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Abstract 

In this paper, we discuss a system of two coupled van der Pol auto-generators model with 

delay. Some sufficient conditions to guarantee the existence of oscillatory solutions for the 

model are obtained. Oscillation synchronization occurs due to the suitable parameter values. 

Delay affects the oscillatory frequency but not affects the oscillation synchronization. 

1. Introduction 

It is very known that coupled van der Pol oscillators models with or 

without time delays have been extensively studied [1, 3-15]. For two coupled 

van der Pol oscillators with time delay as follows: 

             
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By the approach of averaging together with truncation of Taylor expansions, 

Li et al. [7] have investigated the effect of time delay on the nonlinear 

dynamics of the system. The condition necessary for saddle-node and Hopf 

bifurcations for symmetric modes were determined. Zhang and Gu also 

discussed the model of two coupled van der Pol oscillators with two time 

delays [14]: 
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Using the theory of normal form and the center manifold theorem, the 

authors have concerned the existence of Hopf bifurcations and the stability of 

the bifurcating periodic solutions. Recently, Beregov and Melkikh have 

considered the case of inductive coupling of two identical circuits as follows 

[1]: 

          
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where 12M  is the coefficient of mutual induction. The authors calculated the 

Lyapunov numbers, checked the sensitivity to different initial conditions, 

plotted the power spectrum, and established the presence of metastable 

chaos, a strange non-chaotic attractor and several stable limiting cycles. The 

areas of parametric dependence of different modes of synchronization also 

were determined. Motivated by the above models, in this paper we consider 

the following time delay model: 

               
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where .112 M  By means of mathematical analysis method, we investigate 

the dynamical behavior of system (4). Due to the existence of time delay, the 

chaos phenomenon has not been found. According to the chaos theory [2], a 

dynamical system as chaotic, it must have dense periodic orbits. However, 

under our restrictive condition, system (4) has only one unstable equilibrium 

point, and all solutions are bounded. In other words, system (4) has a unique 

periodic solution, it does not have dense periodic orbits, implying that the 

chaos phenomenon is not occurred. 

2. Preliminaries 

It is convenient to write (4) as an equivalent four dimensional first-order 

system 
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Substitute  tu4  into the second equation and  tu2  into the fourth equation 

we have 
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The linearized system of (6) is the follows: 
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System (7) can be written as a matrix form: 

     , tBUtAUtU  (8) 

where                    ,,,,,,, 3214321  tutututUtututututU
T
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Lemma 1. Suppose that the following condition holds 

       11333311   (9) 

then system (6) has a unique equilibrium point. 

Proof. An equilibrium point  Tuuuuu   4321 ,,,  of system (6) is a 

constant solution of the following algebraic equation: 

   

   









































.0

,0

,0

,0

4
2
312

2
12

4433221144332211

4

4
2
322

2
11

4433221144332211

2

uuNuuN

uuuuuuuu

u

uuNuuN

uuuuuuuu

u

 (10) 

Since 02 u  and ,04 u  system (10) is the following: 
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System (11) can be written as a matrix form: 

,01 PU  (12) 

where   ,, 311
T

uuU   and the coefficient matrix of system (12) is 
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Under the restrictive condition (9), the coefficient matrix P of system (12) 

is a nonsingular matrix. Based on the principle theorem of linear algebra, 

system (12) has a unique trivial solution, implying that there exists a unique 

equilibrium point of system (6), which is exactly the zero point. 

Lemma 2. Assume that 01 N  and ,02 N  both 02 u  and 04 u  

(or 02 u  and 04 u  hold, then the solutions of system (6) are bounded. 

Proof. To prove the boundedness of the solutions in system (6), we 

construct a Lyapunov function     


4

1

2 .
2

1
i i tutV  Calculating the derivative 

of  tV  through system (6) one get: 
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2
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2
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Noting that as      4,3,21  itutu ii  tend to infinity,        ,, 2
4

2
3

2
4

2
2 tutututu  

     ,42
2
3 tututu  and      tututu 42

2
1  are higher order infinity than 
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     .4,3,21  itutu ii  Noting that  ,2,10  iNi  both   02 tu  and 

  04 tu  (or   02 tu  and   04 tu  hold. Therefore, there exists suitably 

large 0M  such that     0|6  tV  as    .4,3,2,1 iMtui  This means 

that all solutions of system (6) are bounded. 

