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Abstract

The aim of this paper is to introduce some new kinds of operators using y operation on

ags -open sets and investigate their properties. Further we define ogsyg -closed sets using

agsy -open set and study some of its characterizations.
1. Introduction

Rajamani and Viswanathan [9] introduced ogs -closed sets in topological
spaces. Kasahara [5] initiated the study of operation approach on topological
space and also he introduced the concept of a-closed graphs of functions in
topological spaces. Jankovic [4] analysed the functions with o-closed graphs.
Ogata [8] renamed the operation o as y operation and introduced y-open sets
by defining the y operation on open sets in topological spaces. Sanjay
Tahiliani [10] introduced B-y-open sets using the y operation on B-open sets.

Carpintero et al. [2] studied b-y -open sets by considering the y operation on

b-open sets. Following this, Ibrahim [3] studied ., -open sets by defining vy

operation on a-open sets. Asaad [1] defined the operation a on Pg-open sets
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1432 N. K. NARMADHA and N. BALAMANI

in topological spaces. Mershia Rabuni and Balamani [6] defined the operation
yon 1, and introduced ags -open sets in topological spaces. Narmadha and
Balamani [7] introduced the operation y on ags -open sets and defined ogsy -

open sets in topological spaces. In this paper, we introduce new operators

namely ogslnt,(A), vgs,Int(A), ags, ker(A) using ogs -open sets and discuss

their properties. Also, we introduce and study the properties of a new type of
generalized closed set called ogsy-generalized closed set.

2. Preliminaries

Definition 2.1 [7]. Let (X, t) be a topological space. An operation
Vi Tags = P(X) is a mapping from 1,4 to P(X) > V < y(V)VV € 144, the
value of V under the operation y is denoted by y(V).

Definition 2.2 [7]. A non-empty subset A of a space (X, t) with an
operation y on T4 is called an ogsy -open set of (X, 1) if Vx € A, 3 an ags-
open set U containing x 3 y(U) < A. The set of all agsy-open sets is denoted

by T4gsy- The complement of an agsy -open set is called agsy -closed.

Definition 2.3 [7]. An operation y : 144 — P(X) is called ogs -regular if
Vx € X and V pair of ags-open sets A and B containing x, 3 an ogs -open

set C containing x > y(A) N y(B) 2 v(C).

Definition 2.4 [7]. An operation y on 1,4 1s said to be oags-open if
Vx € X and Vaogs -open set U containing x, 3 an ogsy-openset V>x eV

and V < y(U).

Definition 2.5 [7]. Let y be an operation on = A point x € X is

ogsy*
called an ogsy-closure point of a set A if y(U)N A # ¢Vogs-open
set U containing x. agsClL(A)=1{x € X /y(U)N A # ¢, VU, ags -open set

containing x}.

Definition 2.6 [7]. Let y be an operation on 1 Then agsCl,(A) is

ogsy:
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PROPERTIES OF OPERATION ON ogs -OPEN SETS 1433
defined as the intersection of all ogsy-closed sets containing A. agsCl,(A)

=M{F cX|ACF and X\ F € 14}

Results 2.7 [7]. (i) Let (Z, ) be a topological space and A < Z and y be
an operation on T,g,. Then for a given z e Z, z € ags,Cl(A) iff MN A

= OVM e 1 containing z.

ogsy

(i1) Arbitrary union of ogsy-open sets is ogsy-open, where y is an

operation on Tgg.

(iii) ogs,CI(A) is agsy-closed, where A is the subset of Z and vy is an

operation on T gq.

Theorem 2.8 [7]. Let y: 1,45 — P(Z) be an operation on t,g and D

and B are subsets of Z. Then the results below are true.

() D < agscl,(D).
(ii) D is agsy -closed iff D = agscl,(D).

(iii) If D B then agscl,(D) c agscl,(B).
3. Some Properties of Operation on ogs -open sets

Definition 3.1. Let (X, t) be a topological space and y an operation on
Togs- A point @ € A < X 1s said to be ogsy -interior point of A if there exists

an ogs -open set N of X containing a such that y(IN) < A. We denote the set
of all such points by agsint,(A).

Thus agslnt,(A) = {x € A:x € N € 1,4 and y(N) c A}.

