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Abstract 

Signed-digit number systems are growing with several attractive features, providing 

underpinning for online arithmetic too. However, signed-digit numbers appear to be more 

susceptible to overflow due to carrying intrinsic redundancy. Obviously the practical 

applications of signed-digit arithmetic may have been constrained by overflow as one of its 

performance bottlenecks and so efficient handling of overflow is a prerequisite for the survival of 

signed-digit arithmetic. In the traditional signed-digit arithmetic the known method for 

overflow handling is fairly complex whereas in online arithmetic no method for overflow 

handling has been formulated yet. In this paper, one of the most attractive classes of signed-

digit number systems, binary signed-digit number system, is further investigated for overflow 

handling. The investigations result in proposing two different algorithms. The first algorithm is 

applicable to the traditional signed-digit arithmetic domain, showing more prospects in wider 

context. The second algorithm may run in online mode.  

1. Introduction 

Adders serve as one of the basic building blocks of integrated arithmetic 

units (AUs) and so incorporating faster adders is a prerequisite for designing 

faster processors [1]. However, for the conventional radix-complement 

number system addition necessitates carry propagation which may cause 

drastic reduction in the processor’s speed. For remediation some alternative 

computational philosophies have been aired with unconventional         

number systems (UCNSs) [1], allowing carry-free or limited-carry 
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addition/subtraction. Signed-digit number system (SDNS) is an UCNS ([1]-

[2]), which can restrict carry/borrow chains during addition/subtraction to 

some closed neighbourhood for all counterpart operand positions. In other 

words, SDNS offers faster addition/subtraction, employing regular arithmetic 

circuits, which, in turn, catalyzes faster execution of some more complex 

arithmetic operations (AOs), including multiplication and division [1]. In 

addition for the last few decades several arithmetic algorithms (AAs) have 

been developed in signed-digit (SD) environment to satisfactorily support 

cryptography ([3]-[4]) low-power consuming AOs ([5]-[6]), fault-tolerance [7] 

and on-line arithmetic (OLA) ([8]-[9]) too. However, one basic problem with 

signed-digit arithmetic (SDA) is that SDNS intrinsically carries redundancy 

which makes it more susceptible to overflow [1]. This is what strives to 

restrict the practical applications of SDNS as one of its major performance 

bottlenecks, besides problems like reverse conversion (RC) ([1], [10]) and 

magnitude comparison [1]. Clearly efficient handling of overflow is a 

prerequisite for the survival of the SDNS. In the traditional SDA the known 

method for overflow handling (OH) is fairly complex [11] whereas in OLA no 

method for OH has been formulated yet. In this paper one of the most 

attractive classes of SDNSs, binary signed-digit number system (BSDNS), 

will be further investigated for OH with greater efficiency. The remaining 

portion of the article will be organized with five sections as follows: Some 

stakeholder-issues and their backgrounds will be discussed in brief in section 

2. The existing AA for OH in SDA environment will be revisited in section 3. 

Two new AAs will be proposed for OH in BSDNS platform in section 4. One 

algorithm will be the traditional SDA-compliant whereas the other will be 

OLA-compatible. The comparative merit of the first algorithm over its 

potential contenders will be presented in section 5 in the wider context. 

Finally the presentation will be ended in section 6 with concluding remarks 

and future directions.  

2. The Background 

In this section, for accordant presentation the mathematical formulations 

of SDNS as well as some other stakeholder-issues for OH are revisited in 

brief.  

2.1. SDNS. In general the radix-r  2r  SDNS is defined as a positional 
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number system over the DS   ,1,,1,0,1,,1, S  where 

0,0   and .1 r  It means every number X, expressed in 

radix-r signed-digit form as: ,021 SXXXX inn    must observe: 







1

0
.

n

i iXX  Different classes of SDNS may appear with varying  and , 

which are termed as SDNSs as a whole. In simplest form 1  and it 

results  1,0,1S  which is the BSDNS. 

2.2. SD-Encodings. As the digital devices are driven by binary 

arithmetic principles at an extreme arithmetic level, some mapping from the 

signed digit-set (DS) to the traditional binary DS is mandatory. For the 

BSDNS two popular encodings are: two’s-complement encoding (TCE) and 

positive-negative encoding (PNE) as specified in Table 1. In this study, TCE 

will be employed throughout for BSD encoding.  

