

PROPERTIES OF OPERATION ON *ags*-**OPEN SETS**

N. K. NARMADHA1 and N. BALAMANI2

¹Research Scholar
²Assistant Professor
Department of Mathematics
Avinashilingam Institute for Home Science
and Higher Education for Women
Coimbatore-641043, India
E-mail: narmadhapadma2@gmail.com
nbalamani77@gmail.com

Abstract

The aim of this paper is to introduce some new kinds of operators using γ operation on αgs -open sets and investigate their properties. Further we define $\alpha gs\gamma g$ -closed sets using $\alpha gs\gamma$ -open set and study some of its characterizations.

1. Introduction

Rajamani and Viswanathan [9] introduced αgs -closed sets in topological spaces. Kasahara [5] initiated the study of operation approach on topological space and also he introduced the concept of α -closed graphs of functions in topological spaces. Jankovic [4] analysed the functions with α -closed graphs. Ogata [8] renamed the operation α as γ operation and introduced γ -open sets by defining the γ operation on open sets in topological spaces. Sanjay Tahiliani [10] introduced β - γ -open sets using the γ operation on β -open sets. Carpintero et al. [2] studied b- γ -open sets by considering the γ operation on b-open sets. Following this, Ibrahim [3] studied α_{γ} -open sets by defining γ operation on α -open sets. Asaad [1] defined the operation α on P_S -open sets

2020 Mathematics Subject Classification: 54A05, 54A10.

Keywords: $\alpha gsInt_{\gamma}(A)$, $\alpha gs_{\gamma}Int(A)$, $\alpha gs_{\gamma} ker(A)$ and $\alpha gs\gamma g$ -closed sets.

Received November 12, 2021; Accepted November 20, 2021

in topological spaces. Mershia Rabuni and Balamani [6] defined the operation γ on $\tau_{\alpha g}$ and introduced αgs -open sets in topological spaces. Narmadha and Balamani [7] introduced the operation γ on αgs -open sets and defined $\alpha gs\gamma$ -open sets in topological spaces. In this paper, we introduce new operators namely $\alpha gsInt_{\gamma}(A)$, $\gamma gs_{\gamma}Int(A)$, $\alpha gs_{\gamma} \ker(A)$ using αgs -open sets and discuss their properties. Also, we introduce and study the properties of a new type of generalized closed set called $\alpha gs\gamma$ -generalized closed set.

2. Preliminaries

Definition 2.1 [7]. Let (X, τ) be a topological space. An operation $\gamma : \tau_{\alpha gs} \to P(X)$ is a mapping from $\tau_{\alpha gs}$ to $P(X) \ni V \subseteq \gamma(V) \forall V \in \tau_{\alpha gs}$, the value of V under the operation γ is denoted by $\gamma(V)$.

Definition 2.2 [7]. A non-empty subset A of a space (X, τ) with an operation γ on $\tau_{\alpha gs}$ is called an $\alpha gs\gamma$ -open set of (X, τ) if $\forall x \in A, \exists$ an αgs -open set U containing $x \ni \gamma(U) \subseteq A$. The set of all $\alpha gs\gamma$ -open sets is denoted by $\tau_{\alpha gs\gamma}$. The complement of an $\alpha gs\gamma$ -open set is called $\alpha gs\gamma$ -closed.

Definition 2.3 [7]. An operation $\gamma : \tau_{\alpha gs} \to P(X)$ is called αgs -regular if $\forall x \in X$ and \forall pair of αgs -open sets A and B containing x, \exists an αgs -open set C containing $x \ni \gamma(A) \cap \gamma(B) \supseteq \gamma(C)$.

Definition 2.4 [7]. An operation γ on $\tau_{\alpha gs}$ is said to be αgs -open if $\forall x \in X$ and $\forall \alpha gs$ -open set U containing x, \exists an $\alpha gs\gamma$ -open set $V \ni x \in V$ and $V \subseteq \gamma(U)$.

Definition 2.5 [7]. Let γ be an operation on $\tau_{\alpha g s \gamma}$. A point $x \in X$ is called an $\alpha g s \gamma$ -closure point of a set A if $\gamma(U) \cap A \neq \phi \forall \alpha g s$ -open set U containing x. $\alpha g s Cl_{\gamma}(A) = \{x \in X / \gamma(U) \cap A \neq \phi, \forall U, \alpha g s$ -open set containing $x\}$.

Definition 2.6 [7]. Let γ be an operation on $\tau_{\alpha g s \gamma}$. Then $\alpha g s C l_{\gamma}(A)$ is

defined as the intersection of all $\alpha gs\gamma$ -closed sets containing A. $\alpha gsCl_{\gamma}(A)$ = $\bigcap \{F \subseteq X \mid A \subseteq F \text{ and } X \setminus F \in \tau_{\alpha gs\gamma} \}.$

Results 2.7 [7]. (i) Let (Z, τ) be a topological space and $A \subseteq Z$ and γ be an operation on $\tau_{\alpha g s \gamma}$. Then for a given $z \in Z$, $z \in \alpha g s_{\gamma} Cl(A)$ iff $M \cap A$ $\neq \phi \forall M \in \tau_{\alpha g s \gamma}$ containing z.

(ii) Arbitrary union of $\alpha gs\gamma$ -open sets is $\alpha gs\gamma$ -open, where γ is an operation on $\tau_{\alpha gs}$.

(iii) $\alpha g s_{\gamma} Cl(A)$ is $\alpha g s \gamma$ -closed, where A is the subset of Z and γ is an operation on $\tau_{\alpha g s}$.

Theorem 2.8 [7]. Let $\gamma : \tau_{\alpha gs} \to P(Z)$ be an operation on $\tau_{\alpha gs}$ and D and B are subsets of Z. Then the results below are true.

- (i) $D \subseteq \alpha gscl_{\gamma}(D)$.
- (ii) D is $\alpha gs\gamma$ -closed iff $D = \alpha gscl_{\gamma}(D)$.
- (iii) If $D \subseteq B$ then $\alpha gscl_{\gamma}(D) \subseteq \alpha gscl_{\gamma}(B)$.

3. Some Properties of Operation on αgs -open sets

Definition 3.1. Let (X, τ) be a topological space and γ an operation on $\tau_{\alpha gs}$. A point $a \in A \subseteq X$ is said to be $\alpha gs\gamma$ -interior point of A if there exists an αgs -open set N of X containing a such that $\gamma(N) \subseteq A$. We denote the set of all such points by $\alpha gsInt_{\gamma}(A)$.

