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Abstract 

M. Khan and T. Noiri introduce 
sg

 -continuous functions, strongly 
sg

 -continuous 

functions and weakly 
sg

 -continuous functions. In this paper we introduce and analyze some 

additional properties of sg -continuous function, Strongly sg -continuous functions and 

contra sg -continuous functions and obtain some results. 

1. Introduction 

M. Khan and T. Noiri introduce 
sg

 -continuous functions, strongly 

sg
 -continuous functions and weakly 

sg
 -continuous functions. It turns 
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out that weak 
sg

 -continuity is weaker than weak -continuity defined by 

Ackgoz et al. In 1996, Dontchev introduced a new class of functions called 

contra continuous functions. He defined a function YXf :  to be contra 

continuous if the pre image of every open set of Y is closed in X. A new 

weaker form of this class of functions, called contra-e-continuous functions, 

contra e-continuous functions, and contra a-continuous functions were 

introduced and investigated by Ekici. Wadel Al-Omer et al. introduced the 

concept of contra e--continuous functions in ideal topological spaces. In this 

paper we introduce and analyze some additional properties of 
sg

 - 

continuous function, strongly 
sg

 -continuous functions and contra 
sg

 -

continuous functions and obtain some results. 

2. Preliminaries 

Definition 2.1 [22]. The -closure of A, denoted by  ,ACl  is defined to 

be the set of all Xx   such that   UClA   for every open 

neighbourhood U of X. If  ,AClA   then A is called -closed. The 

complement of a -closed set is called a -open set. The -interior of A is 

defined by the union of all -open sets contained in A and is denoted by 

 .AInt   

Remark 2.2 [22]. The collection of -open sets in a topological space 

 ,X  forms a topology   on X. 

Definition 2.3 [22]. The -closure of A, denoted by  ,ACl  is defined to 

be the set of all Xx   such that    UClIntA   for every open 

neighbourhood U of X. If  ,AClA   then A is called a -closed set. The 

complement of a -closed set is called -open. The -interior of A is defined by 

the union of all -open sets contained in A and is denoted by  ,AInt   

Remark 2.4 [22]. The collection of -open sets in a topological space 

 ,X  forms a topology   on X. 

Definition 2.5. A subset A of a topological space  ,X  is said to be 
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(1) regular open [20] if   ,AClIntA    

(2) preopen [18] if   ,AClIntA    

(3) semiopen [17] if   ,AIntClA    

The complement of a regular open (resp. preopen, semiopen) set is called 

a regular closed (resp. preclosed, semiclosed) set. The set of all regular open 

(resp. preopen, semiopen, regular closed, preclosed, semiclosed) sets of  ,X  

is denoted by  XRO  (resp.            XSCXPCXRCXBOXSOXPO ,,,,,  

   AUUAS  :int   and U is semi-open sets} and 

   GAGAscl  :  and G is semi-closed}. 

Remark 2.6 [22]. A set XA   is -open if and only if it is the union of 

regular open sets of X. 

An ideal  on a topological space  ,X  is a non-empty collection of 

subsets of X which satisfies the following conditions. 

(1) A  and  BAB  and 

(2) A  and . BAAB   

Definition 2.7 [12]. Let  ,X  be a topological space with an ideal  on X 

and    be a set operator from  X  to  .X  For a subset 

      AUXxAXA :,,  for every  xU   where 

   UxUx  :  is called the local function of A with respect to  and . 

