

SOME CONTINUOUS FUNCTIONS ON $\mathcal{I}_{g\delta s}$ -CLOSED SETS

C. RAMALAKSHMI and M. RAJAKALAIVANAN

Head, Department of Mathematics Madurai Sivakasi Nadars Pioneer Meenakshi Women's College Poovanthi, Sivagangai-630611 Tamilnadu, India E-mail: c.ramalakshmi69@gmail.com

Assistant Professor Department of Mathematics Pasumpon Muthuramalinga Thevar College Usilampatti, Madurai-625532 Tamilnadu, India E-mail: rajakalaivanan@yahoo.com

Abstract

M. Khan and T. Noiri introduce \mathcal{I}_{g^*s} -continuous functions, strongly \mathcal{I}_{g^*s} -continuous functions and weakly \mathcal{I}_{g^*s} -continuous functions. In this paper we introduce and analyze some additional properties of $\mathcal{I}_{g\delta s}$ -continuous function, Strongly $\mathcal{I}_{g\delta s}$ -continuous functions and contra $\mathcal{I}_{g\delta s}$ -continuous functions and obtain some results.

1. Introduction

M. Khan and T. Noiri introduce \mathcal{I}_{g^*s} -continuous functions, strongly \mathcal{I}_{g^*s} -continuous functions and weakly \mathcal{I}_{g^*s} -continuous functions. It turns

 $^{2020 \} Mathematics \ Subject \ Classification: \ 05C12, \ 05C75.$

Keywords: continuous functions, strongly \mathcal{I}_{g^*s} -continuous functions and weakly \mathcal{I}_{g^*s} -continuous functions.

Received December 20, 2021; Accepted February 03, 2022

out that weak \mathcal{I}_{g^*s} -continuity is weaker than weak \mathcal{I} -continuity defined by Ackgoz et al. In 1996, Dontchev introduced a new class of functions called contra continuous functions. He defined a function $f: X \to Y$ to be contra continuous if the pre image of every open set of Y is closed in X. A new weaker form of this class of functions, called contra-e-continuous functions, contra e-continuous functions, and contra a-continuous functions were introduced and investigated by Ekici. Wadel Al-Omer et al. introduced the concept of contra e- \mathcal{I} -continuous functions in ideal topological spaces. In this paper we introduce and analyze some additional properties of \mathcal{I}_{g^*s} -continuous function, strongly \mathcal{I}_{g^*s} -continuous functions and contra \mathcal{I}_{g^*s} -continuous functions and obtain some results.

2. Preliminaries

Definition 2.1 [22]. The θ -closure of A, denoted by $Cl_{\theta}(A)$, is defined to be the set of all $x \in X$ such that $A \cap Cl(U) \neq \emptyset$ for every open neighbourhood U of X. If $A = Cl_{\theta}(A)$, then A is called θ -closed. The complement of a θ -closed set is called a θ -open set. The θ -interior of A is defined by the union of all θ -open sets contained in A and is denoted by $Int_{\theta}(A)$.

Remark 2.2 [22]. The collection of δ -open sets in a topological space (X, τ) forms a topology τ_{θ} on X.

Definition 2.3 [22]. The δ -closure of A, denoted by $Cl_{\delta}(A)$, is defined to be the set of all $x \in X$ such that $A \cap Int(Cl(U)) \neq \emptyset$ for every open neighbourhood U of X. If $A = Cl_{\theta}(A)$, then A is called a δ -closed set. The complement of a δ -closed set is called δ -open. The δ -interior of A is defined by the union of all δ -open sets contained in A and is denoted by $Int_{\delta}(A)$,

Remark 2.4 [22]. The collection of δ -open sets in a topological space (X, τ) forms a topology τ_{δ} on X.

Definition 2.5. A subset A of a topological space (X, τ) is said to be

Advances and Applications in Mathematical Sciences, Volume 21, Issue 7, May 2022

- (1) regular open [20] if A = Int(Cl(A)),
- (2) preopen [18] if $A \subset Int(Cl(A))$,
- (3) semiopen [17] if $A \subset Cl(Int(A))$,

The complement of a regular open (resp. preopen, semiopen) set is called a regular closed (resp. preclosed, semiclosed) set. The set of all regular open (resp. preopen, semiopen, regular closed, preclosed, semiclosed) sets of (X, τ) is denoted by RO(X) (resp. PO(X), SO(X), BO(X), RC(X), PC(X), SC(X)) $S - int(A) = \{ \bigcup U : U \subset A \text{ and } U \text{ is semi-open sets} \}$ and $scl(A) = \{ \bigcap G : A \subset G \text{ and } G \text{ is semi-closed} \}.$

Remark 2.6 [22]. A set $A \subset X$ is δ -open if and only if it is the union of regular open sets of *X*.

An ideal \mathcal{I} on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following conditions.

- (1) $A \in \mathcal{I}$ and $B \subset A \Rightarrow B \in \mathcal{I}$ and
- (2) $A \in \mathcal{I}$ and $B \in A \Rightarrow A \cup B \in \mathcal{I}$.