Thus $\alpha gsInt_{\gamma}(A) = \{x \in A : x \in N \in \tau_{\alpha gs} \text{ and } \gamma(N) \subseteq A\}.$

Theorem 3.2. Let (X, τ) be a topological space and γ an operation on τ_{ags} . If A and B are two subsets of X, then the following statements are true

(i) $\alpha gsInt_{\gamma}(A) \subseteq A$

Proof.

(i) From Definition 3.1, $\alpha gsInt_{\gamma}(A) \subseteq A$.

(ii) If $A = \alpha gsInt_{\gamma}(A)$, then by Definition 3.1, for every $x \in \alpha gsInt_{\gamma}(A)$, there exists an αgs -open set N of X containing x such that $\gamma(N) \subseteq A$. Hence, A is $\alpha gs\gamma$ -open. Conversely, let A be an $\alpha gs\gamma$ -open. Then to prove $A = \alpha gsInt_{\gamma}(A)$. By (i), $\alpha gsInt_{\gamma}(A) \subseteq A$, so it is enough to prove that $A \subseteq \alpha gsInt_{\gamma}(A)$. Let $x \in A$. Since A is $\alpha gs\gamma$ -open, $\forall x \in A, \exists$ an αgs -open set U containing $x \ni \gamma(U) \subseteq A$ which implies that x is an $\alpha gs\gamma$ -interior point of A. i.e., $x \in \alpha gsInt_{\gamma}(A)$. Therefore, $A \subseteq \alpha gsInt_{\gamma}(A)$. Hence, $A = \alpha gsInt_{\gamma}(A)$.

(iii) Let $A \subseteq B \subseteq X$. Let $x \in \alpha gsInt_{\gamma}(A)$, then there exists an αgs -open set U of X containing x such that $\gamma(U) \subseteq A$. Since $A \subseteq B$, the same αgs open set U of X containing x such that $\gamma(U) \subseteq B$. This implies $x \in \alpha gsInt_{\gamma}(B)$. Hence, $\alpha gsInt_{\gamma}(A) \subseteq \alpha gsInt_{\gamma}(B)$.

(iv) By Definition 3.1, $x \in N \subseteq \gamma(N) \subseteq A$ if x is an $\alpha gs\gamma$ -interior point of A. Hence, the collection implies that $\alpha gsInt_{\gamma}(A) \subseteq A$. Hence, $\alpha gsInt_{\gamma}(A) \subseteq \alpha gsInt_{\gamma}(A)$ by (iii).

(v) Since $A \subseteq A \cup B$, $B \subseteq A \cup B$ and by (iii), $\alpha gsInt_{\gamma}(A) \subseteq \alpha gsInt_{\gamma}(A)$ $(A \cup B)$ and $\alpha gsInt_{\gamma}(B) \subseteq \alpha gsInt(A \cup B)$. Therefore, $\alpha gsInt_{\gamma}(A) \cup \alpha gsInt_{\gamma}(B)$

 $\subseteq \alpha gsInt_{\gamma}(A \cup B).$

(vi) Since $\cap B \subseteq A, A \cap B \subseteq B$ and by (iii), $\alpha gsInt_{\gamma}(A \cap B) \subseteq \alpha gsInt_{\gamma}(A)$ and $\alpha gsInt_{\gamma}(A \cap B) \subseteq \alpha gsInt_{\gamma}(B)$. Therefore, $\alpha gsInt_{\gamma}(A \cap B) \subseteq \alpha gsInt_{\gamma}(A)$ $\cap \alpha gsInt_{\gamma}(B)$.

(vii) By (vi), $\alpha gsInt_{\gamma}(A \cap B) \subseteq \alpha gsInt_{\gamma}(A) \cap \alpha gsInt_{\gamma}(B)$. Let $x \in \alpha gsInt_{\gamma}(A) \cap \alpha gsInt_{\gamma}(B)$. This implies $x \in \alpha gsInt_{\gamma}(A)$ and $x \in \alpha gsInt_{\gamma}(B)$. Therefore, there exists an αgs -open sets U, V containing x such that $\gamma(U) \subseteq A$ and $\gamma(V) \subseteq B$. Implies that $\gamma(U) \cap \gamma(V) \subseteq A \cap B$. Since γ is αgs -regular, there exists an αgs -open set W containing x such that $\gamma(U) \cap \gamma(V) \supseteq \gamma(W)$. Implies that $\gamma(W) \subseteq A \cap B$. Therefore, $x \in \alpha gsInt_{\gamma}(A \cap B)$. Hence, $\alpha gsInt_{\gamma}(A) \cap \alpha gsInt_{\gamma}(B) = \alpha gsInt_{\gamma}(A \cap B)$.

Remark 3.3. The reverse inclusion of (iv) in Theorem 3.2 need not be true as observed from the following example.

Example 3.4. Let $X = \{a, b, c\}$ and $\tau = \{\varphi, \{a, b\}, X\}$. Then $\tau_{\alpha gs} = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}$. Let $\gamma : \tau_{\alpha gs} \to P(X)$ be an operation on $\tau_{\alpha gs}$ defined by

$$\gamma(A) = \begin{cases} A & \text{if } A = \{a\} \text{ or } \{a, b\} \\ \{b, c\} & \text{if } A = \{b\} \end{cases} \forall A \in \tau_{ags}$$

Here for $A = \{b, c\}$, $\alpha gsInt_{\gamma}(A) = \{b\}$ and $\alpha gsInt_{\gamma}(\alpha gsInt_{\gamma}(A)) = \varphi$. Therefore $\alpha gsInt_{\gamma}(A) \not\subseteq \alpha gsInt_{\gamma}(\alpha gsInt_{\gamma}(A))$.

Remark 3.5. $\alpha gsInt_{\gamma}(A)$ need not be $\alpha gs\gamma$ -open as observed from the following example.

Example 3.6. Let $X = \{a, b, c\}$ and $\tau = \{\varphi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Then $\tau_{\alpha g s} = \{\varphi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Let $\gamma : \tau_{\alpha g s} \rightarrow P(X)$ be an operation on $\tau_{\alpha g s}$ defined by

$$\gamma(A) = \begin{cases} A \cup \{c\} & \text{if } A = \{a\} \text{ or } \{b\} \\ A & \text{if } A \neq \{a\}, \{b\}, \{c\} \end{cases} \forall A \in \tau_{\alpha gs}$$

Then $\tau_{\alpha g s \gamma} = \{\varphi, \{a, b\}, \{a, c\}, X\}$. Here for $A = \{b, c\}, \alpha g s Int_{\gamma}(A) = \{b\}$ which is not $\alpha g s \gamma$ -open in (X, τ) .