We will simply write A  for  .,  A   

Definition 2.8 [12]. Let  ,X  be a space with an ideal  on X. The set 

operator cl  is called a -closure and is defined as     AAAcl  for 

.XA   We will denote by   ,  the generated by ,cl  that is, 

     .: UXUXclXU        is called -topology which is 

finer than . The elements of   ,  are called -open and the complement 

of an -open set is called -closed. The interior of a subset A in    ,, X   

is denoted by  .int A   



C. RAMALAKSHMI and M. RAJAKALAIVANAN 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 7, May 2022 

3982 

Definition 2.9 [5]. A subset S of an ideal topological space  ,, X  is 

called semi-I-open if    .SIntClS   The complement of a semi-I-open set is 

called a semi-I-closed set. The family of all semi-I-open (resp. semi-I-closed) 

sets of  ,, X  is denoted by  XOS  (resp.  .XOS  We set 

    XOSUUxXOS   :,  and Ux   and   xXOS ,  

  XOSUU :  and .Ux   

Definition 2.10 [3]. The intersection of all semi-I-closed sets containing 

A is called the semi-I-closure of A and is denoted by  .ACls  A subset A is 

semi-I-closed if, and only if   .AACls   The union of all semi-I-open 

subsets of  ,X  contained in XA   is called the semi-I-interior of A and is 

denoted by  .AInts   

Definition 2.11 [3]. An ideal topological space  ,, X  is semi-I-normal 

if for each disjoint closed sets 21, FF  of X, there exist disjoint semi--open 

sets 21, WW  such that ,ii WF    where .2,1i   

Definition 2.12 [3]. A function     ,,,: YXf   is called a semi-

continuous function if for every open subset V of  VfY 1,   is semi-open in X. 

Definition 2.13. A subset A of X is g-closed if   UAcl   whenever 

UA   and U is open. 

Lemma 2.14. The following statements are true Let A be a subset of a 

topological space  ., X  Then  XPOA   if and only if     AClIntAsCl   

[?] 

Definition 2.15. A space X is said to be sgT  -space if every sg -closed 

set is closed. 

Definition 2.16. A function     ,,: YXf  is said to be strongly 

continuous, if  Vf 1  is semi-closed in  ,X  for every closed set V in  ., Y    

Definition 2.17. A function     ,,: YXf  is said to be perfectly 

continuous, if  Vf 1  is clopen in  ,X  for every open set V in  ., Y  

Definition 2.18. A function     ,,: YXf  is called completely 
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continuous, if the inverse image of every open set in Y is regular open in 

 ., X  

Definition 2.19. A function     ,,: YXf  is called totally semi-

continuous, if the inverse image of every semi-open set in Y is clopen in 

 ., X  

Definition 2.20. A function     ,,,: YXf   is called sg - 

continuous, if the inverse image of every closed set in Y is sg -closed in X. 

Definition 2.21. A function     ,,: YXf  is said to be contra-

continuous if  Vf 1  is closed in  ,X  for each open set V in  ., Y  

Definition 2.22. A function     ,,,,:  YXf  is called sg -

irresolute, if the inverse image of every sg -closed set in Y is sg -closed in 

X. 

Definition 2.23. A space X is said to be sg - 2T -space if for any distinct 

points x and y ox there exists two disjoint sg -open sets U and V such that 

Ux   and Vy   respectively. 

3. sg -Continuous Function 

In this division, we analyze some additional properties of sg -

continuous function, Strongly sg -continuous functions and obtain some 

results. 

Definition 3.1. A subset A of X is called generalized  semi-closed (briefly 

sg -closed) set if   UAscl   whenever UA   and U is -open in  ., X  

The family of all sg -closed subsets of the space X is denoted by  XCsg -  

and sg -open subsets of the space X is denoted by  .- XOsg  

Definition 3.2. A function     ,,,: YXf   is said to be sg - 

continuous, if the  Vf 1  is sg -closed in  ,, X  for every closed set V in 

 ., Y  
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Theorem 3.3. Let     ,,,: YXf   be bijective sg -continuous 

and     ,,: ZYg  be bijective continuous function then 

    ,,,: ZXfg   is sg -continuous function. 

Proof. Let V be any open subset of Z then  Vg 1  be open in Y and as f is 

sg -continuous   Vgf 11   is sg -open in X i.e.,    Vfg
1  is sg -

open in X implies fg   is sg -continuous function. 

