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Abstract 

In this paper, we study a generalization of the classical Galton-Watson branching process 

with immigration having offspring distribution in all generation. In each generation for which 

the population size is finite with probability p and e migration; probability q there is not any 

migration. In this critical case is investigated with an extension when the initial law is attracted 

to a stable (p) law, 1p  or .1  The asymptotic form of the probability of non-extinction is 

studied and conditional limit theorems for the population size are obtained, depending on the 

range of an additional parameter of criticality. Finally we conclude that this paper will be very 

useful in the society specifically emphasize they can easily access the immigration process. 

1. Introduction 

A branching process in varying environment, also called time-

inhomogeneous branching process is the generalization of the classical 

Galton-Watson process when the offspring distributions may vary according 

to the generations. Firstly, Athreya and Karlin (1971) derived several 

properties of such a process under general settings for the environmental 

process. Jagers (1974) showed that many of the limiting characteristics of the 

Galton-Watson process are retained by the varying environment process. 

Agrestic (1975) and Church (1971) hasstudied the limit behavior of these 

processes. In this study, we consider the Galton-Watson branching process 

with immigration having offspring distribution in the varying environments 

defined as follows: Section 2 is devoted to the definition of a Galton Watson 
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Branching Processes with offspring distribution and Probability of Extinction. 

A condition for the extinction of a Galton Watson branching process is given 

in lemma 1, while the main condition for survival is given in Theorem has 

derived the main results in section 3. In section 4discussed classical Galton-

Watson Branching process with immigration having off spring distribution 

and section 5 investigate the asymptotic behavior of the probability of non-

extinction up to time n of critical multi-type Galton Watson Branching 

Processes and introduced some standard notations and definitions. 

2. Basic Type of Galton Watson Branching Processes 

Definition 1. Let the random variables ,,, 210 XXX  denote the size of 

(or the number of objects in) the ,2,1,0 ndthth  generations respectively. 

Let the probability that object (irrespective of the generation to which it 

belongs) generators K similar objects be denoted by ,kP  where 

.1,2,1,0,0   kk pkP   

The sequence  ,,2,1,0, nXn  constitute a Galton Watson branching 

process (or simply a G. W. branching process) with offspring distribution 

 Kp  Our interest lies mainly in the probability distribution of nX  and the 

probability that 0nX  for some n, (i.e.) the probability of ultimate 

extinction of the family. 

Note 1. We shall assume that 10 X  (i.e.) the process starts with a 

single ancestor. 

Note 2. The sequence  nX  forms a Markov chain with transition 

probabilities 

  ,2,1,0,1   jiXjXPp nnrij  

Note 3. The generating functions prove very useful in the study of 

branching process. 

Definition 2. Probability of Extinction By extinction of the process it is 

meant that the random sequence  nX  consists of zeros for all except a finite 

number of values of n. In other words, extinction occurs when  ,0nr XP  
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for some value of n, clearly, if 0nX  for ,mn   then 0nX  for ,mn   

also   .1001  nXP nr  

Definition 3. Conditional limit laws consider a critical (i.e. with 1m  

G. W. process. The probability of extinction is 1. Then   10 nr XP  and 

we also have   .2  nXVar n  The distribution of 0nX  is of 

considerable interest. 

3. Some Main Results of G. W. Branching Processes 

Lemma 1. For a G. W. process with 1m  and .2   Then we have  

 
,

21
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uniformly in .10  s  
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 
2

2 sR
  

       122 2112


 srssr  

  .22 sR  (3) 

where   0sR  as 1s  and R is bounded 

                .112
222

2 sPsPrsPsPsPPsP   
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Iterating one gets 
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 Since 

    10  sPP nn  and   10 nP  from the left the convergences of   10 nP  

is uniform. Hence proved the Lemma. 

Theorem 1. If .,1 2 m  Then 

(a)   220Prlim  nn X  

(b)   200|lim 2 nnn XnXE  

(c)     .0,22exp0Prlim  uuXunX nnn  
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Thus from the (taking 0s  we get, 
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    212
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established limit law. 