Theorem 3.7. Let (X, τ) be a topological space and γ be an operation on $\tau_{\alpha gs}$. If A is a subset of X, then

- (i) $\alpha gsInt_{\gamma}(X \setminus A) = X \setminus \alpha gsCl_{\gamma}(A).$
- (ii) $\alpha gsCl_{\gamma}(X \setminus A) = X \setminus \alpha gsInt_{\gamma}(A).$
- (iii) $\alpha gsInt_{\gamma}(A) = X \setminus \alpha gsCl_{\gamma}(X \setminus A).$
- (iv) $\alpha gsCl_{\gamma}(A) = X \setminus \alpha gsInt_{\gamma}(X \setminus A).$

Proof. (i) Let $x \in \alpha gsInt_{\gamma}(X \setminus A)$, then there exists an αgs -open sets U containing x such that $\gamma(U) \subseteq X \setminus A$. This implies that $\gamma(U) \cap A = \varphi$. This gives that $x \notin \alpha gsCl_{\gamma}(A)$ and so $x \in X \setminus \alpha gsCl_{\gamma}(A)$. Hence, $\alpha gsInt_{\gamma}(X \setminus A) \subseteq X \setminus \alpha gsCl_{\gamma}(A)$.

Conversely, let $x \in X \setminus \alpha gsCl_{\gamma}(A)$ implies that $x \notin \alpha gsCl_{\gamma}(A)$, then there exists an αgs -open sets V containing x such that $\gamma(V) \cap A = \varphi$ implies that $x \in V \subseteq \gamma(V) \subseteq X \setminus A$. It follows that $x \in \alpha gsInt_{\gamma}(X \setminus A)$. Hence, $X \setminus \alpha gsCl_{\gamma}(A) \subseteq \alpha gsInt_{\gamma}(X \setminus A)$. Therefore, $\alpha gsInt_{\gamma}(X \setminus A)$ $= X \setminus \alpha gsCl_{\gamma}(A)$.

(ii) Let $x \notin \alpha gsCl_{\gamma}(X \setminus A)$ implies there exists an αgs -open set Ucontaining x such that $\gamma(U) \cap (X \setminus A) = \varphi$. Implies $\gamma(U) \subseteq A$. Thus, $x \in \alpha gsInt_{\gamma}(A)$. $x \notin X \setminus \alpha gsInt_{\gamma}(A)$. Hence $X \setminus \alpha gsInt_{\gamma}(A) \subseteq \alpha gsCl_{\gamma}(X \setminus A)$.

Reversing the steps we get $\alpha gsCl_{\gamma}(X \setminus A) \subseteq X \setminus \alpha gsInt_{\gamma}(A)$. Therefore, $\alpha gsCl_{\gamma}(X \setminus A) = X \setminus \alpha gsInt_{\gamma}(A)$.

The proof of (iii) and (iv) follows from (i) and (ii).

Remark 3.8. Let (X, τ) be a topological space and $x \in X$. If $\{x\} \in \tau_{\alpha g s \gamma}$, then $\gamma(\{x\}) = \{x\}$.

Definition 3.9. Let *A* be a subset of a topological space (X, τ) and γ be an operation on $\tau_{\alpha gs}$. The union of all $\alpha gs\gamma$ -open sets contained in *A* is called the $\alpha gs\gamma$ -interior of *A* and denoted by $\alpha gs_{\gamma} Int(A)$.

Theorem 3.10. Let (X, τ) be a topological space and γ be an operation on τ_{ags} . For any subsets A, B of X we have the following.

(i) $\alpha gs_{\gamma} Int(A)$ is an αgs_{γ} -open set in X.

- (ii) $\alpha g s_{\gamma} Int(\varphi) = \varphi$ and $\alpha g s_{\gamma} Int(X) = X$.
- (iii) A is $\alpha gs\gamma$ -open if and only if $A = \alpha gs_{\gamma} Int(A)$.
- (iv) $\alpha gs_{\gamma} Int(A) \subseteq A$.
- (v) If $A \subseteq B$, then $\alpha gs_{\gamma} Int(A) \subseteq \alpha gs_{\gamma} Int(B)$.
- (vi) $\alpha g s_{\gamma} Int(\alpha g s_{\gamma} Int(A)) = \alpha g s_{\gamma} Int(A).$
- (vii) $\alpha gs_{\gamma} Int(A \cup B) \supseteq \alpha gs_{\gamma} Int(A) \cup \alpha gs_{\gamma} Int(B).$
- (viii) $\alpha gs_{\gamma} Int(A \cap B) \subseteq \alpha gs_{\gamma} Int(A) \cap \alpha gs_{\gamma} Int(B).$

Proof.

(i) By Definition 3.9 and by Result 2.7 (ii), we have, $\alpha gs\gamma Int(A)$ is an $\alpha gs\gamma$ -open set.

(ii) Obvious from the Definition 3.9.

(iii) Necessity. Since A is $\alpha gs\gamma$ -open, $\alpha gs_{\gamma} Int(A) =$ Union of all $\alpha gs\gamma$ open sets contained in A = A.

Sufficiency. Since $A = \alpha g s_{\gamma} Int(A)$ and from (i), $\alpha g s_{\gamma} Int(A)$ is $\alpha g s_{\gamma} - open$. open. We get A is $\alpha g s_{\gamma} - open$.

(iv) It is obvious from the Definition 3.9.

(v) Suppose $A \subseteq B$. Let $x \in \alpha gs_{\gamma} Int(A)$ and F be an αgs_{γ} -open set contained in A which is contained B. Therefore, $x \in F$. Hence,

 $x \in \alpha gs_{\gamma} Int(B)$. Therefore, $x \in \alpha gs_{\gamma} Int(A) \subseteq \alpha gs_{\gamma} Int(B)$.

(vi) From (i) and (iii), we have $\alpha gs_{\gamma} Int(\alpha gs_{\gamma} Int(A)) = \alpha gs_{\gamma} Int(A)$.

(vii) Since $A \subseteq A \cup B$, $B \subseteq A \cup B$ and by (v) $\alpha gs_{\gamma} Int(A) \subseteq \alpha gs_{\gamma} Int(A \cup B)$ and $\alpha gs_{\gamma} Int(B) \subseteq \alpha gs_{\gamma} Int(A \cup B)$. Hence, $\alpha gs_{\gamma} Int(A) \cup \alpha gs_{\gamma} Int(B)$ $\subseteq \alpha gs_{\gamma} Int(A \cup B)$.