Definition 3.4. A function    ,,,:  YXf  is said to be strongly 

sg -continuous, if  Vf 1  is semi-closed in  ,X  for every sg -closed set 

V in  .,, Y   

Theorem 3.5. A function    ,,,:  YXf  is strongly sg -

continuous, if and only if the inverse image of each sg -open set in V is a 

semi open set in U. 

Proof. Suppose    ,,,:  YXf  is strongly sg -continuous 

function and V is sg -open set in Y. Then VY   is sg -closed in Y. By 

hypothesis    VfXVYf 11    is a semi-closed set in X and hence 

 Vf 1  is semi-open set in X. On the other hand, if F is sg -closed set in Y, 

then FY   is an sg -open set in X. 

By hypothesis    FfXFYf 11    is semi-open set in X, implies 

 Ff 1  is semi-closed set in X. Therefore f is strongly sg -continuous. 

Theorem 3.6. The following are equivalent for the function 

   ,,,:  YXf   

(1) The function f is strongly sg -continuous. 

(2) For each Ux   and each sg -open set V in  ,, Y  with   ,Vxf   

there exist a semi open set W in  ,X  such that Wx   and   .VWf    

(3)     VfSVf 11 int    for each sg -open set V of Y. 
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(4)  Ff 1  is semi closed in  ,X  for every sg -closed set F of Y. 

Proof. 

(1)  (2) Suppose (1) holds. Let Ux   and V be a sg -open set in V 

containing  .xf  Since f is strongly sg -continuous, implies  Vf 1  is a 

semi open set in  ,X  such that  .1 Vfx   Put  ,1 VfW   then Wx   

and     .1 VffWf   Thus (2) holds. 

(2)  (3) Suppose (2) holds. Let V be any sg -open set in Y and 

 .1 Vfx   By (2), there exists a semi open set W in  ,X  such that Wx   

and   .VWf   This implies     .intint 1 VfSWSWx   That is 

  .int 1 VfSx   Therefore,     .int 11 VfSVf    

(3)  (4) Suppose (3) holds. Let F be any sg -closed set of Y. Set 

,FYV   then V is sg -open set in Y. By (3)     .int 11 VfSVf    

That is     .int 11 FVfSFVf    This implies   XFfX  1  

  .1 Ffscl   This implies     .11 FfFfscl    But     FfsclFf 11    

is always true. Thus,     .11 FfsclFf    Therefore,  Ff 1  is semi closed 

in  ., X  

(4)  (1) Suppose (4) holds. Let V be any sg -open set of Y. Set 

.VYF   Then F is sg -closed set of Y. By (iv),  Ff 1  is semi closed in 

 ., X  But      .111 VfXVYfFf    This implies  Vf 1  is a semi 

open set in  ., X  Therefore f is strongly sg -continuous. 

4. Perfectly sg -Continuous Function 

Definition 4.1. A function    ,,,:  YXf  is said to be perfectly 

sg -continuous, if  Vf 1  is clopen in  ,X  for every sg -open set V in 

 .,, Y   
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Theorem 4.2. If a function    ,,,:  YXf  is perfectly continuous 

and Y is sgT  -space, then f is perfectly sg -continuous. 

Proof. Let G be a sg -open set in Y. Since Y is sgT  -space, G is an 

open set in Y. Since f is perfectly continuous,  Gf 1  is clopen in  ., X  

Therefore f is perfectly sg -continuous function. 

Theorem 4.3. Every perfectly sg -continuous function into finite 1T -

space is strongly continuous. 

Proof. Obvious because every finite 1T -space is discrete space. Therefore 

every subset A of X is open and hence sg -open. Since f is perfectly sg -

continuous function,  Af 1  is clopen for every subset A of X. Therefore f is 

strongly continuous. 

Theorem 4.4. Let X be a discrete topological space, Y be any topological 

space and    ,,,:  YXf  be a function. Then the following are 

equivalent. 

(1) f is perfectly sg -continuous. 

(2) f is strongly sg -continuous. 

Proof. 

(1)  (2) Obvious because every clopen set is open. 

