,   the operator  ,F  for a BIFSS 

 EBF ,  is defined as 
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Definition 2.4. Let   .1,0,   Given a BIFSS  ,, EBF  the operator 

 ,G  is defined as 
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Obviously    EBFEBFG ,,1,1   and   .,0,0 EBFG  

Definition 2.5.  EBF ,  and  EBG ,  are two BIFSS. The operation @ 

on  EBF ,  and  EBG ,  is defined as 
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Theorem 2.6. Let  EBF ,  and  EBG ,  are two BIFSS and 

  ,1,0,   then the following conditions holds: 

(i)         EBGDEBFDEBGEBFD ,@,,@,    
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Proof. 
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3. Information measure on BIFSS 

In this section, we define information measure on BIFSS and prove that 

it is an entropy. 

Definition 3.1. Let the universal set be  mAAAU ,,, 21   and the 

set of parameters be   .,,, 21 neeeE   For any  EBFBIFSS ,  an 
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information measure to indicate the degree of fuzziness of  EBF ,  is defined 

as 
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where,  ,  denotes the minimum and maximum, respectively. 

Theorem 3.2. The information measure  EBFBI m ,  for BIFSS is an 

entropy. 

Proof. If    ,, UPEBF    then for each pp Ax   and Ee   we have: 
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Case (ii). Suppose that  EBF ,  is less than  EBG ,  then, 
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By taking summation on both sides and dividing it by n, we get 
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Case (iii). Suppose that  EBF ,  is greater than  EBG ,  then, 
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Hence an information measure is an entropy. 

4. Information measure on BIFSS 

In this section, we develop a decision making concept based on 

information measure of BIFSS. A procedure for decision making method is 

framed. 

4.1. Procedure: 

The following are the steps to be followed for this method: 

Step 1: Construct the BIFS sets  qEBF ,  over U. 

Step 2. Determine the information measure of  qEBF ,  by using 

Definition 3.1. 

Step 3. Compare the values of  qm EBFBI ,  and conclude. Thus the 

better choice is the alternative for which the information measure is the least. 

Example 4.2. A customer decides to buy a television. Television 

(alternatives) of three different companies      321 ,,,,, EBFEBFEBF  are 

evaluated over six factors   ,,,,,, 654321 tttttt  where 1t  price range, 

LEDt2  or 3, tOLED  cables and accessories, 4t  audio upgrades, 5t  

screen size and 6t  smart television. Depending on the six factors, the best 

alternative is determined. 

Step 1. BIFSS over U to assess the alternatives is as follows: 
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U  1, EBF    2, EBF   3, EBF  

1t  ((-0.13,0.47)(-0.25,0.1)) ((-0.2,0.68),(-0.32,0.15)) ((0.18,0.42),(0.28,0.12)) 

2t  ((-0.34,0.62),(-0.16,0.28)) ((-0.18,0.83),(-0.61,0.1)) ((0.17,0.22),(0.18,0.06)) 

3t  ((-0.25,0.73),(-0.4,0.14)) ((-0.32,0.45),(-0.27,0.13)) ((-0.14,0.73),(0.3,0.12)) 

4t  ((-0.1,0.51),(-0.38,0.08)) ((-0.41,0.64),(-0.5,0.3)) ((-0.24,0.6),(0.04,0.11)) 

5t  ((-0.12,0.38),(-0.26,0.04)) ((-0.24,0.76),(-0.61,0.15)) ((0.31,0.52),(0.17,0.28)) 

6t  ((-0.27,0.47), (-0.3,0.13)) ((-0.3,0.54),(-0.43,0.28)) ((0.16,0.72),(0.22,0.12)) 

Step 2. The  qm EBFBI ,  are estimated as follows: 

  6987.0, qm EBFBI  

  6969.0, 2 EBFBI m  

  .5922.0, 3 EBFBI m  

Step 3. The best alternative is the one which has least information 

measure with respect to six factors. We have 

     .,,, 123 EBFBIEBFBIEBFBI mmm   Therefore, the information 

measure  3, EBFBI m  has the least value and its corresponding alternative 

is the best alternative. So, the television  3, EBF  is the best one among the 

others. 
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