Definition 2.7 [12]. Let (X, τ) be a topological space with an ideal \mathcal{I} on Xand $(\cdot)^*$ be a set operator from $\wp(X)$ to $\wp(X)$. For a subset $A \subset X, A^*(\mathcal{I}, \tau) = \{x \in X : U \cup A \notin \mathcal{I} \text{ for every } U \in \mu(x)\}$ where $\mu(x) = \{U \in \tau : x \in U\}$ is called the local function of A with respect to \mathcal{I} and τ . We will simply write A^* for $A^*(\mathcal{I}, \tau)$.

Definition 2.8 [12]. Let (X, τ) be a space with an ideal \mathcal{I} on X. The set operator cl^* is called a *-closure and is defined as $cl^*(A) = A \subset A^*$ for $A \subset X$. We will denote by $\tau^*(\mathcal{I}, \tau)$ the generated by cl^* , that is, $\tau^*(\mathcal{I}) = \{U \subset X : cl^*(X - U) = X - U\}$. $\tau^*(\mathcal{I})$ is called *-topology which is finer than τ . The elements of $\tau^*(\mathcal{I}, \tau)$ are called *-open and the complement of an *-open set is called *-closed. The interior of a subset A in $(X, \tau^*(\mathcal{I}, \tau))$ is denoted by $int^*(A)$.

Definition 2.9 [5]. A subset S of an ideal topological space (X, τ, \mathcal{I}) is called semi-*I*-open if $S \cup Cl^*(Int(S))$. The complement of a semi-*I*-open set is called a semi-*I*-closed set. The family of all semi-*I*-open (resp. semi-*I*-closed) sets of (X, τ, \mathcal{I}) is denoted by $S\mathcal{IO}(X)$ (resp. $S\mathcal{IO}(X)$). We set $S\mathcal{IO}(X, x) = \{U : U \in S\mathcal{IO}(X) \text{ and } x \in U\}$ and $S\mathcal{IO}(X, x) =$ $\{U : U \in S\mathcal{IO}(X) \text{ and } x \in U\}$.

Definition 2.10 [3]. The intersection of all semi-*I*-closed sets containing A is called the semi-*I*-closure of A and is denoted by $s\mathcal{I}Cl(A)$. A subset A is semi-*I*-closed if, and only if $s\mathcal{I}Cl(A) = A$. The union of all semi-*I*-open subsets of (X, τ) contained in $A \subset X$ is called the semi-*I*-interior of A and is denoted by $s\mathcal{I}Int(A)$.

Definition 2.11 [3]. An ideal topological space (X, τ, \mathcal{I}) is semi-*I*-normal if for each disjoint closed sets F_1 , F_2 of X, there exist disjoint semi- \mathcal{I} -open sets W_1 , W_2 such that $F_i \subset W_i$, where i = 1, 2.

Definition 2.12 [3]. A function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is called a semicontinuous function if for every open subset V of Y, $f^{-1}(V)$ is semi-open in X.

Definition 2.13. A subset A of X is g-closed if $cl(A) \subset U$ whenever $A \subset U$ and U is open.

Lemma 2.14. The following statements are true Let A be a subset of a topological space (X, τ) . Then $A \in PO(X)$ if and only if sCl(A) = Int(Cl(A))[?]

Definition 2.15. A space X is said to be $T\mathcal{I}_{g\delta s}$ -space if every $\mathcal{I}_{g\delta s}$ -closed set is closed.

Definition 2.16. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be strongly continuous, if $f^{-1}(V)$ is semi-closed in (X, τ) for every closed set V in (Y, σ) .

Definition 2.17. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be perfectly continuous, if $f^{-1}(V)$ is clopen in (X, τ) for every open set V in (Y, σ) .

Definition 2.18. A function $f: (X, \tau) \to (Y, \sigma)$ is called completely

Advances and Applications in Mathematical Sciences, Volume 21, Issue 7, May 2022

continuous, if the inverse image of every open set in Y is regular open in (X, τ) .

Definition 2.19. A function $f: (X, \tau) \to (Y, \sigma)$ is called totally semicontinuous, if the inverse image of every semi-open set in Y is clopen in (X, τ) .

Definition 2.20. A function $f:(X, \tau, \mathcal{I}) \to (Y, \sigma)$ is called $\mathcal{I}_{g\delta s}$ continuous, if the inverse image of every closed set in Y is $\mathcal{I}_{g\delta s}$ -closed in X.

Definition 2.21. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be contracontinuous if $f^{-1}(V)$ is closed in (X, τ) for each open set V in (Y, σ) .

Definition 2.22. A function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is called $\mathcal{I}_{g\delta s}$ irresolute, if the inverse image of every $\mathcal{I}_{g\delta s}$ -closed set in Y is $\mathcal{I}_{g\delta s}$ -closed in
X.

Definition 2.23. A space X is said to be $\mathcal{I}_{g\delta s} \cdot T_2$ -space if for any distinct points x and y ox there exists two disjoint $\mathcal{I}_{g\delta s}$ -open sets U and V such that $x \in U$ and $y \in V$ respectively.

3. $\mathcal{I}_{g\delta s}$ -Continuous Function

In this division, we analyze some additional properties of $\mathcal{I}_{g\delta s}$ -continuous function, Strongly $\mathcal{I}_{g\delta s}$ -continuous functions and obtain some results.