Table 1. Encodings of binary signed-digits (BSDs). 

Binary Signed-

Digit (BSD) 

Binary Encoding 

PNE  TCE 

1  01 11 

0 00 (or 11) 00 

1 10 01 

2.3. Redundancy in SDNS. In SD-platform some numbers may have 

two or even more representations and so SDNS is also called the redundant 

number system. For SDNSs intrinsic redundancy is essential, because carry-

free/limited-carry addition/subtraction is not possible, otherwise. For instance 

in BSDNS-platform  107  can be represented as    22 0011,1110  and 

  .10011 2  Then if the computing device can support 4-digit number 

representation only (at least hypothetically) the representation  210011  will 

cause an overflow. In this case the overflow is resolvable by using some 

alternative representation for  107  say  21110  or  20011  as presented 

in this example. This type of overflow is termed as apparent overflow. 

Obviously the apparent overflow is manageable for not causing computational 
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errors. The other type of overflow definitely causes computational errors and 

it is known as actual overflow.  

2.4. Sign-Detection. Sign of the most-significant non-zero digit uniquely 

determines the sign of a signed-digit number (SDN). For a given binary-SDN 

0121 ZZZZZ nn   every sign-detection (SDTN) algorithm must conform 

the rules presented in Table 2.  

Table 2. Rules for Sign-Detection. 

iX  iS  1iS  

1  1  1  

1  0 1  

1  1 1  

0 1  1  

0 0 0 

0 1 1 

1 1  1 

1 0 1 

1 1 1 

Here negative, zero and positive signs are denoted by 0,1  and 1 

respectively. Initially 00 S  and finally nS  gives the required sign. The 

methodological alliance between sign-detection and OH will be elaborated in 

details in the next session. In this study, apart from BSDs, for representing 

sign-information TCE will be used.  

2.5. Online Arithmetic. In OLA for every operation the concerned 

phases are executed serially and only in the direction of most-significant-digit 

(MSD) to least-significant-digit (LSD). In addition some phases of two 

different operations may coincide over the same time slot and consequently as 

a whole faster execution of a group of operations may be possible [8]. OLA is a 

recent trend in unconventional computing and it is an exclusive characteristic 
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of SDNSs to admit OLA. In the recent years online arithmetic algorithms 

(OLAAs) for complex AOs have been being investigated too ([9], [12]).  

3. Revisiting the Existing OH-algorithms 

Suppose that a n-digit BSD-number (BSDN) 021 XXXX nn   is to 

be tested for overflow. It is needless to say that any question of further 

investigating an overflow may arise only when .0nX  The existing 

approach of OH is to employ two independent sub-algorithms, one for sign-

detection and the other for overflow-resolution [11]. On the basis of the rules 

presented in Table 2 an AA for SDTN of BSDNS is presented as Algorithm 1.  

Algorithm 1. Sign-Detection  

1. Initialize: 0,0 0,01,0  SS  

2. For 0i  to 1n  do:  

a. Compute: 0,0,0,11,0,1,1,1 , iiiiiii SXSSXXS    

When nX  and nS  contradict in sign, it is an apparent overflow. 

Otherwise, it would be a real overflow. When the storage unit is limited to n-

bit, in case of real overflow the desired SD-output can never be restored 

equivalently. However for an apparent overflow the desired SD-output can be 

restored equivalently [11]. In this regard all cases are shown in Table 3 where 

0T  and 1T  represent actual and apparent overflow respectively.  

Table 3. Overflow Type Checking. 

nX  nS  T 

1  1  0 

1  0 0 

1  1 1 

0 1  AN  

0 0 AN  
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0 1 AN  

1 1  1 

1 0 0 

1 1 0 

The existing approach for apparent-overflow resolution [11] uses a BSD-

variable  iB  as the driver which works as follows: Initialize: nn XB 1  and 

.1 ni  Then compute and move towards the lower-significant-digit 

positions on par with Table 4.  