Theorem 3.2. Let (X, t) be a topological space and y an operation on

Togs- If A and B are two subsets of X, then the following statements are true

() agslnt,(A) c A
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1434 N. K. NARMADHA and N. BALAMANI
(ii) Ais agsy-open iff A = agsnt,(A)
(iii) If A < B, then ogsInt,(A) c agsint. (B)
(iv) agsint,(agslnt,(A)) c agsnt,(A)
(v) agsint,(A)U agsint,(B) c agsint,(A U B)
(vi) agsInt, (AN B) c agsint,(A) N agsnt. (B)
(vii) If v is ogs -regular, then agsint.,(A) (N ogsint,(B) = agsint,(A N B)

Proof.

(i) From Definition 3.1, agsint,(A) c A.

(ii) If A = agsint,(A), then by Definition 3.1, for every x e agsnt,(A),
there exists an ags -open set N of X containing x such that y(IN) < A. Hence,
A is ogsy-open. Conversely, let A be an ogsy-open. Then to prove
A = agsInt,(A). By (i), ogsint,(A)c A, so it is enough to prove that
A c agslnt,(A). Let x € A. Since A is ogsy-open, Vx € A, 3 an ogs -open
set U containing x > y(U) < A which implies that x is an agsy -interior point

of A.i.e., xeagsint,(A). Therefore, A c agsint,(A). Hence, A=agslnt,(A).

(iii) Let A ¢ B ¢ X. Let x € agslnt,(A), then there exists an ogs -open

set U of X containing x such that y(U) c A. Since A < B, the same ogs -
open set U of X containing x such that vy(U)< B. This implies
x € agslnt,(B). Hence, ogsint,(A) c agsint.,(B).

(iv) By Definition 3.1, x € N < y(N) < A if x is an ogsy -interior point of
A. Hence, the collection implies that (xgsInty(A) c A. Hence, oagsint,
(agsInt., (A))  ogsInt, (A) by (iii).

(v) Since Ac AUB,BC AUB and by (i), agsint,(A)cagsint,
(AUB) and ogsInt,(B)c agslnt(AUB). Therefore, agsint,(A)UoagsInt,(B)
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c agsint, (AU B).

(vi) Since NBc A,ANBc B and by (iii), agsint, (AN B) c agsint,(A)
and oagsnt, (AN B) c agsint,(B). Therefore, agsint,(ANB)coagsint,(A)
Nogsint. (B).

(vi) By  (vi), agsint,(A N B) c agsInt,(A) N agsint. (B). Let
x € agsint,(A)Nogsint,(B). This implies x € agslnt,(A) and x € agsint,(B).
Therefore, there exists an ogs-open sets U, V containing x such that
y(U) c A and y(V) < B. Implies that y(U)Ny(V) < AN B. Since y is ogs -

regular, there exists an ogs-open set W containing x such that
YO)Ny(V)2y(W). Implies that y(W)< AN B. Therefore, x € agsint, (AN B).

Hence, agsint,(A) N agsnt.(B) = agsint, (A N B).

Remark 3.3. The reverse inclusion of (iv) in Theorem 3.2 need not be
true as observed from the following example.

Example 3.4. Let X = {a, b, ¢} and t = {9, {a, b}, X}. Then 7,4 = {0,
{a}, {0}, {a, b}, X}. Let v : 144, = P(X) be an operation on 1,4 defined by

A if A ={a}or {a, b}

v A
b, ¢t if A={b) < Togs

Y(A) = {

Here for A=1{b,c},agslnt,(A)=1{b} and agslnt,(agsint,(A))=o. Therefore

agsint,(A) ¢ agsnt, (agslnt,(A)).

Remark 3.5. OLgsInty(A) need not be ogsy-open as observed from the
following example.

Example 3.6. Let X ={a, b, ¢} and 1= {o, {a}, {b}, {a, b}, {a, ¢}, X}.
Then 1,4 ={0,{a}, {0}, {a,b},{a,c}, X}. Let v : 144, = P(X) be an operation on
Togs defined by

AU{c} if A={a}or {b} VAex

v(A4) = {A it A % {a}, B, fc) ags
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Then tqq4 = {0, {a, b}, {a, ¢}, X}. Here for A =1, c}, agslnt,(A) = {b}
which is not agsy -open in (X, 1).

