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Abstract

The aim of this paper is to introduce operators on bipolar intuitionistic fuzzy soft sets
(BIFSS). Properties of operators on BIFSS are established. An information measure on BIFSS is
proposed. Making use of the proposed information measure a decision making concept is
constructed. Finally, this concept is illustrated by an example.

1. Introduction

Zadeh [6] introduced fuzzy sets and Atanassov [2] introduced the IFS.
Chiranjibe et.al.,[3] developed the notion of BIFS set. Information measure in
fuzzy sets is certainly a measure of fuzziness, while for intuitionistic fuzzy
sets information measure measures both the fuzziness and intuitionism.
Srinivasan et.al., [5] introduced some operations on intuitionistic fuzzy sets of
root type. Anita shanthi et.al., [1] introduced information measure of
IVIFSSRT. Mishra [4] developed the intuitionistic fuzzy information

measure.

Now, we define operators on BIFSS and study some of its properties. We
propose the concept of an information measure of BIFSS. Further decision
making concept on information measure of BIFSS is developed.
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2. Operations on BIFSS

In this section, we define operators on BIFSS. Some properties of these

operators are discussed.

Definition 2.1. Let
(BF , E) = {x, ((ugF (e)(x), u;F (e)(x)), ((VZF (e)(x), VZF (e)(x)) :xeU,ec E}

be BIFSS. The hesitant degree of BIFSS is denoted by =" and =” is

BF (e) BF (e)

defined as
n n n p P 'y
T pr (e)(x): LM (e)(x)vaF (e)(x) and T pr (e)(x): L= tpe (e)(x)vaF (e)(x)

where =" e [-1, 0] and n"}; e [1, 0] respectively.

BF (e) F (e)

Definition 2.2. Let n < [0, 1] be a fixed number. Given an BIFSS (F, E)

the operator D, is defined as
D, (BF, E) = {x, ((n7, (o)(%) + m L () &) (e (oy(®) + nm - ()&

(2 ) ) + @=ml ), ( )+ (4= b, (@)
cx eU,ee E}.

Definition 2.3. For n, 5§ < [0, 1], n + § < 1 the operator F, s for a BIFSS

(BF , E) 1s defined as
Fo s (BF , E) = {x, (0 () + G0, (s ) () + e (%)),
(g (o) (®) + 87 () (X)), (v, (o))
+ &rj;F (e)(x)) cxeU,ec E}.

Definition 2.4. Let n, 5 « [0, 1]. Given a BIFSS (BF , E), the operator

G, s is defined as
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G s (BF , E) = {a, () (0), mu o (0)), (3 (%),
Sv ZF(Q)(x)) ix e U, ec E}.
Obviously G, ,(BF , E) = (BF , E) and G, ((BF , E) = ®.

Definition 2.5. (BF , E) and (BG, E) are two BIFSS. The operation @

on (BF , E) and (BG , E) is defined as

(BF E)@(BG E) j (HZ)F (e)(x)+ “,;G (e)(x) HZF (e)(x)+ “Z’G (e)(x))
s s ={x, , ,
l ? 2

n

(VBF(e)(x)JrVBG(e)(x) VBF(e)(x)+VBG(e)(x)Wx€U eeEL
2 ’ 2 ’ J

Theorem 2.6. Let (BF,E) and (BG,E) are two BIFSS and

n, 8 e [0, 1], then the following conditions holds:
(@) D,(BF , E)@(BG , E)) = D,(BF , E)@ D, (BG , E)
() F, s((BF , E)@(BG , E)) = F, s(BF , E)@ F, 5(BG , E)
(i) G, s((BF , E)@(BG , E)) = G, 5(BF , E)@ G, 5(BG , E).
Proof.

B BB a6 )= o[ T ) () () b ()],

1 n n
(3 O ) Vi (0 e )+ v he (D]
1 n n n n
Dy (BF L E)@(BG )= o [ Z0 e ()0 () () e (6,

Mo ()% 1% B () b () + e B )|

n

1 n n n
L R R A S P LR L A S e
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I AU E P T N ¢ RUCISR S TN %) ]}

D (BF , E) = fx, (e (o) () + W (0 % b () + ()

(Vo (o) + = mng (@) v @)+ = m)rg ()

D BG . E) = (. (W () = n ()l ()4 me D (@)
(VB () + (L= M)l () v )+ (0 ety ()
D, (BF ,E)@ D, (BG, E)
(uBF N N ) R N CO R LN CP)
W (o) (8) + M o (®) + g () + mm e (),
(5 O o))+ (= s @)+ Vi () + (= )l ()
Vi (o) @ -n

15 () + Vg () 0= ag G

Therefore D, (BF , E)@(BG , E)) = D, (BF , E)@ D, (BG , E).