Definition 3.1. A subset *A* of *X* is called generalized δ semi-closed (briefly $\mathcal{I}_{g\delta s}$ -closed) set if $\mathcal{I}_{scl}(A) \subset U$ whenever $A \subset U$ and *U* is δ -open in (X, τ) . The family of all $\mathcal{I}_{g\delta s}$ -closed subsets of the space *X* is denoted by $\mathcal{I}_{g\delta s}$ -*C*(*X*) and $\mathcal{I}_{g\delta s}$ -open subsets of the space *X* is denoted by $\mathcal{I}_{g\delta s}$ -*O*(*X*).

Definition 3.2. A function $f:(X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be $\mathcal{I}_{g\delta s}$ continuous, if the $f^{-1}(V)$ is $\mathcal{I}_{g\delta s}$ -closed in (X, τ, \mathcal{I}) for every closed set V in (Y, σ) .

Theorem 3.3. Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be bijective $\mathcal{I}_{g\delta s}$ -continuous and $g: (Y, \sigma) \to (Z, \mu)$ be bijective continuous function then $g \circ f: (X, \tau, \mathcal{I}) \to (Z, \mu)$ is $\mathcal{I}_{g\delta s}$ -continuous function.

Proof. Let V be any open subset of Z then $g^{-1}(V)$ be open in Y and as f is $\mathcal{I}_{g\delta s}$ -continuous $f^{-1}(g^{-1}(V))$ is $\mathcal{I}_{g\delta s}$ -open in X i.e., $(g \circ f)^{-1}(V)$ is $\mathcal{I}_{g\delta s}$ -open in X implies $g \circ f$ is $\mathcal{I}_{g\delta s}$ -continuous function.

Definition 3.4. A function $f: (X, \tau) \to (Y, \sigma, \mathcal{I})$ is said to be strongly $\mathcal{I}_{g\delta s}$ -continuous, if $f^{-1}(V)$ is semi-closed in (X, τ) for every $\mathcal{I}_{g\delta s}$ -closed set V in (Y, σ, \mathcal{I}) .

Theorem 3.5. A function $f: (X, \tau) \to (Y, \sigma, \mathcal{I})$ is strongly $\mathcal{I}_{g\delta s}$ continuous, if and only if the inverse image of each $\mathcal{I}_{g\delta s}$ -open set in V is a
semi open set in U.

Proof. Suppose $f: (X, \tau) \to (Y, \sigma, \mathcal{I})$ is strongly $\mathcal{I}_{g\delta s}$ -continuous function and V is $\mathcal{I}_{g\delta s}$ -open set in Y. Then Y - V is $\mathcal{I}_{g\delta s}$ -closed in Y. By hypothesis $f^{-1}(Y - V) = X - f^{-1}(V)$ is a semi-closed set in X and hence $f^{-1}(V)$ is semi-open set in X. On the other hand, if F is $\mathcal{I}_{g\delta s}$ -closed set in Y, then Y - F is an $\mathcal{I}_{g\delta s}$ -open set in X.

By hypothesis $f^{-1}(Y - F) = X - f^{-1}(F)$ is semi-open set in X, implies $f^{-1}(F)$ is semi-closed set in X. Therefore f is strongly $\mathcal{I}_{g\delta s}$ -continuous.

Theorem 3.6. The following are equivalent for the function $f: (X, \tau) \rightarrow (Y, \sigma, \mathcal{I})$

(1) The function f is strongly $\mathcal{I}_{g\delta s}$ -continuous.

(2) For each $x \in U$ and each $\mathcal{I}_{g\delta s}$ -open set V in (Y, σ, \mathcal{I}) with $f(x) \in V$, there exist a semi open set W in (X, τ) such that $x \in W$ and $f(W) \subset V$.

(3) $f^{-1}(V) \subset S - \operatorname{int}(f^{-1}(V))$ for each $\mathcal{I}_{g\delta s}$ -open set V of Y.

(4) $f^{-1}(F)$ is semiclosed in (X, τ) for every $\mathcal{I}_{g\delta s}$ -closed set F of Y.

Proof.

 $(1) \rightarrow (2)$ Suppose (1) holds. Let $x \in U$ and V be a $\mathcal{I}_{g\delta s}$ -open set in V containing f(x). Since f is strongly $\mathcal{I}_{g\delta s}$ -continuous, implies $f^{-1}(V)$ is a semi open set in (X, τ) such that $x \in f^{-1}(V)$. Put $W = f^{-1}(V)$, then $x \in W$ and $f(W) = f(f^{-1}(V))$. Thus (2) holds.

(2) \rightarrow (3) Suppose (2) holds. Let V be any $\mathcal{I}_{g\delta s}$ -open set in Y and $x \in f^{-1}(V)$. By (2), there exists a semi open set W in (X, τ) such that $x \in W$ and $f(W) \subset V$. This implies $x \in W = S - int(W) \subset S - int(f^{-1}(V))$. That is $x \in S - int(f^{-1}(V))$. Therefore, $f^{-1}(V) \subset S - int(f^{-1}(V))$.