Theorem 3.7. Let (X, 1) be a topological space and y be an operation on

Togs- If A is a subset of X, then
() agslnt, (X \ A) = X \ ogsCL,(A).
(ii) 0gsClL(X \ A) = X \ agsnt, (A).
(i) agsTn, (A) = X \ agsCL(X \ A).
(iv) agsCl,(A) = X \ agsint, (X \ A).

Proof. (i) Let x € ocgsInty(X \ A), then there exists an ags -open sets U

containing x such that y(U) < X \ A. This implies that y(U)N A = ¢. This
gives that x ¢ agsCl,(A) and so x € X \ agsCL,(A). Hence, agsInt, (X \ A)
c X \ agsCl, (A).

Conversely, let x € X \ agsCl,(A) implies that x ¢ agsCl,(A), then

there exists an ogs-open sets V containing x such that y(V)N A =¢
implies that x e V < y(V) c X\ A. It follows that x e agslnt, (X \ A).

Hence, X\ ogsCl,(A)c agsint, (XN A).  Therefore, agsint, (X \ A)
= X \ agsCl,(A).

(1)) Let x ¢ ocgsClY(X \ A) implies there exists an oags-open set U
containing x such that y(U)N(X \ A)=¢. Implies y(U)c< A. Thus,
x € agsint,(A). x ¢ X\ ogsint,(A). Hence X \ agsInt.,(A)c agsCl, (X \ A).

Reversing the steps we get agsCl (X \ A) c X \ agsInt,(A). Therefore,
agsCL(X \ A) = X \ agsInt,(A).

The proof of (ii1) and (iv) follows from (i) and (i1).

Remark 3.8. Let (X, 1) be a topological space and x € X. If {x} e 1
then y({x}) = {x}.
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PROPERTIES OF OPERATION ON ags -OPEN SETS 1437

Definition 3.9. Let A be a subset of a topological space (X, t) and y be
an operation on T,4. The union of all ogsy-open sets contained in A is called

the agsy -interior of A and denoted by ags, Int(A).

Theorem 3.10. Let (X, 1) be a topological space and y be an operation on

Togs- For any subsets A, B of X we have the following.
() ags,Int(A) is an agsy-open set in X.
(ii) ags,Int(¢) = ¢ and ags,Int(X) = X.
(iii) A is agsy -open if and only if A = ags,Int(A).
(iv) ags,Int(A) c A.
™) If A c B, then ogs,Int(A) c ags,Int(B).
(vi) ags, Int(ags,Int(A)) = ags,Int(A).
(vi) ags,Int(A U B) 2 ags,Int(A)U ags, Int(B).
(viii) ags,Int(A N B) c ags,Int(A)N ags, Int(B).

Proof.

(i) By Definition 3.9 and by Result 2.7 (ii), we have, agsyInt(A) is an
0gsy -open set.

(i1) Obvious from the Definition 3.9.

(iii) Necessity. Since A is ogsy-open, ags,Int(A) = Union of all agsy-
open sets contained in A = A.

Sufficiency. Since A = ags,Int(A) and from (i), ags,Int(A) is ogsy-
open. We get A is agsy -open.

(iv) It is obvious from the Definition 3.9.

(v) Suppose A c B. Let x € ags,Int(A) and F be an ogsy-open set
contained in A which is contained B. Therefore, x € F. Hence,

Advances and Applications in Mathematical Sciences, Volume 21, Issue 3, January 2022



1438 N. K. NARMADHA and N. BALAMANI

x € ags,Int(B). Therefore, x € ags,Int(A) c ogs,Int(B).
(vi) From (i) and (iii), we have ags, Int(ags,Int(A)) = ags, Int(A).

(vii) Since Ac AUB, Bc AUB and by (v) ags,Int(A) c ogs,Int(A U B)
and  ogs,Int(B) c ags,Int(A U B). Hence, ags, Int(A) U ags, Int(B)
c agsyInt(A U B).

(viii As ANBc A ANBcB and by (v), agsInt(ANB)
c ags,Int(A) and ags,Int(A N B) c ags, Int(B).

. ogs, Int(A N B) c ags, Int(A) N ags, Int(B).

Remark 3.11. The reverse inclusion of (vil) in Theorem 3.10 need not be
true as observed from the following example.