Table 4. Existing Rules for Overflow Resolution [11]. 

iX  iB  iY  1iB  

1  1  AN  AN  

1  0 1  0 

1  1 1 0 

0 1  1  1  

0 0 0 0 

0 1 1 1 

1 1  1  0 

1 0 1 0 

1 1 AN  AN  

During overflow resolution the cases marked by AN  do not occur. iB  

becomes 0 either when  11 iX  and 11 iB  or when  11 iX  and 

.11 iB  Once iB  becomes 0,0  iXY ii  i.e. no more OI  

transformation is required. On the basis of generating characteristic 

equations for Table 3 and Table 4 the traditional overflow resolution process 

is represented as Algorithm 2 as follows:  

Algorithm 2. Overflow Resolution  
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1. Compute: 1,0,0,1, nnnn SXSXT    

2. If  0T  Output: “Actual Overflow”  

3. Otherwise  

a. Initialize: 1,1,10,0,1 , nnnn XBXB    

b. For 1 ni  to 1 do as follows:  

i. Compute: 0,1,0,0,1,0,1,1, , iiiiiiii BBXYBBXY   

ii. Compute: 1,1,0,11,0,1,1 , iiiiii BXBBXB    

c. Compute: 0,01,00,00,01,00,01,01,0 , BBXYBBXY    

d. Output “It is an apparent overflow and resolved as:”, Y  

4. New Proposals for OH 

In this section two new algorithms are proposed for OH. The first 

algorithm is applicable to the traditional binary-SDA domain whereas the 

second algorithm may run as an OLAA.  

4.1. OH in Traditional Binary-SDA Domain: Proposing a Novel 

Algorithm  

The proposed algorithm exploits Lemma 1 which is as follows:  

Lemma 1. For every BSDN    ,0Z  some BSDN Y such that every digit 

of Y is non-zero, excluding the sequence of zero(s) covering the least-significant 

position of Y, if any.  

As    22 111010    and    22 111100    hold true, Lemma 1 

immediately holds true. Let the typical representation of Y is called 

Intermediate Zero-Free Binary Signed-Digit Representation (IZFBSDR). The 

rules for converting ordinary BSD-representation into the equivalent 

IZFBSDR are listed in Table 5.  
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Table 5. Proposed Rules for IZFBDSR. 

iX  1iX  iY  1iY  

1  1  1  1  

1  0 1  0 

1  1 1  1 

0 1  1  1 

0 0 0 0 

0 1 1 1  

1 1  1 1  

1 0 1 0 

1 1 1 1 

On realizing the governing Boolean expressions for Table 4, the 

conversion algorithm may be presented as Algorithm 3.  

Algorithm 3. OH-proposal for the traditional SDA-platform  

1. Set:  

a. Compute: 0,01,0,10,11,00,11,11,1 , XXXYXXXY i    

b. Compute: 0,01,00,11,00,11,0 XXXXXZ   

0,00,0 XZ   

2. For 2i  to 1n  do as follows:  

a. Compute: 0,11,0,0,1,10,1,1, ,   iiiiiiii YXXYYXXY   

b. Compute: 0,11,10,1,10,1,1   iiiiii YYXYXZ  

0,10,1   ii YZ  

3. Compute: 1,10,0,11,   nnnn YXYXT  



ON OVERFLOW HANDING IN BINARY SIGNED-DIGIT … 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022 

3487 

4. If  0T  Output: “Actual Overflow”  

5. Else  

a. Rectify: 0,0,11,1,1 , nnnn XYXY    

b. Output “It is an apparent overflow and resolved as:”, Y  

4.2. OH in Online Arithmetic Domain: Proposing an Algorithm  

The proposed algorithm, Algorithm 4, is an extension of Algorithm 2. The 

Algorithm 4 uses a binary variable, ,iD  to assess the overflow type (actual or 

apparent) for ith iteration  1,0  ni  where 0iD  means the overflow is 

actual and 1iD  means the overflow status is not clear yet. Initially 

.11 nD  iD  becomes 0 either when  11 iX   and 11 iB  or when 

 11 iX  and .11 iB  Once iD  becomes 0, no more computation is 

required, except propagating 0iD  to become .0iD  On the other hand 

for 1iD  the overflow resolution process is obviously continued. Finally in 

case of occurrence of ,1iD  it may be concluded that the overflow has been 

resolved with an equivalent substitute. The driving rules for Algorithm 4 are 

presented in Table 6.  