(viii) As $A \cap B \subseteq A$, $A \cap B \subseteq B$ and by (v), $\alpha gs_{\gamma} Int(A \cap B)$ $\subseteq \alpha gs_{\gamma} Int(A)$ and $\alpha gs_{\gamma} Int(A \cap B) \subseteq \alpha gs_{\gamma} Int(B)$.

$$\therefore \alpha gs_{\gamma} Int(A \cap B) \subseteq \alpha gs_{\gamma} Int(A) \cap \alpha gs_{\gamma} Int(B).$$

Remark 3.11. The reverse inclusion of (vii) in Theorem 3.10 need not be true as observed from the following example.

Example 3.12. Let $X = \{a, b, c\}$ and $\tau = \{\varphi, \{a\}, X\}$. Then $\tau_{\alpha gs} = \{\varphi, \{a\}, \{a, b\}, \{a, c\}, X\}$. Let $\gamma : \tau_{\alpha gs} \rightarrow P(X)$ be an operation on $\tau_{\alpha gs}$ defined by

$$\gamma(A) = \begin{cases} A & \text{if } b \in A \\ cl(A) & \text{if } b \neq A \end{cases} \forall A \in \tau_{\alpha gs}$$

Then $\tau_{\alpha gs} = \{\varphi, \{a, b\}, X\}$. Let $A = \{a\}$ and $B = \{b\}$. Then $A \cup B = \{a, b\}$. Therefore $\alpha gs_{\gamma} Int(A \cup B) = \{a, b\}$ and $\alpha gs_{\gamma} Int(A) \cup \alpha gs_{\gamma} Int(B) = \varphi$. Hence $\alpha gs_{\gamma} Int(A \cup B) \not\subseteq \alpha gs_{\gamma} Int(A) \cup \alpha gs_{\gamma} Int(B)$.

Remark 3.13. The reverse inclusion of (viii) in Theorem 3.10 need not be true as observed from the following example.

Example 3.14. Let $X = \{a, b, c\}$ and $\tau = \{\varphi, \{a\}, \{b, c\}, X\}$. Then $\tau_{\alpha g s} = P(X)$. Let $\gamma : \tau_{\alpha g s} \to P(X)$ be an operation on $\tau_{\alpha g s}$ defined by

$$\gamma(A) = \begin{cases} A & \text{if } a \in A \\ cl(A) & \text{if } a \neq A \end{cases} \forall A \in \tau_{\alpha gs}$$

Then $\tau_{\alpha gs} = \{\varphi, \{a\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Let $A = \{b, c\}$ and $B = \{a, c\}$.

Then $A \cap B = \{c\}$. Therefore $\alpha gs_{\gamma}(A \cap B) = \phi$ and $\alpha gs_{\gamma}Int(A) \cap \alpha gs_{\gamma}Int(B)$ = $\{c\}$. Hence $\alpha gsInt(A) \cap \alpha gsInt(B) \not\subseteq \alpha gs_{\gamma}Int(A \cap B)$.

Theorem 3.15. If γ is αgs -regular then $\alpha gs_{\gamma} Int(A \cap B) = \alpha gs_{\gamma} Int(A)$ $\cap \alpha gs_{\gamma} Int(B).$

Proof. Let $y \in \alpha g_{s_{\gamma}}Int(A) \cap \alpha gsInt(B)$. Then $y \in \alpha g_{s_{\gamma}}Int(A)$ and $y \in \alpha g_{s_{\gamma}}Int(B)$. Then $y \in \bigcup \{O \subseteq X : O \subseteq A$ where $O \in \tau_{\alpha gs_{\gamma}}\}$. and $y \in \bigcup \{O \subseteq X : O \subseteq B$ where $O \in \tau_{\alpha gs_{\gamma}}\}$. Then γ belongs to at least one αgs_{γ} -open set, say U, contained in A and y belongs to at least one αgs_{γ} -open set, say V, contained in B. Since γ is αgs -regular, $U \cap V$ is an αgs_{γ} -open set. Therefore, $y \in U \cap V \subseteq A \cap B$. Hence, $y \in \alpha gs_{\gamma}Int(A \cap B)$ and $\alpha gs_{\gamma}Int(A)$ $\cap \alpha gs_{\gamma}Int(B) \subseteq \alpha gs_{\gamma}Int(A \cap B)$. From Theorem 3.10 (viii), $\alpha gs_{\gamma}Int(A \cap B)$ $\subseteq \alpha gs_{\gamma}Int(A) \cap \alpha gs_{\gamma}Int(B)$. Hence, $\alpha gs_{\gamma}Int(A \cap B) = \alpha gs_{\gamma}Int(A) \cap \alpha gs_{\gamma}Int(B)$.

Proposition 3.16. Let (X, τ) be a topological space and γ be an operation on $\tau_{\alpha gs}$. Let A be a subset of X. Then $\alpha gs_{\gamma} Int(A) \subseteq \alpha gsInt_{\gamma}(A)$.

Proof. Let $x \in \alpha gs_{\gamma} Int(A)$. Then $x \in \bigcup \{O \subseteq X : O \subseteq A \text{ where } O \in \tau_{\alpha gs\gamma}\}$. Then x belongs to at least one $\alpha gs\gamma$ -open set O contained in A. Since $x \in O$, there exists an αgs -open set U of X containing x such that $\gamma(U) \subseteq O \subseteq A$. Therefore, $x \in \alpha gsInt_{\gamma}(A)$. Hence, $\alpha gs_{\gamma} Int(A) \subseteq \alpha gsInt_{\gamma}(A)$.

Remark 3.17. $\alpha gsInt_{\gamma}(A) \not\subseteq \alpha gs_{\gamma}Int(A)$ as observed from the following example.

Example 3.18. From the Example 3.4, $\tau_{\alpha g s \gamma} = \{\varphi, \{a\}, \{a, b\}, X\}$. Then $\alpha g s Int_{\gamma}(A) = \varphi$ and $\alpha g s_{\gamma} Int_{\gamma}(A) = \{b\}$. Hence $\alpha g s Int_{\gamma}(A) \not\subseteq \alpha g s_{\gamma} Int(A)$.

Proposition 3.19. If $\gamma : \tau_{\alpha gs} \to P(X)$ is an αgs -open operation on $\tau_{\alpha gs}$ and $A \subseteq X$. Then

(a) $\alpha gsInt_{\gamma}(A) = \alpha gs_{\gamma}Int(A)$ and $\alpha gsInt_{\gamma}(\alpha gsInt_{\gamma}(A)) = \alpha gsInt_{\gamma}(A)$.