Subcritical Process 

Theorem 2 (Yagloms Theorem). For a Galton-Wastson process with  

  ,2,1,0Prlim  jbXjX jnnn  (8) 
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Proof. Using Taylor’s expansion around 1s  we get  
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4. Generalization of the Classical Galton-Watson Process 

4.1. Branching process with immigration. For classical Galton-

Watson branching processes it is assumed that individuals reproduce 

independently of each other according to some given offspring distribution. In 

the setting of this study the off spring distribution varies in a random 

fashion, independently from one generation to the other. A mathematical 

formulation of the model is as follows. The value of   ,1 mXE   we have as 

 0Prlim  kXnn  and   0Prlim  kXnn  for any finite 

positive integer k for a G.W. process.   qXn  0Pr  and  0Pr  kXn  

for finite k and   .1Pr qXn   Let q being the probability of 

extinction. Further 1q  for critical and subcritical process. Thus left to 

themselves G.W. populations either die out or grow without limits. 

Immigration from outside into a critical or subcritical process could have 

establishing effect on the population size. Apart from this aspect immigration 

by itself from the point of view of the theory and application. Galton-Watson 

process with immigration often arise in application in such areas as traffic 

theory statistical mechanics genetics neurophysiology etc. 

Consider a G.W. Process with offspring distribution  kP  (having p.g.f. 

 sP  and mean   .1 mp   Suppose that at time n, i.e., at the time birth of nth 

generation there is an immigration of rY  objects into the population and that 

,2,1,0, nYn  and i.id. random variables with p.g.f 

     






0

Pr

j

j
n sjXsh  

(i.e.) with probability jhj ,  immigrants enter the nth generation and 

contribute to the next generation in same way as others already presented. 

The number of immigrants into successive generations is independent and all 

objects reproduce independently of each other and of the immigration 

process. The distribution  jh  will be called immigrant distribution. Let 

 1ha   be the mean of this distribution. Let  nX  be the number of objects 

at the nth generation and let 
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0

Pr

j

j
nn sjXsP  

be its p.g.f. The sequence    ,2,1,0, nX n  defines a G.W. immigrant’s 

process. The sequence is a Markov chain whose one-step transition 

probabilities are given by j
ij sofCoeffP .  in      .,, NjisPsh

i
  

Clearly 

         .1 sPPshsP nn   (14) 

If     sFsP n
n




lim  exists, then one gets 

      sPFshsF   (15) 

(i.e.) the limit when it exists, satisfies the above functional equation. 

Corresponding to Yaglom’s result for subcritical G.W. Process, Heathcote 

(1965) obtained the following analogue for G.W. immigrant’s process. 

Consider a Galton-Watson process with immigration having offspring 

distribution  jP  with p.g.f.  sP  and immigrant distribution  jh  with p.g.f. 

 .sh  

If   ,1,1  ham  then     ,Pr jn djX   exists for Nj   and 

the p.g.f. 

  

j

j
j sdsF  

satisfies the functional equation (13)       .sPFshsF   Further 

   






1

.logiff11

j

jj dhF  

It may be noted that when  
 
s

sB
sF






1

1
 and  

 
 

.
1

1

tm

sP
sh




  Then the 

functional equation 
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      msBmsPB  1  

reduces to the functional equation (15). Thus, ordinary subcritical G.W. 

Process may always be regarded as forming a subclass of G.W. immigration 

process. The result for the critical process, due to Seneta (1970) may be stated 

as follows. 

For a Galton-Watson Process with immigration having 

 am ,,1 2  the random variable   nX n  converges in distribution 

as n  to a random variable having gamma density. 