(ii) F, ;((BF , E)@(BG , E)) = {x, (”BF (o) (®) + ';F J(x) + “BG( ) (x)

g (0 W (o)) F T e () (8) g ) () G ) (9,

(5 O () 88 () + Vg () + B ) (6))

BF( )(x) + énBF( )(x) + VfBG (e)(x) + Sn;G (e)(x)))}

Fo s (BF  E) = {x, (e o (0) + nm e () + e () + e e (2)),

(o) (%) 3 e () () 4 Vg () (%) 8 e (2D}
n n P p
Fu5(BG, E) = {x, (npg o)(®) + g () +pps @)+ mm g, (2),

n n P p
(Ve (e)(x) + o (e)(x), v pe (e)(x) + o (e)(x))}
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Fos(BF E)@ Fy ((BG . E) = {x (= ()4 ey )+ uh ) (0)
N 3 LM £ R N 0 RSN S L AN ()}
(—(VBF ) SR @) ) B (),

BF( )(x)+6n- )(x)+v (x)+8;rBG( )(x)))}.
Therefore ., ;((BF , E)@(BG , E)) = F, s(BF , E)@ F, ;(BG , E)

(iii) G, s((BF , E)@(BG , E))
= {x, (nuBF Y () e () (),
1, n n
(5 (% T (o () 8 () (E) + v () + 8 ()

G o (BE L E) = {x, (g (0) + mmp o) (Bupe ) (0) + 8vige ) (0))
G5 (BG, E) = f{x, (o (0) + mupe () Gy (0) + 8vp, ()}
G, s(BF ,E)@G, ;(BG, E)
= {x, —(m1 B ()8 (3, nuBF( y(&) + nn BG o))

1 n n
(;(8\/ B (8)(x) + dv s (e)(x) + dv gF (E)( x) + SVBG (e)( x))}.

Therefore ¢, ;((BF , E)@(BG , E)) = G, 5(BF , E)@ G, 5(BG , E).

3. Information measure on BIFSS

In this section, we define information measure on BIFSS and prove that

it is an entropy.
Definition 3.1. Let the universal set be U = {4,, 4,, ..., 4,,} and the

set of parameters be E = {e,e,,..,e,}. For any BIFSS (BF, E) an
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information measure to indicate the degree of fuzziness of (BF , E) is defined

as

T A R RN CON | DN LN C NG AN C !
BI , (BF ,E,)=—
np:1

e

v{uBF(e(x )V e )}—V{HBF (x5 )v )( )
where, ~, v denotes the minimum and maximum, respectively.

Theorem 3.2. The information measure BI , (BF , E) for BIFSS is an

entropy.

Proof. If (BF , E) e P(U), then for each x, €A, and ¢ ¢ E we have:

Case (D). If (w7, (,) w2, (5,0 = (Vi (@) vh ) (x,)), then

u'le(e)(xP) = VZF (e)(xp)’ “ZF (e)(xP) = VZF (e)(xp)
AR, () *p ) Vi (0 Fp ) - IS () &p): Vo (0 Fp )
=v{uBF (@ )vBF()(x ) - v{uBF (@ )vBF( (x,)}-
So, BI ,,(BF , E) = 1.

Conversely, suppose that Br ,, (BF , E) = 1.

This implies that

INR T )% p ) v (0 Fp ) = NI () *p) v (o) Fp )}

and
A {HZF (e)(xp), "ZF (e)(xp)} - A{HZF (e)(xp), V%F (e)(xp)}~

n p
Hence “F(e)(xp) = F( )(x ) and “F( )( ) = vF(e)(xp). Therefore, we have

W @) B @) = O (8 5) Vi (o (35)):

Case (ii). Suppose that (BF , E) is less than (BG , E) then,
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W )@ B @) < (g () g (5 p),
(VZF (e)(xp)v VZF (e)(xp)) > (VZG (e)(xp)s VZG (e)(xp))

For (' @0 g (06D < Vg (&) Vg (o)

W 00 < Wi () S Vi () < Vi ()

and
p p p
uBF(e)(xp) < B, (e)(xp) < VBG(e)(xp) < VBF(E)(xp)
So,

S R S L SN € A I G

T R N C | I NN CP AT NN e

X

n P n p
uBF(e)(x,,)+uBF(e)( ») < HBG(e)(x,,HuBG(e)(xp)

VE pp (e)(xp)’ V pr (e)(xp) VE pa (e)(xp) ~ Vg (e)(xp)

R N RN C IS TSN CI AT Cp

R E N €0 | R L SN I R CIN !