(b) $\alpha gsInt_{\gamma}(A)$ is $\alpha gs\gamma$ -open in X.

Proof. (a) Let γ be an αgs -open operation on $\tau_{\alpha gs}$. We have to prove that $\alpha gsInt_{\gamma}(A) \subseteq \alpha gs_{\gamma}Int(A)$. Let $x \in \alpha gsInt_{\gamma}(A)$. Then there exists an αgs - open set U of X containing x such that $\gamma(U) \subseteq A$. Since γ is an αgs - open operation, for all αgs -open set U containing x, there exists an $\alpha gs\gamma$ - open set V containing x such that $V \subseteq \gamma(U)$. Therefore, $x \in V \subseteq \gamma(U) \subseteq A$. Hence, V is an $\alpha gs\gamma$ - open set contained in A and $x \in \bigcup \{V \subseteq X : V \subseteq A \text{ where } V \in \tau_{\alpha gs\gamma}\}$. Therefore, $x \in \alpha gs_{\gamma}Int(A)$. Thus, $\alpha gsInt_{\gamma}(A) \subseteq \alpha gs_{\gamma}Int(A)$. Hence, by Proposition 3.16, $\alpha gsInt_{\gamma}(A) = \alpha gs_{\gamma}Int(A)$.

Now, $\alpha gsInt_{\gamma}(\alpha gsInt_{\gamma}(A)) = \alpha gs_{\gamma}Int(\alpha gs_{\gamma}Int(A)) = \alpha gs_{\gamma}Int(A)$

$$= \alpha gsInt_{\gamma}(A).$$

(b) Follows from part (a) and Theorem 3.10.

Theorem 3.20. Let (X, τ) be a topological space and γ be an operation on $\tau_{\alpha gs}$. Then for $A \subseteq X$,

- (i) $\alpha gs_{\gamma}Cl(X \setminus A) = X \setminus \alpha gs_{\gamma}Int(A).$
- (ii) $\alpha gs_{\gamma} Int(X \setminus A) = X \setminus \alpha gs_{\gamma} Cl(A).$
- (iii) $\alpha gs_{\gamma} Int(A) = X \setminus \alpha gs_{\gamma} Cl(X \setminus A).$
- (iv) $\alpha g s_{\gamma} Cl(A) = X \setminus \alpha g s_{\gamma} Int(X \setminus A).$

Proof. Obvious.

Theorem 3.21. Let (X, τ) be a topological space and γ be an α gs -regular operation on $\tau_{\alpha gs}$. Then for every $A \subseteq X$ the following holds.

- (a) $\alpha gs_{\gamma}Cl(A) \cap V \subseteq \alpha gs_{\gamma}Cl(A \cap V)$ for every αgs_{γ} -open set V.
- (b) $\alpha gs_{\gamma} Int(A \cup E) \subseteq \alpha gs_{\gamma} Int(A) \cup E$ for every $\alpha gs\gamma$ -closed set E.

Proof. (a) Let $x \in \alpha gs_{\gamma}Cl(A) \cap V$ for every αgs_{γ} -open set V. Then

 $x \in \alpha gs_{\gamma}Cl(A)$ and $x \in V$. Let U be any αgs_{γ} -open set of X containing x. Since γ is αgs -regular, $V \cap U$ is αgs_{γ} -open in X. By Result 2.7 (i), $A \cap (V \cap U) \neq \varphi$. This implies that $(A \cap V) \cap U \neq \varphi$. Again by Result 2.7 (i), $x \in \alpha gs_{\gamma}Cl(A \cap V)$. Hence, $\alpha gs_{\gamma}Cl(A) \cap V \subseteq \alpha gs_{\gamma}Cl(A \cap V)$ for every αgs_{γ} open set V.

(b) From (a), $\alpha gs_{\gamma}Cl(A) \cap V \subseteq \alpha gs_{\gamma}Cl(A \cap V)$ for every αgs_{γ} -open set V. Then $X \setminus \alpha gs_{\gamma}Cl(A \cap V) \subseteq (X \setminus \alpha gs_{\gamma}Cl(A)) \cup (X \setminus V)$. By Theorem 3.20, $\alpha gs_{\gamma}Int(X \setminus (A \cap V)) = \alpha gs_{\gamma}Int((X \setminus A) \cup (X \setminus V)) \subseteq \alpha gs_{\gamma}Int(X \setminus A) \cup (X \setminus V)$. Hence, $\alpha gs_{\gamma}Int((X \setminus A) \cup (X \setminus V)) \subseteq \alpha gs_{\gamma}Int(X \setminus A) \cup (X \setminus V)$ for every αgs_{γ} -closed set $X \setminus V$.

Remark 3.22. If γ is not an αgs -regular operation on $\tau_{\alpha gs}$, then Theorem 3.21 fails as observed from the following example.

Example 3.23. From the Example 3.6, $\tau_{\alpha gs}^c = \{\varphi, \{b\}, \{c\}, X\}$ and γ is not an αgs -regular operation on $\tau_{\alpha gs}$. Here $A = \{b, c\}$ and $V = \{a, b\}$. Then $\alpha gs_{\gamma} Cl(A) \cap V = \{a, b\}$ and $\alpha gs_{\gamma} Cl(A \cap V) = \{b\}$. Hence $\alpha gs_{\gamma} Cl(A) \cap V \not\subseteq \alpha gs_{\gamma} Cl(A \cap V)$.

Definition 3.24. Let *A* be a subset of a topological space (X, τ) and γ an operation on $\tau_{\alpha gs}$. The $\alpha gs\gamma$ -kernel of *A*, denoted by $\alpha gs_{\gamma} \ker(A)$ is defined to be the set $\alpha gs_{\gamma} \ker(A) = \bigcap \{U : A \subseteq U, U \in \tau_{\alpha gs\gamma}\}$.

Proposition 3.25 Let (X, τ) be a topological space with an operation γ on $\tau_{\alpha gs}$ and $x \in X$. Then $y \in \alpha gs_{\gamma} \operatorname{ker}(\{x\})$ if and only if $x \in \alpha gs_{\gamma} \operatorname{ker}(\{y\})$.