(3) \rightarrow (4) Suppose (3) holds. Let F be any $\mathcal{I}_{g\delta s}$ -closed set of Y. Set V = Y - F, then V is $\mathcal{I}_{g\delta s}$ -open set in Y. By (3) $f^{-1}(V) \subset S - \operatorname{int}(f^{-1}(V))$. That is $f^{-1}(V - F) \subset S - \operatorname{int}(f^{-1}(V - F))$. This implies $X - f^{-1}(F) \subset X - \operatorname{scl}(f^{-1}(F))$. This implies $\operatorname{scl}(f^{-1}(F)) \subset f^{-1}(F)$. But $f^{-1}(F) \subset \operatorname{scl}(f^{-1}(F))$ is always true. Thus, $f^{-1}(F) = \operatorname{scl}(f^{-1}(F))$. Therefore, $f^{-1}(F)$ is semi closed in (X, τ) .

(4) \rightarrow (1) Suppose (4) holds. Let V be any $\mathcal{I}_{g\delta s}$ -open set of Y. Set F = Y - V. Then F is $\mathcal{I}_{g\delta s}$ -closed set of Y. By (iv), $f^{-1}(F)$ is semi closed in (X, τ) . But $f^{-1}(F) = f^{-1}(Y - V) = X = f^{-1}(V)$. This implies $f^{-1}(V)$ is a semi open set in (X, τ) . Therefore f is strongly $\mathcal{I}_{g\delta s}$ -continuous.

4. Perfectly $\mathcal{I}_{g\delta s}$ -Continuous Function

Definition 4.1. A function $f: (X, \tau) \to (Y, \sigma, \mathcal{I})$ is said to be perfectly $\mathcal{I}_{g\delta s}$ -continuous, if $f^{-1}(V)$ is clopen in (X, τ) for every $\mathcal{I}_{g\delta s}$ -open set V in (Y, σ, \mathcal{I}) .

Theorem 4.2. If a function $f : (X, \tau) \to (Y, \sigma, \mathcal{I})$ is perfectly continuous and Y is $T\mathcal{I}_{g\delta s}$ -space, then f is perfectly $\mathcal{I}_{g\delta s}$ -continuous.

Proof. Let G be a $\mathcal{I}_{g\delta s}$ -open set in Y. Since Y is $T\mathcal{I}_{g\delta s}$ -space, G is an open set in Y. Since f is perfectly continuous, $f^{-1}(G)$ is clopen in (X, τ) . Therefore f is perfectly $\mathcal{I}_{g\delta s}$ -continuous function.

Theorem 4.3. Every perfectly $\mathcal{I}_{g\delta s}$ -continuous function into finite T_1 -space is strongly continuous.

Proof. Obvious because every finite T_1 -space is discrete space. Therefore every subset A of X is open and hence $\mathcal{I}_{g\delta s}$ -open. Since f is perfectly $\mathcal{I}_{g\delta s}$ continuous function, $f^{-1}(A)$ is clopen for every subset A of X. Therefore f is strongly continuous.

Theorem 4.4. Let X be a discrete topological space, Y be any topological space and $f : (X, \tau) \rightarrow (Y, \sigma, \mathcal{I})$ be a function. Then the following are equivalent.

(1) f is perfectly $\mathcal{I}_{g\delta s}$ -continuous.

(2) f is strongly $\mathcal{I}_{g\delta s}$ -continuous.

Proof.

 $(1) \rightarrow (2)$ Obvious because every clopen set is open.

(2) \rightarrow (1) Let V is a $\mathcal{I}_{g\delta s}$ -open in Y. By hypothesis, $f^{-1}(V)$ is open in (X, τ) . Since X is discrete space, $f^{-1}(V)$ is also closed set in (X, τ) . Therefore f is perfectly $\mathcal{I}_{g\delta s}$ -continuous.

Theorem 4.5. Let A be any subset of X. If $f : (X, \tau) \to (Y, \sigma, \mathcal{I})$ is perfectly $\mathcal{I}_{g\delta s}$ -continuous, then the restriction function $f \mid_A : A \to Y$ is perfectly $\mathcal{I}_{g\delta s}$ -continuous.

Proof. Let V be a $\mathcal{I}_{g\delta s}$ -open set of Y. Since f is perfectly $\mathcal{I}_{g\delta s}$ -

Advances and Applications in Mathematical Sciences, Volume 21, Issue 7, May 2022

continuous, $f^{-1}(V)$ is clopen set in (X, τ) . Then, $(f \mid_A)^{-1}(V) = A \cap f^{-1}(V)$ is clopen in A and hence $f \mid_A$ is perfectly $\mathcal{I}_{g\delta s}$ -continuous.

Theorem 4.6. Let $f : (X, \tau) \to (Y, \sigma, \mathcal{I})$ and $f : (Y, \sigma, \mathcal{I}) \to (Z, \mu, \mathcal{J})$ be two function.

(1) If f, g are perfectly $\mathcal{I}_{g\delta s}$ -continuous function, then $(g \circ f)$ is perfectly $\mathcal{I}_{g\delta s}$ -continuous function.