By taking summation on both sides and dividing it by n, we get

1 moA e o) Vi o @ = A ) Vi (@)1
n
p=1

T C S N S C 0 | I (M C I RN

moan, ) &p): Vi () Fp ) - ST 0 &p) Voo (o) *p )

IN
3|~

n n P P
A (N 0 MR E0 B TN O AN E

le., BI, (BF,E)< BI,, (BG, E).

Case (iii). Suppose that (BF , E) is greater than (BG , E) then,

W 00 W (@) = (s () mg (),

497
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e @k Vo @) 2 (I () v ()
For (i, () w1 ,0) = (Vi G v (),

Ko (o 0) 2 W ()0 2 Vi ) Vi (05

and
T ) *p) 2 M6 ) *p)) 2 ng(e)(xp) > Vi () *p)
So,
A () Vi = A ) Vi )
S A e NI AT AN I

n p n p
Mg (e)(xp)+ [T (e)(xp) § [T, (e)(xp)— [T (e)(xp)
n p N n p ’
VH g (e)(xp)_ vV Br (e)(xp) VE pa (e)(xp)_ vV Ba (e)(xp)

/\{H;;G(e (xp),v;;a(e (x,)} - {uBG )@ p )VBG( (x5

LR O )VBG(e (x, )}—V{um(e)(xp),VBG(e)(xp)}

By taking summation on both sides and dividing it by n, we get

1 A{u;;F(e (xp),v;F(e (x )} - {HBF( (x,) Voo @)

R A A N N C R LMD C IO AR e(x,J)}

R LN I RN C | DN L AN CI N AN CI !

IN
3 =

p=1 v {“BG

(x5 ). v o (o) Ep ) - {uBG (@, ), vy o (o) Fp )
l.e., BI, (BF, E)> BI, (BG, E).
Case (iv).
(BF , E)" = {x, v (0 &p): v () &p))
(H;;F(e)(xp)’ “’};F(e)(xp)) tx, € Ay e e E}

Therefore,
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N N E R A S N M CO WA COO !

1

Br, (BF , B)° = —
n n D p

n b1 ¥ Ve (e)(xp), [T (e)(xp)} - vi{vie (e)(xp)y H (e)(xp)}

- BI, (BF , E).
Hence an information measure is an entropy.

4. Information measure on BIFSS

In this section, we develop a decision making concept based on
information measure of BIFSS. A procedure for decision making method is
framed.

4.1. Procedure:
The following are the steps to be followed for this method:

Step 1: Construct the BIFS sets (BF , E,) over U.
Step 2. Determine the information measure of (BF , E,) by using

Definition 3.1.

Step 3. Compare the values of Br, (BF, E,) and conclude. Thus the
better choice is the alternative for which the information measure is the least.

Example 4.2. A customer decides to buy a television. Television
(alternatives) of three different companies (BF , E,), (BF , E,), (BF , E;) are
evaluated over six factors {t,, ¢,, t5, t,, t5, tg}, Where ¢ = price range,
t,LED or OLED ,t, = cables and accessories, ¢, = audio upgrades, ¢; =
screen size and ¢, = smart television. Depending on the six factors, the best

alternative is determined.

Step 1. BIFSS over U to assess the alternatives is as follows:
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U (BF , E;) (BF , Ey) (BF , Eg)

t ((-0.13,0.47)(-0.25,0.1)) ((-0.2,0.68),(-0.32,0.15)) ((0.18,0.42),(0.28,0.12))
ty ((-0.34,0.62),(-0.16,0.28)) ((-0.18,0.83),(-0.61,0.1)) ((0.17,0.22),(0.18,0.06))
ts ((-0.25,0.73),(-0.4,0.14)) ((-0.32,0.45),(-0.27,0.13)) | ((-0.14,0.73),(0.3,0.12))
ty ((-0.1,0.51),(-0.38,0.08)) ((-0.41,0.64),(-0.5,0.3)) ((-0.24,0.6),(0.04,0.11))
ts ((-0.12,0.38),(-0.26,0.04)) ((-0.24,0.76),(-0.61,0.15)) | ((0.31,0.52),(0.17,0.28))
tg ((-0.27,0.47), (-0.3,0.13)) ((-0.3,0.54),(-0.43,0.28)) ((0.16,0.72),(0.22,0.12))

measure
BI, (BF , Ej) < BI, (BF , Ey) < Bl , (BF , E,).

Step 2. The Br,, (BF , E,) are estimated as follows:

BI

BI

BI

w (BF . E ) = 0.6987
. (BF , Ey) = 0.6969

w (BF | Ez) = 0.5922 .

Step 3. The best alternative is the one which has least information

with

respect

to six

factors.

We

have

Therefore, the information

measure BI,, (BF , E;) has the least value and its corresponding alternative

is the best alternative. So, the television (BF , E;) is the best one among the

others.
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