Proof. If $y \in \alpha gs_{\gamma} \ker(\{x\})$, then $y = \bigcap \{U : \{x\} \subseteq U, U \in \tau_{\alpha gs\gamma}\}$. i.e., y belongs to every $\alpha gs\gamma$ -open set containing $\{x\}$. Thus, $U \cap \{y\} \neq \varphi$ for every $\alpha gs\gamma$ -open set U containing x. Then by Result 2.7 (i), $x \in \alpha gs_{\gamma} Cl(\{y\})$. Now, let $x \in \alpha gs_{\gamma} Cl(\{y\})$. By Result 2.7 (i), $U \cap \{y\} \neq \varphi$ for every $\alpha gs\gamma$ -open set U containing x. From this y belongs to every $\alpha gs\gamma$ -open set containing $\{x\}$.

Hence, $y \in \alpha gs_{\gamma} \ker(\{x\})$.

Proposition 3.26. Let (X, τ) be a topological space and γ be an operation on $\tau_{\alpha gs}$. Let A and B be subsets of X. Then

- (i) $A \subseteq \alpha gs_{\gamma} \ker(A)$.
- (ii) If $A \subseteq B$ then $\alpha gs_{\gamma} \ker(A) \subseteq \alpha gs_{\gamma} \ker(B)$.

(iii) $\alpha g s_{\gamma} \ker(\varphi) = \varphi$ and $\alpha g s_{\gamma} \ker(X) = X$.

Proof. (i) From Definition 3.24, we have $A \subseteq \alpha gs_{\gamma} \ker(A)$.

(ii) Let $A \subseteq B$ and $x \in \alpha gs_{\gamma} \ker(A)$. From Definition 3.24, $\alpha gs_{\gamma} \ker(A)$ is the intersection of all $\alpha gs\gamma$ -open sets containing A which is contained in B. Thus, $x \in \alpha gs_{\gamma} \ker(B)$. Therefore, $\alpha gs_{\gamma} \ker(A) \subseteq \alpha gs_{\gamma} \ker(B)$.

(iii) It is Obvious.

Proposition 3.27. Let (X, τ) be a topological space and γ be an αgs -regular operation on $\tau_{\alpha gs}$. Then A is a subset of X and is an $\alpha gs\gamma$ -open set if and only if $A = \alpha gs_{\gamma} \ker(A)$.

Proof. Let A be an $\alpha gs\gamma$ -open set and $x \in \alpha gs_{\gamma} \ker(A)$. Then x belongs to every $\alpha gs\gamma$ -open set containing A. Now A is $\alpha gs\gamma$ -open, $x \in A$. Hence, $\alpha gs_{\gamma} \ker(A) \subseteq A$. From Proposition 3.26 (i), we have $A \subseteq \alpha gs_{\gamma} \ker(A)$. Thus, $A = \alpha gs_{\gamma} \ker(A)$. Conversely, let $A = \alpha gs_{\gamma} \ker(A)$. Thus, A is the intersection of all $\alpha gs\gamma$ -open sets containing A and here γ be an αgs -regular operation on $\tau_{\alpha gs}$. Therefore, A is an $\alpha gs\gamma$ -open set.

Remark 3.28. The following example shows that if $A = \alpha g s_{\gamma} \ker(A)$. then A is not an $\alpha g s \gamma$ -open set when γ is not an $\alpha g s$ -regular operation on $\tau_{\alpha g s}$.

Example 3.29. Let $X = \{a, b, c\}, \tau = \{\varphi, \{a\}, \{a, b\}, X\}$ and $\tau_{\alpha g s} = \{\varphi, \{a\}, \{a, b\}, X\}$

Advances and Applications in Mathematical Sciences, Volume 21, Issue 3, January 2022

1442

 $\{a\}, \{a, b\}, \{a, c\}, X\}$. Let $\gamma : \tau_{\alpha gs} \to P(X)$ be an operation on $\tau_{\alpha gs}$ defined by

$$\gamma(A) = \begin{cases} A & \text{if } b \in A \\ cl(A) & \text{if } b \notin A \end{cases} \forall A \in \tau_{\alpha gs}$$

Then $\tau_{\alpha gs} = \{\varphi, \{a\}, \{a, b\}, \{a, c\}, X\}$. and γ is not an αgs -regular operation on $\tau_{\alpha gs}$. Take $A = \{a\}$. Then $A = \alpha gs_{\gamma} \ker(A)$ but A is not an $\alpha gs\gamma$ -open set.

Proposition 3.30. Let (X, τ) be a topological space and γ be an operation on $\tau_{\alpha gs}$. Then $\alpha gs_{\gamma} \ker(\alpha gs_{\gamma} \ker(A)) = \alpha gs_{\gamma} \ker(A)$ where A is a subset of X.

Proof. Let $x \notin \alpha gs_{\gamma} \ker(A)$. Then there exists an $\alpha gs\gamma$ -open set V containing A such that $x \notin V$. Now V is an $\alpha gs\gamma$ -open set. By Proposition 3.27, we have $V = \alpha gs_{\gamma} \ker(V)$. Since $A \subseteq V$ and by Proposition 3.26 (ii), $\alpha gs_{\gamma} \ker(A) \subseteq \alpha gs_{\gamma} \ker(V) = V$. Again applying Proposition 3.26 (ii), we have $\alpha gs_{\gamma} \ker(\alpha gs_{\gamma} \ker(A)) \subseteq V$. Thus, $x \notin \alpha gs_{\gamma} \ker(\alpha gs_{\gamma} \ker(A))V$. Hence, $\alpha gs_{\gamma} \ker(\alpha gs_{\gamma} \ker(A)) \subseteq \alpha gs_{\gamma} \ker(A)$. By Proposition 3.26 (i) and (ii), we have $\alpha gs_{\gamma} \ker(A) \subseteq \alpha gs_{\gamma} \ker(\alpha gs_{\gamma} \ker(A))$. Thus, $\alpha gs_{\gamma} \ker(\alpha gs_{\gamma} \ker(A)) = \alpha gs_{\gamma} \ker(A)$.