(2) If f is perfectly $\mathcal{I}_{g\delta s}$ -continuous function and g is $\mathcal{I}_{g\delta s}$ -irresolute, then $(g \circ f)$ is perfectly $\mathcal{I}_{g\delta s}$ -continuous function.

(3) If f is perfectly $\mathcal{I}_{g\delta s}$ -continuous function and g is strongly $\mathcal{I}_{g\delta s}$ -continuous, then $(g \circ f)$ is perfectly $\mathcal{I}_{g\delta s}$ -continuous function.

(4) If f is perfectly $\mathcal{I}_{g\delta s}$ -continuous function and g is $\mathcal{I}_{g\delta s}$ -continuous, then $(g \circ f)$ is perfectly continuous function.

(5) If f is perfectly $\mathcal{I}_{g\delta s}$ -continuous function and g is $\mathcal{I}_{g\delta s}$ -continuous, then $(g \circ f)$ is totally semi-continuous function.

(6) If f is $\mathcal{I}_{g\delta s}$ -continuous and g is strongly continuous then $(g \circ f)$ is $\mathcal{I}_{g\delta s}$ -continuous.

(7) If f is $\mathcal{I}_{g\delta s}$ -irres-olute and g is perfectly $\mathcal{I}_{g\delta s}$ -continuous, then $(g \circ f)$ is $\mathcal{I}_{g\delta s}$ -irresolute function.

Proof.

(1) Suppose F is a $\mathcal{I}_{g\delta s}$ -closed set in Z. Since g is perfectly $\mathcal{I}_{g\delta s}$ continuous function, $g^{-1}(F)$ is clopen in Y. Now f is perfectly $\mathcal{I}_{g\delta s}$ continuous function and every closed set is $\mathcal{I}_{g\delta s}$ -closed set, implies $g^{-1}(F)$ is $\mathcal{I}_{g\delta s}$ -closed set in Y and $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is clopen in (X, τ) . Therefore $(g \circ f)$ is perfectly $\mathcal{I}_{g\delta s}$ -continuous.

(2) Suppose F is a $\mathcal{I}_{g\delta s}$ -closed set in Z. Since g is $\mathcal{I}_{g\delta s}$ -irresolute, $g^{-1}(F)$ is $\mathcal{I}_{g\delta s}$ -closed set in Y. Now f is perfectly $\mathcal{I}_{g\delta s}$ -continuous function, $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is clopen in (X, τ) . Therefore $(g \circ f)$ is perfectly $\mathcal{I}_{g\delta s}$ -continuous.

(3) Suppose U is a $\mathcal{I}_{g\delta s}$ -open set in Z. Since g is strongly $\mathcal{I}_{g\delta s}$ continuous $g^{-1}(F)$ is semi-open and hence $\mathcal{I}_{g\delta s}$ -open set in Y. Now f is
perfectly $\mathcal{I}_{g\delta s}$ -continuous function, $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is clopen in (X, τ) . Therefore $(g \circ f)$ is perfectly $\mathcal{I}_{g\delta s}$ -continuous.

(4) Suppose F is an open set in (X, τ) . Since g is $\mathcal{I}_{g\delta s}$ -continuous $g^{-1}(F)$ is $\mathcal{I}_{g\delta s}$ -open set in Y. Now f is perfectly $\mathcal{I}_{g\delta s}$ -continuous function, $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is clopen in (X, τ) . Therefore $(g \circ f)$ is perfectly continuous.

(5) Suppose F is semi open set in Z. Since g is $\mathcal{I}_{g\delta s}$ -continuous $g^{-1}(F)$ is $\mathcal{I}_{g\delta s}$ -open set in Y. Now f is perfectly $\mathcal{I}_{g\delta s}$ -continuous function, $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is clopen in (X, τ) . Therefore $(g \circ f)$ is totally semi-continuous.

(6) Let G be an open set in Z. Since g is strongly continuous, $g^{-1}(G)$ is clopen in Y and hence open in Y. Since f is $\mathcal{I}_{g\delta s}$ -continuous, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is $\mathcal{I}_{g\delta s}$ -open in (X, τ) . Hence $(g \circ f)$ is $\mathcal{I}_{g\delta s}$ -continuous.

(7) Let G be a $\mathcal{I}_{g\delta s}$ -open set in Z. Since g is perfectly $\mathcal{I}_{g\delta s}$ -continuous, $g^{-1}(G)$ is clopen and hence it is $\mathcal{I}_{g\delta s}$ -open in Y. Again since f is $\mathcal{I}_{g\delta s}$ irresolute, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is $\mathcal{I}_{g\delta s}$ -open in (X, τ) . Hence $(g \circ f)$ is $\mathcal{I}_{g\delta s}$ -irresolute.

Definition 4.7. A function $f: (X, \tau) \to (Y, \sigma, \mathcal{I})$ is called completely

 $\mathcal{I}_{g\delta s}$ -continuous, if the inverse image of every $\mathcal{I}_{g\delta s}$ -open set in Y is regular open in (X, τ) .

Theorem 4.8. If a function $f : (X, \tau) \to (Y, \sigma, \mathcal{I})$ is completely continuous and Y is $\mathcal{I}_{g\delta s}$ -space, then f is completely $\mathcal{I}_{g\delta s}$ -continuous.