(2)  (1) Let V is a sg -open in Y. By hypothesis,  Vf 1  is open in 

 ., X  Since X is discrete space,  Vf 1  is also closed set in  ., X  Therefore 

f is perfectly sg -continuous. 

Theorem 4.5. Let A be any subset of X. If    ,,,:  YXf  is 

perfectly sg -continuous, then the restriction function YAf A :|  is 

perfectly sg -continuous. 

Proof. Let V be a sg -open set of Y. Since f is perfectly sg -
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continuous,  Vf 1  is clopen set in  ., X  Then,      VfAVf A
11

| 
    is 

clopen in A and hence Af |  is perfectly sg -continuous. 

Theorem 4.6. Let    ,,,:  YXf  and     ,,,,:  ZYf  be 

two function. 

(1) If gf ,  are perfectly sg -continuous function, then  fg   is perfectly 

sg -continuous function. 

(2) If f is perfectly sg -continuous function and g is sg -irresolute, then 

 fg   is perfectly sg -continuous function. 

(3) If f is perfectly sg -continuous function and g is strongly sg -

continuous, then  fg   is perfectly sg -continuous function. 

(4) If f is perfectly sg -continuous function and g is sg -continuous, 

then  fg   is perfectly continuous function. 

(5) If f is perfectly sg -continuous function and g is sg -continuous, 

then  fg   is totally semi-continuous function. 

(6) If f is sg -continuous and g is strongly continuous then  fg   is 

sg -continuous. 

(7) If f is sg -irres-olute and g is perfectly sg -continuous, then  fg   

is sg -irresolute function. 

Proof.  

(1) Suppose F is a sg -closed set in Z. Since g is perfectly sg -

continuous function,  Fg 1  is clopen in Y. Now f is perfectly sg -

continuous function and every closed set is sg -closed set, implies  Fg 1  is 

sg -closed set in Y and       FfgFgf
111     is clopen in  ., X  

Therefore  fg   is perfectly sg -continuous. 
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(2) Suppose F is a sg -closed set in Z. Since g is sg -irresolute,  Fg 1  

is sg -closed set in Y. Now f is perfectly sg -continuous function, 

      FfgFgf
111     is clopen in  ., X  Therefore  fg   is perfectly 

sg -continuous. 

(3) Suppose U is a sg -open set in Z. Since g is strongly sg -

continuous  Fg 1  is semi-open and hence sg -open set in Y. Now f is 

perfectly sg -continuous function,       FfgFgf
111     is clopen in 

 ., X  Therefore  fg   is perfectly sg -continuous. 

(4) Suppose F is an open set in  ., X  Since g is sg -continuous  Fg 1  

is sg -open set in Y. Now f is perfectly sg -continuous function, 

      FfgFgf
111     is clopen in  ., X  Therefore  fg   is perfectly 

continuous. 

(5) Suppose F is semi open set in Z. Since g is sg -continuous  Fg 1  is 

sg -open set in Y. Now f is perfectly sg -continuous function, 

      FfgFgf
111     is clopen in  ., X  Therefore  fg   is totally 

semi-continuous. 

(6) Let G be an open set in Z. Since g is strongly continuous,  Gg 1  is 

clopen in Y and hence open in Y. Since f is sg -continuous, 

      GfgGgf
111     is sg -open in  ., X  Hence  fg   is sg -

continuous. 

(7) Let G be a sg -open set in Z. Since g is perfectly sg -continuous, 

 Gg 1  is clopen and hence it is sg -open in Y. Again since f is sg -

irresolute,       GfgGgf
111     is sg -open in  ., X  Hence  fg   is 

sg -irresolute. 

Definition 4.7. A function    ,,,:  YXf  is called completely 
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sg -continuous, if the inverse image of every sg -open set in Y is regular 

open in  ., X  

Theorem 4.8. If a function    ,,,:  YXf  is completely 

continuous and Y is sg -space, then f is completely sg -continuous. 