Theorem 3.31. Let (X, τ) be a topological space and γ be an operation on τ_{ags} . Then for any points x and y the following are equivalent:

(i) $\alpha gs_{\gamma} \ker(\{x\}) \neq \alpha gs_{\gamma} \ker(\{y\})$

(ii) $\alpha g s_{\gamma} Cl(\{x\}) \neq \alpha g s_{\gamma} Cl(\{y\}).$

Proof. (i) \Rightarrow (ii) Let $\alpha gs_{\gamma} \ker(\{x\}) \neq \alpha gs_{\gamma} \ker(\{y\})$. Then there exist a point z in X such that $z \in \alpha gs_{\gamma} \ker(\{y\})$ and $z \notin \alpha gs_{\gamma} \ker(\{x\})$. By Proposition 3.25, $y \in \alpha gs_{\gamma} \ker(\{z\})$ and $x \notin \alpha gs_{\gamma} \ker(\{z\})$. Since $y \in \alpha gs_{\gamma} Cl(\{z\}), \alpha gs_{\gamma} Cl(\{y\}) \subseteq \alpha gs_{\gamma} Cl(\{z\})$. Thus $\alpha gs_{\gamma} Cl(\{y\}) \cap \{x\} = \varphi$. Hence, $\alpha gs_{\gamma} Cl(\{x\}) \neq \alpha gs_{\gamma} Cl(\{y\})$.

(ii) \Rightarrow (i) Let $\alpha gs_{\gamma}Cl(\{x\}) \neq \alpha gs_{\gamma}Cl(\{y\})$. Then there exist a point z in X such that $z \in \alpha gs_{\gamma}Cl(\{y\})$ and $z \notin \alpha gs_{\gamma}Cl(\{x\})$. By Result 2.7 (i), for every

 $\alpha gs\gamma$ -open set V containing z, $V \cap \{y\} \neq \varphi$ and for some $\alpha gs\gamma$ -open set V containing z, $V \cap \{x\} \neq \varphi$. Thus, an $\alpha gs\gamma$ -open set V containing z contains y but not x. Therefore, $x \notin \alpha gs_{\gamma} \ker(\{y\})$. Hence, $\alpha gs_{\gamma} \ker(\{x\}) \neq \alpha gs_{\gamma} \ker(\{y\})$.

Proposition 3.32. Let (X, τ) be a topological space with an operation γ on $\tau_{\alpha gs}$ and A be a subset of X. Then $\alpha gs_{\gamma} \operatorname{ker}(A) = \{x \in X : \alpha gs_{\gamma} Cl(\{x\}) \cap A \neq \phi\}.$

Proof. Let $x \in \alpha gs_{\gamma} \ker(A)$ and suppose $\alpha gs_{\gamma} Cl(\{x\}) \cap A = \varphi$. Then $x \notin X \setminus \alpha gs_{\gamma} Cl(\{x\})$. Since $\alpha gs_{\gamma} Cl(\{x\})$ is an αgs_{γ} -closed set, $X \setminus \alpha gs_{\gamma} Cl(\{x\})$ is an αgs_{γ} -closed set, $X \setminus \alpha gs_{\gamma} Cl(\{x\})$ is an αgs_{γ} -open set containing A. This is a contradiction. Hence, $\alpha gs_{\gamma} Cl(\{x\}) \cap A \neq \varphi$. Conversely, let $x \in X$ such that $\alpha gs_{\gamma} Cl(\{x\}) \cap A \neq \varphi$ and suppose that $x \notin \alpha gs_{\gamma} \ker(A)$. Then there exists an αgs_{γ} -open set V containing A and $x \notin V$. This is a contradiction. Hence, $x \in \alpha gs_{\gamma} \ker(A)$.

4. agsy-Generalized Closed Sets

Definition 4.1. A subset A of a topological space (X, τ) with an operation γ on $\tau_{\alpha gs}$ is said to be $\alpha gs\gamma$ -generalized closed set (briefly $\alpha gs\gamma g$ - closed) if $\alpha gsCl_{\gamma}(A) \subseteq U$ whenever $A \subseteq U$ and U is an $\alpha gs\gamma$ -open set in X.

Proposition 4.2. Every agsy-closed set is agsyg-closed.

Proof. Let A be any $\alpha gs\gamma$ -closed set. Consider V be any $\alpha gs\gamma$ -open set containing A. Since A is an $\alpha gs\gamma$ -closed set. By Theorem 2.8 (ii), $A = \alpha gsCl_{\gamma}(A)$. Thus, $\alpha gsCl_{\gamma}(A) = A \subseteq V$. Hence, A is an $\alpha gs\gamma g$ -closed set in X.

Example 4.3. Let $X = \{a, b, c\}$ and $\tau = \{\varphi, a, X\}$. Then $\tau_{\alpha gs} = \{\varphi, \{a\}, \{a, b\}, \{a, c\}, X\}$. Let $\gamma : \tau_{\alpha gs} \rightarrow P(X)$ be an operation on $\tau_{\alpha gs}$ defined by

$$\gamma(A) = \begin{cases} A & \text{if } b \in A \\ cl(A) & \text{if } b \notin A \end{cases} \forall A \in \tau_{\alpha g s}$$

Then $\alpha gs\gamma$ -closed sets are φ , $\{a\}$, $\{c\}$, X and $\alpha gs\gamma g$ -closed sets are φ , $\{b\}$, $\{c\}$, $\{b, c\}$, X. Thus $\{b, c\}$ is an $\alpha gs\gamma g$ -closed set but not $\alpha gs\gamma$ -closed set in X.

Theorem 4.4. Let (X, τ) be a topological space and γ be an operation on τ_{ags} . Then the following statements are equivalent for any subset A in X

- (i) A is an $\alpha gs\gamma g$ -closed set in (X, τ)
- (ii) $\alpha gs_{\gamma}Cl(\{x\}) \cap A \neq \phi$ for every $x \in \alpha gsCl_{\gamma}(A)$
- (*iii*) $\alpha gsCl_{\gamma}(A) \subseteq \alpha gs_{\gamma} \ker(A)$.

Proof. (i) \Rightarrow (ii) Let A be an $\alpha gs\gamma g$ -closed set. Suppose that $\alpha gs_{\gamma}Cl(\{x\}) \cap A \neq \phi$ for some $x \in \alpha gsCl_{\gamma}(A)$. Therefore, $A \subseteq X \setminus \alpha gs_{\gamma}Cl(\{x\})$. By Result 2.7 (iii), $\alpha gs_{\gamma}Cl(\{x\})$ is an $\alpha gs\gamma$ -closed set in X. Thus, $X \setminus \alpha gs_{\gamma}Cl(\{x\})$ is an $\alpha gs\gamma$ -open set containing A in X. Since A is an $\alpha gs\gamma g$ -closed set, $\alpha gs_{\gamma}Cl(A) \cap X \setminus \alpha gs_{\gamma}Cl(\{X\})$. This implies that $x \notin \alpha gsCl_{\gamma}(A)$ which is a contradiction to $x \in \alpha gsCl_{\gamma}(A)$. Hence, $\alpha gs_{\gamma}Cl(\{x\}) \cap A \neq \phi$ for every $x \in \alpha gsCl_{\gamma}(A)$.