Proof. Let G be a $\mathcal{I}_{g\delta s}$ -open set in Y. Since Y is $T\mathcal{I}_{g\delta s}$ -space, G is an open in V. Since f is completely continuous, $f^{-1}(G)$ is regular open in (X, τ) . Therefore, f is completely $\mathcal{I}_{g\delta s}$ -continuous function.

Lemma 4.9. Let V be pre-open subset of X. Then $V \setminus U$ is regular open in X for each regular open set U of X.

Theorem 4.10. Let A be pre-open subset of X. If $f : (X, \tau) \to (Y, \sigma, \mathcal{I})$ is completely $\mathcal{I}_{g\delta s}$ -continuous, then the restriction function $f \mid_A : A \to Y$ is perfectly $\mathcal{I}_{g\delta s}$ -continuous.

Proof. Let V be a $\mathcal{I}_{g\delta s}$ -open set of Y. Then, $(f \mid_A)^{-1}(V) = A \cap f^{-1}(V)$. Since $f^{-1}(V)$ is regular open and A is pre-open, by lemma 4.9, $(f \mid_A)^{-1}(V)$ is regular open in the relative topology of A. Hence $f \mid_A$ is completely $\mathcal{I}_{g\delta s}$ -continuous.

Theorem 4.11. Let $f : (X, \tau) \to (Y, \sigma, \mathcal{I})$ and $g : (Y, \sigma, \mathcal{I}) \to (Z, \mu, \mathcal{J})$ be two function. Then

(1) If f is completely continuous and g is completely $\mathcal{I}_{g\delta s}$ -continuous then $(g \circ f)$ is completely $\mathcal{I}_{g\delta s}$ -continuous.

(2) If f is completely $\mathcal{I}_{g\delta s}$ -continuous and g is $\mathcal{I}_{g\delta s}$ -irresolute, then $(g \circ f)$ is completely $\mathcal{I}_{g\delta s}$ -continuous.

(3) If f is completely $\mathcal{I}_{g\delta s}$ -continuous and g is perfectly $\mathcal{I}_{g\delta s}$ -continuous, then $(g \circ f)$ is completely $\mathcal{I}_{g\delta s}$ -continuous function.

Proof. (1) Let G be a $\mathcal{I}_{g\delta s}$ -open set in Z. Then $g^{-1}(G)$ is regular open in

Y as g is completely $\mathcal{I}_{g\delta s}$ -continuo us. So, $g^{-1}(G)$ is open in Y. Since f is completely continuous, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is regular open in (X, τ) . Hence $(g \circ f)$ is completely $\mathcal{I}_{g\delta s}$ -continuous.

(2) Let G be a $\mathcal{I}_{g\delta s}$ -open set in Z. Since g is $\mathcal{I}_{g\delta s}$ -irresolute, $g^{-1}(G)$ is $\mathcal{I}_{g\delta s}$ -open in Y. Since f is completely $\mathcal{I}_{g\delta s}$ -continuous, $f^{-1}(g^{-1}(G))$ = $(g \circ f)^{-1}(G)$ is regular open in (X, τ) . Hence $(g \circ f)$ is completely $\mathcal{I}_{g\delta s}$ -continuous.

(3) Let G be a $\mathcal{I}_{g\delta s}$ -open set in Z. As g is perfectly $\mathcal{I}_{g\delta s}$ -continuous, $g^{-1}(G)$ is clopen and hence $\mathcal{I}_{g\delta s}$ -open in Y. Again since f is completely $\mathcal{I}_{g\delta s}$ continuous, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is regular open in (X, τ) . Hence $(g \circ f)$ is completely $\mathcal{I}_{g\delta s}$ -continuous.

5. Contra $\mathcal{I}_{g\delta s}$ -continuity

Definition 5.1. A function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be contra $\mathcal{I}_{g\delta s}$ -continuous if $f^{-1}(V)$ is $\mathcal{I}_{g\delta s}$ -closed in (X, τ, \mathcal{I}) for each open set V in (Y, σ) .

Definition 5.2. A function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be contra \mathcal{I}_{rg} -continuous if $f^{-1}(V)$ is \mathcal{I}_{rg} -closed in (X, τ, \mathcal{I}) for each open set V in (Y, σ) .

Proposition 5.3. Every contra g-continuous function is contra $\mathcal{I}_{g\delta s}$ -continuous.

Proof. Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be a contra *g*-continuous function and let *V* be any open set in *Y*. Then, $f^{-1}(V)$ is *g*-closed in *X*. Since every *g*-closed set is $\mathcal{I}_{g\delta s}$ -closed, $f^{-1}(V)$ is $\mathcal{I}_{g\delta s}$ -closed in *X*. Therefore *f* is contra $\mathcal{I}_{g\delta s}$ continuous.

However, converse need not true as seen from the following example.

Example 5.4. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{b, c, d\}, X\}, \sigma = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}.$ Then the identity function $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$ is contra $\mathcal{I}_{g\delta s}$ -continuous but not contra g-continuous.