Proof. Let G be a sg -open set in Y. Since Y is sgT  -space, G is an 

open in V. Since f is completely continuous,  Gf 1  is regular open in  ., X  

Therefore, f is completely sg -continuous function. 

Lemma 4.9. Let V be pre-open subset of X. Then UV \  is regular open in 

X for each regular open set U of X. 

Theorem 4.10. Let A be pre-open subset of X. If    ,,,:  YXf  is 

completely sg -continuous, then the restriction function YAf A :|  is 

perfectly sg -continuous. 

Proof. Let V be a sg -open set of Y. Then,      .| 11
VfAVf A


   

Since  Vf 1  is regular open and A is pre-open, by lemma 4.9,    Vf A
1

|


 is 

regular open in the relative topology of A. Hence Af |  is completely sg -

continuous. 

Theorem 4.11. Let    ,,,:  YXf  and     ,,,,:  ZYg  

be two function. Then 

(1) If f is completely continuous and g is completely sg -continuous then 

 fg   is completely sg -continuous. 

(2) If f is completely sg -continuous and g is sg -irresolute, then 

 fg   is completely sg -continuous. 

(3) If f is completely sg -continuous and g is perfectly sg -continuous, 

then  fg   is completely sg -continuous function. 

Proof. (1) Let G be a sg -open set in Z. Then  Gg 1  is regular open in 
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Y as g is completely sg -continuo us. So,  Gg 1  is open in Y. Since f is 

completely continuous,       GfgGgf
111     is regular open in  ., X  

Hence  fg   is completely sg -continuous. 

(2) Let G be a sg -open set in Z. Since g is sg -irresolute,  Gg 1  is 

sg -open in Y. Since f is completely sg -continuous,   Ggf 11   

   Gfg
1

   is regular open in  ., X  Hence  fg   is completely sg -

continuous. 

(3) Let G be a sg -open set in Z. As g is perfectly sg -continuous, 

 Gg 1  is clopen and hence sg -open in Y. Again since f is completely sg -

continuous,       GfgGgf
111     is regular open in  ., X  Hence 

 fg   is completely sg -continuous. 

5. Contra sg -continuity 

Definition 5.1. A function     ,,,: YXf   is said to be contra 

sg -continuous if  Vf 1  is sg -closed in  ,, X  for each open set V in 

 ., Y   

Definition 5.2. A function     ,,,: YXf   is said to be contra 

rg -continuous if  Vf 1  is rg -closed in  ,, X  for each open set V in 

 ., Y  

Proposition 5.3. Every contra g-continuous function is contra sg - 

continuous. 

Proof. Let     ,,,: YXf   be a contra g-continuous function and 

let V be any open set in Y. Then,  Vf 1  is g-closed in X. Since every g-closed 

set is sg -closed,  Vf 1  is sg -closed in X. Therefore f is contra sg -

continuous. 
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However, converse need not true as seen from the following example. 

Example 5.4. Let       ,,,,,,0,,,, XdcbbdcbaX   

      Xcaca ,,,,,0  and   .,0 c  Then the identity function 

    ,,,: YXf   is contra sg -continuous but not contra g- 

continuous. 

Remark 5.5. The following example shows that sg -continuity and 

contra sg -continuity are independent. 

Example 5.6. Let          XcbbXacbaX ,,,,0,,,0,,,   and 

  .,0 c  Then the identity function     ,,,: YXf   is contra sg -

continuous but not sg -continuous. The function     ,,,: YXf   

defined by     abfcaf  ,  and   bcf   is sg -continuous but not contra 

sg -continuous. 

Proposition 5.7. Every contra sg -continuous function is contra rg -

continuous. 

Proof. The proof follows from the fact that every sg -closed set is rg - 

closed in X. 

Example 5.8. Let         ,,,,,,0,,, XcacacbaX   

    Xcab ,,,,0  and   .,0 c  Then the identity function 

    ,,,: YXf   is contra Irgcontinuous but not contra sg - 

continuous. 