Example 3.12. Let X ={a, b, ¢} and = {9, {a}, X}. Then 144 = {0,
{a}, {a, b}, {a, ¢}, X}. Let y: 144 — P(X) be an operation on t,4 defined
by

A fbe A

v A
d(A) itbza S0

Y(4) = {

Then 1,4 ={¢, {a,b}, X}. Let A={a} and B = {b}. Then AU B = {a, b}
Therefore oags,Int(A U B) = {a, b} and ogs,Int(A)U ags, Int(B) = ¢. Hence
ags, Int(A U B) € ags,Int(A) U ags, Int(B).

Remark 3.13. The reverse inclusion of (viii) in Theorem 3.10 need not be
true as observed from the following example.

Example 3.14. Let X ={a,b,c¢} and 1= {o {a}, {b, ¢}, X}. Then

Tags = P(X). Let v : t,4; = P(X) be an operation on 1,4 defined by

A ifae A

A) = VA
v(4) {cl(A) fara s

Then 1,4 = {0, {a},{a,b},{b,c},{a,c}, X}. Let A =1{b,c} and B ={a, c}.
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Then ANB={c}. Therefore ogs,(ANB)=¢ and ags,Int(A)Nogs,Int(B)
={c}. Hence agsInt(A) N agslnt(B) € ags, Int(AN B).

Theorem 3.15. If y is ogs -regular then ogs,Int(A N B) = ogs,Int(A)
N ags, Int(B).

Proof. Let y e ags Int(A)Nagsint(B). Then y e ags,Int(A) and

y € ags,Int(B). Then yeU{OcX:0c A where Oet and

agsy)-
yeU{Oc X:0c B where O € 144, }. Then y belongs to at least one

agsy -open set, say U, contained in A and y belongs to at least one ogsy -open
set, say V, contained in B. Since vy is ags -regular, U 1V is an agsy -open set.
Therefore, y e UNV < AN B. Hence, y € ags,Int(A B) and ags,Int(A)
N ags, Int(B) < ags,Int(A (N B). From Theorem 3.10 (viii), ags,Int(A N B)
c ags,Int(A) N ags, Int(B). Hence, ogs,Int(AN B)=ags,Int(A)Nags, Int(B).

Proposition 3.16. Let (X, 1) be a topological space and y be an operation
on Tygs. Let A be a subset of X. Then ogs, Int(A) c agsint. (A).

Proof. TLet x eoagsInf(A). Then xeU{OcX:0c A where
O e ragsy}. Then x belongs to at least one ogsy-open set O contained in A.

Since x € O, there exists an ags -open set U of X containing x such that
v(U) < O ¢ A. Therefore, x € agsint,(A). Hence, ags, Int(A) c agsint,(A).

Remark 3.17. agsnt,(A) £ ags,Int(A) as observed from the following

example.
Example 3.18. From the Example 3.4, 144, = {9, {a}, {a, b}, X}. Then
agsint,(A) = ¢ and ags,Int,(A) = {b}. Hence agslnt,(A) € ags, Int(A).

Proposition 3.19. If v : 144 — P(X) is an ogs -open operation on Togs

and A < X. Then

(a) agsnt,(A) = ags,Int(A) and agslnt,(agslnt,(A)) = agslnt, (A).
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(b) agsnt,(A) is agsy-open in X.

Proof. (a) Let y be an ags -open operation on Togs- We have to prove that
agsint,(A) c ogs,Int(A). Let x € agslnt,(A). Then there exists an ags -

open set U of X containing x such that y(U) c A. Since y is an ags -open
operation, for all ogs -open set U containing x, there exists an agsy -open set
V containing x such that V < y(U). Therefore, x € V < y(U) < A. Hence, V
is an ogsy-open set contained in A and x e U{V < X:V c A where
V € t4gef- Therefore, x € ags,Int(A). Thus, agsint,(A) c ogs,Int(A).
Hence, by Proposition 3.16, agsInt,(A) = ags,Int(A).

Now, agslnt.,(agsint,(A)) = ags, Int(ags,Int(A)) = ags, Int(A)
= agslnt, (A).

(b) Follows from part (a) and Theorem 3.10.

Theorem 3.20. Let (X, 1) be a topological space and y be an operation on

Togs: Lhen for A c X,
(i) ags,CI(X \ A) = X \ ogs, Int(A),
(ii) ags, nt(X \ A) = X \ ags,CI(A).
(ifi) ags, Int(A) = X \ ogs,CL(X \ A).
(iv) ags,Cl(A) = X \ ags, Int(X \ A).