Remark 5.5. The following example shows that $\mathcal{I}_{g\delta s}$ -continuity and contra $\mathcal{I}_{g\delta s}$ -continuity are independent.

Example 5.6. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}, \sigma = \{\emptyset, \{b\}, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then the identity function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is contra $\mathcal{I}_{g\delta s}$ -continuous but not $\mathcal{I}_{g\delta s}$ -continuous. The function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ defined by f(a) = c, f(b) = a and f(c) = b is $\mathcal{I}_{g\delta s}$ -continuous but not contra $\mathcal{I}_{g\delta s}$ -continuous.

Proposition 5.7. Every contra $\mathcal{I}_{g\delta s}$ -continuous function is contra \mathcal{I}_{rg} -continuous.

Proof. The proof follows from the fact that every $\mathcal{I}_{g\delta s}$ -closed set is \mathcal{I}_{rg} - closed in X.

Example 5.8. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}, \sigma = \{\emptyset, \{b\}, \{a, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then the identity function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is contra Irgcontinuous but not contra $\mathcal{I}_{g\delta s}$ -continuous.

Definition 5.9. A map $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is called contra *continuous if the inverse image of every open set in (Y, σ) is *-closed in (X, τ, \mathcal{I}) .

Proposition 5.10. Every contra *-continuous function is contra $\mathcal{I}_{g\delta s}$ - continuous.

Proof. Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be a contra *-continuous function and let V be any open set in Y. Then, $f^{-1}(V)$ is *-closed in X. Since every *-closed set is $\mathcal{I}_{g\delta s}$ -closed, $f^{-1}(V)$ is $\mathcal{I}_{g\delta s}$ -closed in X.

However, converse need not true as seen from the following example.

Example 5.11. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}, \sigma = \{\emptyset, \{b\}, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then the identity function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is contra $\mathcal{I}_{g\delta s}$ -continuous but not contra *-continuous.

Theorem 5.12. Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be a function. Then the following are equivalent

(1) f is contra $\mathcal{I}_{g\delta s}$ -continuous.

(2) The inverse image of each closed set in Y is $\mathcal{I}_{g\delta s}$ -open in X.

(3) For each point x in X and each closed set V in Y with $f(x) \in V$, there is an $\mathcal{I}_{g\delta s}$ -open set U in X containing x such that $f(U) \subset V$.

Proof.

(1) \Rightarrow (2). Let *F* be closed in *Y*. Then *Y* – *F* is open in *Y*. By definition of contra $\mathcal{I}_{g\delta s}$ -continuous, $f^{-1}(Y - F)$ is $\mathcal{I}_{g\delta s}$ -closed in *X*. But $f^{-1}(Y - F) = X - f^{-1}(F)$. This implies $f^{-1}(F)$ is $\mathcal{I}_{g\delta s}$ -open in *X*.

(2) \Rightarrow (3). Let $x \in X$ and V be any closed set in Y with $f(x) \in V$. By (2), $f^{-1}(V)$ is $\mathcal{I}_{g\delta s}$ -open in X. Set $U = f^{-1}(V)$. Then there is an $\mathcal{I}_{g\delta s}$ -open set U in X containing x such that $f(U) \subset V$.

(3) \Rightarrow (1). Let $x \in X$ and V be any closed set in Y with $f(x) \in V$. Then Y - V is open in Y with $f(x) \in V$. By (3), there is an $\mathcal{I}_{g\delta s}$ -open set U in X containing x such that $f(U) \subset V$. This implies $U = f^{-1}(V)$. Therefore, $X - U = X - f^{-1}(V) = f^{-1}(Y - V)$ which is $\mathcal{I}_{g\delta s}$ -closed in X.

Theorem 5.13. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \mu)$. Then the following properties hold

(1) If f is contra $\mathcal{I}_{g\delta s}$ -continuous and g is continuous then $g \circ f$ is contra $\mathcal{I}_{g\delta s}$ -continuous.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 7, May 2022

(2) If f is contra $\mathcal{I}_{g\delta s}$ -continuous and g is contra continuous then $g \circ f$ is $\mathcal{I}_{g\delta s}$ -continuous.

(3) If f is $\mathcal{I}_{g\delta s}$ -continuous and g is contra continuous then $g \circ f$ is contra $\mathcal{I}_{g\delta s}$ -continuous.

Proof.

(1) Let V be a closed set in Z. Since g is continuous, $g^{-1}(V)$ is closed in Y. Since f is contra $\mathcal{I}_{g\delta s}$ -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $\mathcal{I}_{g\delta s}$ -open in X. Therefore $g \circ f$ is contra $\mathcal{I}_{g\delta s}$ -continuous.

(2) Let V be any closed set in Z. Since g is contra continuous, $g^{-1}(V)$ is open in Y. Since f is contra $\mathcal{I}_{g\delta s}$ -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $\mathcal{I}_{g\delta s}$ -closed in X. Therefore $g \circ f$ is $\mathcal{I}_{g\delta s}$ -continuous.

(3) Let V be any closed set in Z. Since g is contra continuous, $g^{-1}(V)$ is open in Y. Since f is $\mathcal{I}_{g\delta s}$ -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $\mathcal{I}_{g\delta s}$ open in X. Therefore $g \circ f$ is contra $\mathcal{I}_{g\delta s}$ -continuous.