Definition 5.9. A map     ,,,: YXf   is called contra -

continuous if the inverse image of every open set in  ,Y  is -closed in 

 .,, X  

Proposition 5.10. Every contra -continuous function is contra sg - 

continuous. 

Proof. Let     ,,,: YXf   be a contra -continuous function and 

let V be any open set in Y. Then,  Vf 1  is -closed in X. Since every -closed 

set is sg -closed,  Vf 1  is sg -closed in X. 
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However, converse need not true as seen from the following example. 

Example 5.11. Let          XcbbXacbaX ,,,,0,,,0,,,   and 

  .,0 c  Then the identity function     ,,,: YXf   is contra sg -

continuous but not contra -continuous. 

Theorem 5.12. Let     ,,,: YXf   be a function. Then the 

following are equivalent 

(1) f is contra sg -continuous. 

(2) The inverse image of each closed set in Y is sg -open in X. 

(3) For each point x in X and each closed set V in Y with   ,Vxf   there is 

an sg -open set U in X containing x such that   .VUf    

Proof. 

(1)  (2). Let F be closed in Y. Then FY   is open in Y. By definition of 

contra sg -continuous,  FYf 1  is sg -closed in X. But    FYf 1  

 .1 FfX   This implies  Ff 1  is sg -open in X. 

(2)  (3). Let Xx   and V be any closed set in Y with   .Vxf   By (2), 

 Vf 1  is sg -open in X. Set  .1 VfU   Then there is an sg -open set U 

in X containing x such that   .VUf    

(3)  (1). Let Xx   and V be any closed set in Y with   .Vxf   Then 

VY   is open in Y with   .Vxf   By (3), there is an sg -open set U in X 

containing x such that   .VUf   This implies  .1 VfU   Therefore, 

   VYfVfXUX   11  which is sg -closed in X. 

Theorem 5.13. Let     ,,,: YXf   and    .,,:  ZYg  Then 

the following properties hold 

(1) If f is contra sg -continuous and g is continuous then fg   is contra 

sg -continuous. 
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(2) If f is contra sg -continuous and g is contra continuous then fg   is 

sg -continuous. 

(3) If f is sg -continuous and g is contra continuous then fg   is contra 

sg -continuous. 

Proof.  

(1) Let V be a closed set in Z. Since g is continuous,  Vg 1  is closed in Y. 

Since f is contra sg -continuous,       VgfVfg 111 
  is sg -open in 

X. Therefore fg   is contra sg -continuous. 

(2) Let V be any closed set in Z. Since g is contra continuous,  Vg 1  is 

open in Y. Since f is contra sg -continuous,       VgfVfg 111 
  is 

sg -closed in X. Therefore fg   is sg -continuous. 

(3) Let V be any closed set in Z. Since g is contra continuous,  Vg 1  is 

open in Y. Since f is sg -continuous,       VgfVfg 111 
  is sg -

open in X. Therefore fg   is contra sg -continuous. 

Definition 5.14. A space  ,, X  is said to be an sg -space if every 

sg -open set is -open in  .,, X  

Theorem 5.15. A function     ,,,: YXf   is contra sg -

continuous and X is an sg -space then f is contra -continuous. 

Proof. Let V be a closed set in Y. Since f is contra sg -continuous, 

 Vf 1  is sg -open in X. Since X is an sg -space,  Vf 1  is -open in X. 

Therefore f is contra -continuous. 

Theorem 5.16. If     ,,,: YXf   is a contra sg -continuous, 

closed injection and Y is Ultra normal, then  ,, X  is sg -normal. 

Proof. Let 1F  and 2F  be disjoint closed subsets of X. Since f is closed and 
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injective,  1Ff  and  2Ff  are disjoint closed subsets of Y. Since Y is Ultra 

normal,  1Ff  and  2Ff  are separated by disjoint clopen sets 1V  and 2V  

respectively. Hence      XOVfVfF sgiii 
  11 ,  for 2,1i  and 

    .02
1

1
1  VfVf   Thus X is sg -normal. 
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