Proof. Obvious.

Theorem 3.21. Let (X, 1) be a topological space and y be an ogs -regular

operation on t,gs. Then for every A < X the following holds.
(2) ags,CI(A)NV < ags,CI(ANV) for every agsy-open set V.
(b) ags,Int(AU E) c ags,Int(A)U E for every agsy-closed set E.
Proof. (a) Let x e ags,CI(A)NV for every ogsy-open set V. Then

Advances and Applications in Mathematical Sciences, Volume 21, Issue 3, January 2022



PROPERTIES OF OPERATION ON ags -OPEN SETS 1441

x € ags,Cl(A) and x € V. Let U be any ogsy-open set of X containing x.
Since y is ogs-regular, VU 1is oagsy-open in X. By Result 2.7 (i),
ANV NU) # ¢. This implies that (AN V)NU # ¢. Again by Result 2.7 (i),
x € ags,CI(ANV). Hence, ags,CI(A)NV < ags,CI(ANV) for every ogsy-
open set V.

(b) From (a), ags,CI(A)NV < ags,CI(ANV) for every agsy-open set V.
Then X\ ags,C(ANV) c (X \ ags,CI(A))U(X \ V). By Theorem 3.20,
ags, Int( X\ (ANV)) = ags, nt(X\ A)U(X\V))c ags, Int(X\ A) UX\V).
Hence, ags,Int(X \ A)U(X\V)) c ags, nt(X \ A)U(X\V) for every
ogsy -closed set X \ V.

Remark 3.22. If y is not an ogs-regular operation on 1,4, then

Theorem 3.21 fails as observed from the following example.

Example 3.23. From the Example 3.6, tg4 = {9, {0}, {c}, X} and y is not
an ogs -regular operation on t,g. Here A ={b, ¢} and V = {a, b}. Then
ags,CI(A)NV = {a, b} and ogs,C(ANV)={b}. Hence ags,Cl(A)NV ¢
ags,CIIANYV).

Definition 3.24. Let A be a subset of a topological space (X, t) and y an
operation on t,,4. The ogsy-kernel of A, denoted by ags, ker(A) is defined
to be the set ags, ker(A) =N{U : A c U, U € 1,4, }.

Proposition 3.25 Let (X, 1) be a topological space with an operation y on
Tags and x € X. Then y e ags, ker({x}) if and only if x € ags, ker(y}).

Proof. If y € ags, ker({x}), then y =N {U: {x} c U, U € 144} ie.,y

belongs to every ogsy-open set containing {x}. Thus, UN{y} = ¢ for every
agsy -open set U containing x. Then by Result 2.7 (i), x e ags,CI({y}). Now,

let x e ags,Cl({y}). By Result 2.7 (i), UN {y} # ¢ for every agsy-open set U

containing x. From this y belongs to every ogsy-open set containing {x}.
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Hence, y € ags, ker({x}).

Proposition 3.26. Let (X, 1) be a topological space and y be an operation
On Tyg. Let A and B be subsets of X. Then

() A c ags, ker(A).

(i) If A < B then ags, ker(A) c ags, ker(B).

(iii) ags, ker(p) = ¢ and ags, ker(X) = X.

Proof. (i) From Definition 3.24, we have A c ags, ker(A).

(ii) Let A < B and x € ags, ker(A). From Definition 3.24, ags, ker(A)
is the intersection of all agsy -open sets containing A which is contained in B.

Thus, x € ags, ker(B). Therefore, ags, ker(A) c ags, ker(B).
(111) It 1s Obvious.
Proposition 3.27. Let (X, t) be a topological space and y be an ags -

regular operation on t,4. Then A is a subset of X and is an ogsy -open set if

and only if A = ags, ker(A).

Proof. Let A be an ogsy -open set and x € ags, ker(A). Then x belongs to
every ogsy-open set containing A. Now A is ogsy-open, x € A. Hence,
ags, ker(A) ¢ A. From Proposition 3.26 (i), we have A ¢ ags, ker(A). Thus,
A = ags, ker(A). Conversely, let A =ags, ker(4). Thus, A is the
intersection of all agsy-open sets containing A and here y be an ogs -regular
operation on T,g4. Therefore, A is an ogsy -open set.