(ii) \Rightarrow (iii) Follows from the Proposition 3.32.

(iii) \Rightarrow (i) Let $x \in \alpha gsCl_{\gamma}(A) \subseteq \alpha gs_{\gamma} \ker(A)$. Consider V be an $\alpha gs\gamma$ -open set such that $A \subseteq V$. It is enough to prove that $\alpha gsCl_{\gamma}(A) \subseteq V$. Since $x \in \alpha gs_{\gamma} \ker(A), x \in V$. Thus $\alpha gsCl_{\gamma}(A) \subseteq V$. Hence, A is an $\alpha gs\gamma g$ -closed set in (X, τ) .

Theorem 4.5. If A is $\alpha gs\gamma$ -open and $\alpha gs\gamma g$ -closed then A is an $\alpha gs\gamma$ -closed.

Proof. Let A is $\alpha gs\gamma$ -open and $\alpha gs\gamma g$ -closed. Now, $A \subseteq A$. By Definition 4.1, $\alpha gsCl_{\gamma}A \subseteq A$. By the Theorem 2.8 (i), $A \subseteq \alpha gsCl_{\gamma}(A)$. Thus, $A = \alpha gsCl_{\gamma}(A)$. By the Theorem 2.8 (ii), A is an $\alpha gs\gamma$ -closed.

Theorem 4.6. Let (X, τ) be a topological space and γ be an operation on $\tau_{\alpha gs}$. If a subset A of X is $\alpha gs\gamma g$ -closed then $\alpha gsCl_{\gamma}(A) \setminus A$ does not contain any non-empty $\alpha gs\gamma$ -closed.

Proof. Let A be an $\alpha gs\gamma g$ -closed set in X. Suppose that there exist an non-empty $\alpha gs\gamma$ -closed set E such that $E \subseteq \alpha gsCl_{\gamma}(A) \setminus A$. Therefore, $X \setminus E$ is an $\alpha gs\gamma$ -open set. Let $A \subseteq X \setminus E$. Since A is $\alpha gs\gamma g$ -closed, $\alpha gsCl_{\gamma}(A) \subseteq X \setminus E$. From this, $X \setminus \alpha gsCl_{\gamma}(A) \supseteq E$. Thus, $E \subseteq (\alpha gsCl_{\gamma}(A) \setminus A)$ $\cap (X \setminus \alpha gsCl_{\gamma}(A))$. Hence, $E = \varphi$. This is a contradiction. Therefore, $\alpha gsCl_{\gamma}(A) \setminus A$ does not contain any non-empty $\alpha gs\gamma$ -closed.

Theorem 4.7. Let (X, τ) be a topological space and γ be an operation on $\tau_{\alpha gs}$. Then for each $x \in X$, $\{x\}$ is an $\alpha gs\gamma$ -closed set or $X \setminus \{x\}$ is an $\alpha gs\gamma g$ -closed set in (X, τ) .

Proof. Suppose that $\{x\}$ is not an $\alpha gs\gamma$ -closed set. Then $X \setminus \{x\}$ is not an $\alpha gs\gamma$ -open set. Hence, X is the only $\alpha gs\gamma$ -open set containing $X \setminus \{x\}$. Also, $\alpha gsCl_{\gamma}(X \setminus \{x\}) \subseteq X$. Thus $X \setminus \{x\}$ is an $\alpha gs\gamma g$ -closed set in (X, τ) .

Theorem 4.8. Let (X, τ) be a topological space and γ be an operation on $\tau_{\alpha gs}$. Then $\tau_{\alpha gs\gamma} = \tau_{\alpha gs\gamma}^c$ if and only if every subsets of X is an $\alpha gs\gamma g$ -closed set in (X, τ) .

Proof. Let $\tau_{\alpha g s \gamma} = \tau_{\alpha g s \gamma}^c$. Let V be an $\alpha g s \gamma$ -open set and A be any subset of X such that $A \subseteq V$. By Theorem 2.8 (iii), $\alpha g s \gamma C l_{\gamma}(A) \subseteq \alpha g s C l_{\gamma}(V)$. Since $\tau_{\alpha g s \gamma} = \tau_{\alpha g s \gamma}^c$. Thus, $\alpha g s C l_{\gamma}(V) = V$ and $\alpha g s C l_{\gamma}(A) = V$. Hence, A is an $\alpha g s \gamma g$ -closed set. Conversely, let every subsets of X is an $\alpha g s \gamma g$ -closed set. Consider V be an $\alpha g s \gamma$ -open set. By the assumption, V is an $\alpha g s \gamma g$ -closed set. From this, $\alpha g s C l_{\gamma}(V) = V$ whenever $V \subseteq V$. By Theorem 2.8 (i), $V \subseteq \alpha g s C l_{\gamma}(V)$. Thus, $\alpha g s C l_{\gamma}(V) = V$. Hence, V is an $\alpha g s \gamma$ -closed set in (X, τ) . Therefore, $\tau_{\alpha g s \gamma} = \tau_{\alpha g s \gamma}^c$.

References

- B. A. Asaad, Operation Approaches on Ps-Open Sets and Its Separation Axioms, Journal of University of Zakho 4(A) (2) (2016), 236-243.
- [2] C. Carpintero, N. Rajesh and E. Rosas, Operation approaches on b-open sets and applications, Bol. Soc. Paran. Mat. 30(1) (2012), 21-33.
- [3] H. Z. Ibrahim, On a class of α_{γ} -open sets in a topological space, Acta Scientiarum. Technology 35(3) (2013), 539-545.
- [4] D. S. Jankovic, On functions with α-closed graphs, Glasnik Matematicki 18(3) (1983), 141-148.
- [5] S. Kasahara, Operation Compact Spaces, Math. Japonica 24(1) (1979), 97-105.
- [6] J. J. Mershia Rabuni and N. Balamani, Operation approach on αg -open sets in topological spaces, (Submitted).
- [7] N. K. Narmadha and N. Balamani, Operation Approach on αgs -Open Sets in topological spaces, (Submitted).
- [8] H. Ogata, Operation on topological spaces and associated topology, Math. Japonica 36(1) (1991), 175-184.
- [9] M. Rajamani and K. Viswanathan, On αgs closed sets in topological spaces, Acta Ciencia Indica XXX(3) (2004), 21-25.
- [10] Sanjay Tahiliani, Operation approach to β-open sets and applications, Math. Commun. 16 (2011), 577-591.