3. Main Result 

Theorem 1. Suppose that system (6) has a unique equilibrium point and 

all solutions are bounded. If matrix A has a positive (or a positive real part) 

eigenvalue, then the unique equilibrium point  T0,0,0,0  of system (6) is 

unstable. In other words, system (6) generates an oscillatory solution. 

Proof. Obviously, system (6) has a unique unstable equilibrium point if 

and only if system (7) has a unique unstable equilibrium point. Therefore, in 

the following we consider the instability of the unique equilibrium point of 

system (7). Considering the matrix form (8) of system (7), let 4321 ,,,   

and 4321 ,,,   are eigenvalues of matrix A and B, respectively, the 

characteristic equation of (8) is 

  ,0det  ebaI ijijij  (13) 

namely, 

 


 

4

1

.0

i

ii e  (14) 

Noting that B has a zero eigenvalue. From (4) we consider the following 

equation for some j, 

.0 ejj  (15) 

Specially, we select ,0 j  and .0 j  Then .j  Since 0 j  or j  

has a positive real part, this means that the characteristic equation of (15) 

has a positive real root (or a positive real part). Therefore, the trivial solution 

of (7) is unstable, implying that system (6) generates an oscillatory solution. 

The proof is completed. 
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Theorem 2. Let  ,1,,max 223311 L  

,1 44   and  .,,,max 4321 K  If the following 

condition holds: 

  .1exp2  LeK  (16) 

Then the trivial solution of (7) is unstable, implying that system (6) generates 

an oscillatory solution. 

Proof. Let     


4

1
,

i i tuty  from system (7) we have 

      .,2  ttyKtyLty  (17) 

Consider the scalar delay differential equation 

       ttzKtzLtz ,2  (18) 

with      .,0,  ttzty  According to the Comparison Theorem of 

differential equation, we have    tzty   for .t  We claim that the trivial 

solution of (18) is unstable. Suppose that this is not the case, then the 

characteristic equation associated with (18) given by 

 eKL 2  (19) 

will have a real nonpositive root, say .0  Noting that ,   and 

.22 LeKeKL 




 (20) 

Using the formula ,exex   from (20) we get 

 

 













 

L

eeK

L

eK LL
22

1  

 

 
  .2

2 









 L

L

eeK
L

eLeK
 (21) 

The last inequality contradicts (16). Hence, our claim regarding the 

instability of the trivial solution of (18) is valid. It follows that the trivial 

solution of (17) is also unstable. Since     


4

1
,

i i tuty  the instability of  ty  
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means that the trivial solution of (7) is unstable, implying that system (6) 

generates an oscillatory solution. 

4. Simulation Results 

The simulation is based on system (6). We first select the parameter 

values: ,2.0,5.0,1,1.0 1221  M  then ,04.1,04.1 21   

,21.0,04.1,04.1,21.0,21.0,11.0,21.0 1432143   

,208.0,04.1;11.0,11.0,21.0 21432  NN  and time 

delays 2.1,5.0  respectively. The condition of Lemma 1 is satisfied. The 

eigenvalues of matrix A are .7945.04391.0,9476.06009.0 ii   Noting that 

there is an eigenvalue of A which has a positive real part. Based on Theorem 

1, there exists an oscillatory solution. From figure 1 and figure 2 we know 

that the solution is oscillation synchronization, and time delay affects the 

oscillatory frequency (see Figure 1 and Figure 2). Then we select the 

parameter values: ,5.0,1,5.0,2.0 1221  M  thus ,333.11   

,333.1,333.1,333.0,667.0,667.0,667.0,667.0 4321432   

.667.0,333.1;267.0,267.0,013.0,013.0 214321  NN  

The eigenvalues of matrix A are .8051.02483.0,1452.17517.0 ii   From 

Theorem 1, there exists a solution which is oscillation but not oscillation 

synchronization (see Figure 3). 

5. Conclusion 

This paper investigates the oscillatory property of a coupled van der Pol 

auto-generators model with delay. In our assumptions, system only has a 

unique unstable equilibrium point, and all solutions of the system are 

bounded. This specific instability of the solutions forces system to generate a 

permanent periodic oscillation. Oscillation synchronization phenomenon is 

appeared in which the selection of parameters is important. Time delay 

affects the oscillatory frequency but not affects the oscillation 

synchronization. Simulation also indicates that our assumptions are only 

sufficient conditions. 
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Figure 1. Oscillation synchronization         ,, 4231 tutututu   delay: 0.5. 

 

Figure 2. Oscillation synchronization         ,, 4231 tutututu   delay: 1.2. 
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Figure 3. Oscillation of the solutions, delay: 1.5. 
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