Remark 3.28. The following example shows that if A = ags, ker(A).
then A is not an ogsy-open set when y is not an ogs -regular operation on
Togs:

Example 3.29. Let X ={a, b, ¢}, T = {9, {a}, {a, b}, X} and t4e = {0,
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{a}, {a, b}, {a, ¢}, X}. Let y : 144, — P(X) be an operation on 1,4, defined by

A ifbe A
v(4) {cl(A) ifhga S o
Then 744 = {9, {a}, {a, b}, {a, ¢}, X}. and y is not an ogs-regular
operation on ty.. Take A ={a}. Then A = ogs, ker(A) but A is not an
agsy -open set.
Proposition 3.30. Let (X, 1) be a topological space and y be an operation
on Tyges. Then ags, ker(ogs, ker(A)) = ags, ker(A) where A is a subset of X.

Proof. Let x ¢ ags, ker(A). Then there exists an agsy-open set V

containing A such that x ¢ V. Now V is an agsy-open set. By Proposition
3.27, we have V = ags, ker(V). Since A < V and by Proposition 3.26 (ii),

ags, ker(A) c ags, ker(V) = V. Again applying Proposition 3.26 (ii), we have
ags, ker(ags, ker(A)) c V. Thus, x ¢ ags, ker(ags, ker(A))V.  Hence,
ogs, ker(ocgsy ker(A)) ags, ker(A). By Proposition 3.26 (i) and (ii), we have
ags, ker(A)c ags, ker(ags, ker(A)). Thus, ags, ker(ags, ker(A))=ogs, ker(A).

Theorem 3.31. Let (X, 1) be a topological space and y be an operation on

Togs- Lhen for any points x and y the following are equivalent:
() ogs, ker({x}) = ogs, ker((y))
(i) ags,Cl({x}) = ags,Cl({y}).

Proof. (i) = (ii) Let ogs, ker({x}) # ags, ker({y}). Then there exist a
point z in X such that z € ags, ker({y}) and z ¢ ags, ker({x}). By Proposition
3.25, yeags,ker({z}) and x ¢ ags, ker({z}). Since yeags,Cl({z}), ags,CI({y})
cags,CI({z}). Thus ags,CI({y}) N {x} = ¢. Hence, ags,Cl({x})= ags,CI({y}).

(ii) = (i) Let ags,Cl(ix}) # ags,Cl({y}). Then there exist a point z in X
such that z € ags,Cl({y}) and z & ags,CI({x}). By Result 2.7 (i), for every
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agsy -open set V containing z, VN {y} # ¢ and for some ogsy-open set V
containing z, VN {x} # ¢. Thus, an agsy-open set V containing z contains y

but not x. Therefore, x ¢ ags, ker({y}). Hence, ags, ker({x}) # ags, ker({y}).

Proposition 3.32. Let (X, t) be a topological space with an operation y
on Ty and A be a subset of X. Then ogs, ker(A) = {x € X : ags,Cl({x})

NA = o}

Proof. Let x € ags, ker(A) and suppose ogs,Cl({x})(1 A = ¢. Then
x & X \ ogs,Cl({x}). Since ags,CI({x}) is an agsy-closed set, X \ ags,Cl({x})
is an ogsy-open set containing A. This is a contradiction. Hence,
ags,Cl({x}) N A # ¢. Conversely, let x € X such that ags,CI({x})N A = ¢
and suppose that x ¢ ags, ker(A). Then there exists an agsy-open set V

containing Aand x ¢ V. This is a contradiction. Hence, x € ags, ker(A).

4. ogsy-Generalized Closed Sets

Definition 4.1. A subset A of a topological space (X, t) with an
operation y on 1,4 is said to be ogsy-generalized closed set (briefly agsyg -

closed) if agsCl,(A) c U whenever A ¢ U and Uis an agsy -open set in X.

Proposition 4.2. Every ogsy -closed set is ogsyg -closed.

Proof. Let A be any oagsy-closed set. Consider V be any agsy-open set
containing A. Since A is an ogsy-closed set. By Theorem 2.8 (ii),
A = agsCl,(A). Thus, agsCl,(A) = A c V. Hence, A is an ogsyg -closed set
in X.