Definition 5.14. A space (X, τ, \mathcal{I}) is said to be an $\mathcal{I}_{g\delta s}$ -space if every $\mathcal{I}_{g\delta s}$ -open set is *-open in (X, τ, \mathcal{I}) .

Theorem 5.15. A function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is contra $\mathcal{I}_{g\delta s}$ continuous and X is an $\mathcal{I}_{g\delta s}$ -space then f is contra *-continuous.

Proof. Let V be a closed set in Y. Since f is contra $\mathcal{I}_{g\delta s}$ -continuous, $f^{-1}(V)$ is $\mathcal{I}_{g\delta s}$ -open in X. Since X is an $\mathcal{I}_{g\delta s}$ -space, $f^{-1}(V)$ is *-open in X. Therefore f is contra *-continuous.

Theorem 5.16. If $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is a contra $\mathcal{I}_{g\delta s}$ -continuous, closed injection and Y is Ultra normal, then (X, τ, \mathcal{I}) is $\mathcal{I}_{g\delta s}$ -normal.

Proof. Let F_1 and F_2 be disjoint closed subsets of X. Since f is closed and

injective, $f(F_1)$ and $f(F_2)$ are disjoint closed subsets of Y. Since Y is Ultra normal, $f(F_1)$ and $f(F_2)$ are separated by disjoint clopen sets V_1 and V_2 respectively. Hence $F_i \subset f^{-1}(V_i), f^{-1}(V_i) \in \mathcal{I}_{g\delta s}O(X)$ for i = 1, 2 and $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$. Thus X is $\mathcal{I}_{g\delta s}$ -normal.

References

- M. E. Abd El-Monsef, S. N. El-Deep and R. A. Mahmoud, β-open sets and β continuous functions, Bull. Fac. Sci. Assiut. Univ. A(12) (1983), 77-90.
- [2] D. Andrijevic, Semi-preopen sets, Math. Vesnik 38 (1986), 24-32.
- [3] M. Akdag, On b-I-open sets and b-I-continuous functions, International Journal of Mathematics and Mathematical Science 22 (2007), 27-32.
- [4] C. E. Aull and W. J. Thron, Separation axioms between T₀ and T₁, Indag. Math. 24 (1962), 26-37.
- [5] A. Caksu Guler and G. Aslim, b-*I*-open sets and decomposition of continuity via idealization, Proc. Inst. Math. Mech. National acadamy of Sciences of Azerbaijan 22 (2005), 27-32.
- [6] J. Dontchev, On Hausdorff spaces via topological ideals and *I*-irresolute functions, Annals of the New York Academy of Sciences, Papers on General Topology and Applications 767 (1995), 28-38.
- [7] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. and Math. Sci. 19(2) (1996), 303-310.
- [8] E. Ekici, New forms of contra-continuity, Carpathian J. Math 24(1) (2008), 37-45.
- [9] E. Ekici, Generalization of perfectly continuous, Regular set-connected and clopen functions, Acta. Math. Hungar. 107(3) (2005), 193-206.
- [10] E. Ekici, Another form of contra-continuity, Kochi J. Math. 1 (2006), 21-29.
- [11] E. Hatir and T. Noiri, On Decompositions of Continuity via Idealization, Acta. Math. Hungar. 96(4) (2002), 341-349.
- [12] D. Jankovic and T. R. Hamlett, New Topologies from old via ideals, The American Mathematical Monthly 97(4) (1990), 295-310.
- [13] D. Jankovi and I. Reilly, On semi separation property, Indian J. Pure Appl. Math. 16(9) (1985), 957-964.
- [14] A. Kar and P. Bhattacharyya, Some weak separation axioms, Bull. Cal. Math. Soc. 82 (1990), 415-422.
- [15] M. Khan and T. Noiri, On $\mathcal{I}_{s g}^*$ -continuous functions in ideal topological spaces 4(3) (2011), 234-243.

SOME CONTINUOUS FUNCTIONS ON $\mathcal{I}_{g\delta s}$ -CLOSED SETS ~~3995

- [16] K. Kuratowski, Topology, Academic Press, New York, (1966).
- [17] N. Levine, Semiopen sets and semicontinuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [18] A. S. Mashhour M. E. Abd. El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys, Soc. Egypt 53 (1982), 47-53.
- [19] A. A. Nasef, On Hausdorff spaces via ideals and quasi *I*-irresolute functions, Chaos, Solitons and Fractals 14 (2002), 619-625.
- [20] M. H. Stone, Application of the theory of Boolean rings to general topology, Transl. Amer. Math. Soc. 41 (1937), 375-381.
- [21] R. Vaidyanathasamy, The localisation theory in set topology, Proc. Indian Acad. Sci. 20 (1945), 51-61.
- [22] N. V. Veliko, H-closed topological spaces, Amer. Math. Soc. Transl. (2)78 (1968), 103-118.
- [23] W. T. Young, A note on separation actions and their application in the theory of a locally connected topological space, Bull. Amer. Math. Soc. 49 (1943), 383-385.