 
0,

1


 



u
eu u

 where .
2

,
2 2

2







a
 

If a   ,
2

1
2

h  i.e. 1  the gamma density reduces to an exponential 

density such that 

.
2

expPrlim
2 























u
u

n

Xn

n
 

Again Theorem 2 (c) we get 

  .0,
2

exp0|lim
2
















u

u
XuX nn

n
 

From the G.W. Process  nX  without immigration. Thus in the critical 

case the effect of the conditioning of non-extinction  0nX  is the same as 

immigration into the process at the rate of .
2

2
a  

4.2. Processes in varying and Random Environments. The Galton-

Watson process in a varying environment is the generalization of the Galton-

Watson process that allows the offspring distribution  kP  remains the same 

in all the generations and that objects reproduce independently of others. 

Consider G.W. Process under varying environment the assumption that the 

distribution  kP  remains the same in all the generations was then replaced 

by the assumption that off spring distribution for the nth generation is of the 

form  ;nkP  several interesting results on process in varying environments 
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were obtained among others by Fearn (1979) and Jagers (1974). Smith and 

Wilkinson (1969) introduced yet another aspect. They postulated that the 

offspring distribution for each generation is randomly chosen from a class of 

all reproduction loses and the resulting process are said to be in random 

environments the topic has been pursued in great details in number of papers 

by Wilkinson (1969), Athreya and Karlin (1970) Kaplan (1972) and others.  

5. Multiple Galton-Watson Processes 

A natural extension of Galton-Watson process is concerned with the case 

where the population consists of finite number of type of objects. Such process 

are known as multiple Galton-Watson process. Mode (1971) deals exclusively 

and extensively with such process and discusses several models for 

applications in various areas. 

Suppose that population of individuals (or objects) originates with a 

single ancestor and that there are k finite types of individuals. Let 

  k
i rrrP ,,, 21   be the probability of type i produces jr  offspring’s of type 

.,3,2,1, kjj   We introduce the vector notation. 

 krrrr ,,, 21   

 kssss ,,, 21   

 .,,, 21 klllie    

Let 
      krrr

SsPsf
,,,11 21 

 be the p.g.f. of    .1 rP  Let 

      k
nnnn XXXX ,,, 21   represent the population size of k types is the nth 

generation. Let ijm  be the expected numbers of off spring of type j produced 

by an object of type i. Then 

   
 

kj
s

f
eXXEm

j

j

i
f

ij ,,2,101 



  

The matrix  ijmM   is the matrix of moments. Let   sf i
n  denote the 

p.d.f. of the number of objects in nth generation starting from one object of 

type i. 
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A result analogous is 

                   ,2,1,0,,,,, 1
2

1
1

1   nsfsfsffsf
k

nnn
ii

n  

   .,,2,1,0,0 kissf i
i   

The population becomes extinct when 0nX  for some n. Let  

   jn
i

n eXXq  00Pr  and    ;lim i
nn

i qq   

(i.e.)  iq  denote the probability of extinction given the process started with 

one ancestor of type i, let       .,,, 21 kqqqq   We confine ourselves to 

case where the matrix is moments of certain type. 

Let M be a KK   matrix with non-negative elements such that for some 

positive integers n, all the elements of nM  as strictly positive. Then there 

exists a positive eigenvalue  of M, which is greater than the absolute value 

of any other eigenvalue of ;M  is also called the spectral radius of M. 

When M is the matrix  ijm  the Eigen value 𝜌 is the multitype G.W. case 

plays the role of the mean m of offspring distribution is the simple G.W. case. 

A multitype G.W. process is said to be subcritical critical or supercricital 

depending on 1p  or .1  

Let the matrix of moments M be positively regular and let  be its 

spectral radius. 

(a) If 1p  then kiqi ,,2,1,1   

(b) If 1p  then kiqi ,,2,1,1   

(c) In either case       k
i qqqq ,,, 21   is the smallest positive solution 

of the vector equation  qfq   (i.e.) 
 iq  is the smallest positive root of 

    qfq ii   for .,,3,2,1 ki   

6. Conclusion 

We used a generalization of the Classical Galton-Watson branching with 

immigration having offspring distribution in all category generation and also 
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the asymptotic form of the probability of non-extinction and conditional limits 

theorems depends on population size are obtained. Finally we conclude that 

this paper will be very useful in the society specifically embassy they can 

easily access the immigration process.  
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