Example 4.3. Let X ={a, b, ¢} and t={¢, a, X}. Then 1,4 = {0,
{a}, {a, b}, {a, ¢}, X}. Let y: 1,4; = P(X) be an operation on 1,4 defined by

A ifbe A
Y( ):{ VAETags

c(A) fbeA
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Then ogsy-closed sets are ¢, {a}, {c}, X and ogsyg -closed sets are
o, {b}, {c}, {b, ¢}, X. Thus {b, ¢} is an agsyg -closed set but not agsy -closed
set in X.

Theorem 4.4. Let (X, 1) be a topological space and y be an operation on

Tags- Lhen the following statements are equivalent for any subset A in X

() A is an ogsyg -closed set in (X, 1)

(i1) ags,Cl({x}) N A # ¢ for every x € agsCL,(A)

(iii) ogsCl,(A) c ags, ker(A).

Proof. (i) = (ii) Let A be an agsyg-closed set. Suppose that
ags,Cl(ix})N A # ¢ for some x €agsCl,(A). Therefore, AcX\
ags,Cl({x}). By Result 2.7 (iii), ags,CI({x}) is an ogsy -closed set in X. Thus,
X \ ogs,Cl({x}) is an ogsy-open set containing A in X. Since A is an agsyg -
closed set, ags,Cl(A)N X \ ags,CI({X}). This implies that x ¢ agsCl,(A)
which is a contradiction to x € agsCL,(A). Hence, ags,Cl({x})N A # ¢ for
every x e agsCl,(A).

(ii) = (iii) Follows from the Proposition 3.32.

(iii) = (i) Let x € agsCl,(A) c ags, ker(A). Consider Vbe an agsy -open
set such that A c V. It is enough to prove that agsCl,(A)c V. Since
x € ags, ker(A), x € V. Thus agsCl,(A) c V. Hence, A is an agsyg -closed
set in (X, 7).

Theorem 4.5. If A is agsy-open and ogsyg -closed then A is an ogsy -
closed.

Proof. Let A is agsy-open and agsyg -closed. Now, A < A. By Definition
4.1, agsCl,Ac A. By the Theorem 2.8 (i), A c oagsCl,(A). Thus,

A = 0gsCl,(A). By the Theorem 2.8 (ii), A is an agsy -closed.
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Theorem 4.6. Let (X, t) be a topological space and y be an operation on
Tags- If a subset A of X is agsyg -closed then ogsCl,(A)\ A does not contain

any non-empty ogsy -closed.

Proof. Let A be an agsyg -closed set in X. Suppose that there exist an
non-empty ogsy-closed set E such that FE < agsCl,(A)\ A. Therefore,

X\NE is an agsy-open set. Let A < X\ E. Since A is ogsyg -closed,
agsCL,(A)c X\ E. From this, X\ agsCl,(A)2E. Thus, Ec(agsCl,(A)\A)
N(X \ agsCl,(A)). Hence, E =¢. This is a contradiction. Therefore,

agsCL,(A) \ A does not contain any non-empty ogsy -closed.

Theorem 4.7. Let (X, 1) be a topological space and y be an operation on
Tags- Then for each x € X, {x} is an ogsy-closed set or X \ {x} is an ogsyg -
closed set in (X, 7).

Proof. Suppose that {x} is not an agsy-closed set. Then X \ {x} is not
an agsy-open set. Hence, X is the only ogsy-open set containing X \ {x}.

Also, agsCL (X \ {x}) ¢ X. Thus X \ {x} is an agsyg -closed set in (X, 1).

Theorem 4.8. Let (X, 1) be a topological space and y be an operation on

C
=7

Then t agsy

Togs- if and only if every subsets of X is an agsyg -closed

set in (X, 1).

ogsy

= r(clgsy. Let V be an agsy-open set and A be any subset

of X such that A c V. By Theorem 2.8 (iii), agsyCl,(A) c agsCl, (V). Since

Proof. Let 1,4,
Tagsy = Togsy- Thus, ogsCl,(V)=V and ogsCl,(A)=V. Hence, A is an
agsyg -closed set. Conversely, let every subsets of X is an agsyg -closed set.

Consider Vbe an agsy -open set. By the assumption, Vis an agsyg -closed set.

From this, agsCl,(V)=V whenever V cV. By Theorem 2.8 (i),
V < agsCl, (V). Thus, agsCl,(V)=V. Hence, Vis an oagsy-closed set in

(X, 7). Therefore, Tygsy = Togsy-
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