Table 6. Rules for the Proposed OLAA for OH. 

iX  iB  iD  iY  1iB  1iD  

1  1  1 NOP 0 

1  1  0 NOP 0 

1  1 1 1 0 1 

1  1 0 NOP 0 

0 1  1 1  1  1 

0 1  0 NOP 0 

0 0 1 0 0 1 

0 0 0 NOP 0 
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0 1 1 1 1 1 

0 1 0 NOP 0 

1 1  1 1  0 1 

1 1  0 NOP 0 

1 0 1 1 0 1 

1 0 0 NOP 0 

1 1 1 NOP 1 

1 1 0 NOP 0 

1 0 1 1  0 1 

1 0 0 NOP 0 

On the basis of generating characteristic equations for Table 6 the OH 

process may be expressed as Algorithm 4 as follows: 

Algorithm 4. OH-proposal for the OLA-platform  

1. Initialize: AADXB
nnn 1,

11 
  

2. For 1 ni  to 0 do as follows:  

a. If 1iD  do as follows:  

i. Compute: 0,1,0,0,1,0,1,1, , iiiiiiii BBXYBBXY   

ii. Compute: 0,0,0,11,0,1,1 , iiiiii BXBBXB    

iii. Compute: 1,0,0,1,0,1,1 iiiiiii BXBXXXD   

b. Else do  

i. NOP  

ii. set: 00 D  

3. If  10 D  Output “It is an apparent overflow and resolved as:”, Y  
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4. Else Output: “It is an actual overflow”  

5. Results and Discussion 

In this paper two new AAs for OH in BSDNS have been proposed. One 

AA, Algorithm 3, is traditional BSDNS-compliant. The other AA, Algorithm 4, 

is OLA-compatible. Algorithm 3 seems to air a novel philosophy in the 

literature of SDA. In order simplify the analysis of the comparative merit of 

Algorithm 3, let its step 1 through step 2 are marked as a whole as the pre-

processing stage and its rest steps are collectively marked as the resolution 

stage. It is true that the area, delay and power overheads of the pre-

processing stage of Algorithm 3 may be significant, rather than being 

negligible and experimental study is needed to accurately quantify those 

parameters. However, still the Algorithm 3 is worthy for further 

consideration regardless of its immediate comparative merit or demerit over 

its existing counterpart [11], as once the execution of the pre-processing stage 

is completed, it may provide constant-time solution not only to the OH 

problem, but also to the RC-problem. It is well known that the RC for SDNSs 

necessarily involves high overheads and no circuit faster than log-depth time 

complexity is known [10]. However, as the pre-processing stage of Algorithm 

3 necessarily yields IZFBSDR and in IZFBSDR the conversion control 

information [10] for every digit position is directly implied by the sign of its 

immediate lower-significant digit, constant-time RC may become possible too. 

Further the integration of AUs for RC and OH-and even radix-complement to 

sign-magnitude transformation [13] may become possible at ease, with a 

promise for the higher-degree performance as a whole.  

On the other hand, the contribution of the Algorithm 4 to the literature is 

clearly evident from the fact that it attempts to present the first ever proposal 

for OH over OLA-platform.  

However, some limitations of this study are that it is purely theoretical 

and for investigating the OH-problem and its prospective solutions; only 

linear algorithmic models are considered in line with some latest reports 

published in the allied fields [14]. However, for stand-alone SDTN, the use of 

non-linear network, particularly optimized reverse tree network [15], seems 

to be the better option. In other words, Algorithm 1 and Algorithm 3 may be 
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outperformed by the corresponding non-linear models. Obviously it would be 

interesting for carrying the research forward in this direction.  

6. Conclusion 

Efficiency in OH is very important for keeping the future prospects of 

SDNSs alive. In this paper, one of the most attractive classes of SDNDs, 

BSDNS, is considered and two algorithms for OH are proposed.  

The first algorithm, Algorithm 3, works on the traditional SDA domain 

whereas the second algorithm, Algorithm 4, may run in the OLA domain. It is 

true that the pre-processing stage of Algorithm 3 may attract additional area, 

delay and power as overheads. However, still Algorithm 3 is worthy for 

further consideration as the immediate outcome of its pre-processing stage is 

IZFBSDR and IZFBSDR may serve as the basis for constant-time, one-stop 

solution for overflow resolution as well as some other complex problems of 

SDA, including RC. On the other hand, the second algorithm, Algorithm 4, 

appears to be the first ever proposal for OH in OLA mode to the author’s best 

knowledge and belief. As a subject matter of future studies by the author, 

non-linear variants of some stakeholder algorithms of this study, namely 

SDTN and IZFBSDR, would be considered, for possible enhancement in OH-

performance. The future study would be theoretical as well as experimental.  
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