

EDGE ISOLATED DOMINATION FOR JAHANGIR GRAPHS

P. SUMATHI and R. ESTHER FELICIA

C. Kandaswami Naidu College for Men Chennai, India E-mail: sumathipaul@yahoo.co.in Shri Krishnaswamy College for Women Chennai, India

E-mail: feliciakarthikeyan@yahoo.co.in

Abstract

Let G = (V, E) be a non trivial finite graph with vertex set V and edge set E. A subset S of V in a graph G is said to be an edge-dominating set if every edges in G is incident with a vertex in S. A edge dominating set S such that $\langle S \rangle$ has an isolated vertex or $\langle V - S \rangle$ is a single vertex is called edge isolated dominating set [3]. The minimum cardinality number of a edge isolated dominating set is called the edge isolated dominating number of a Graph. Jahangir graphs $J_{s,m}$ for $s \geq 2, m \geq 2$, is a graph on sm + 1 vertices consisting of a cycle C_{sm} with one additional vertex which is adjacent to m vertices of C_{sm} at distance s to each other on C_{sm} . The definition of Jahangir graph $J_{2,m}$ was introduced by Surahmat and Tomescu in [1]. In this paper we obtained the edge isolated dominating number of a Jahangir graphs $J_{s,m}$ with different combinations on their adjacency and distances and some results based on it.

1. Introduction

Jahangir graphs $J_{s,m}$ for $s \ge 2$, $m \ge 2$, is a graph on sm+1 vertices consisting of a cycle C_{sm} with one additional vertex which is adjacent to mvertices of C_{sm} at distance s to each other on C_{sm} . Figure below shows

Received November 21, 2019; Accepted May 23, 2020

²⁰¹⁰ Mathematics Subject Classification: 05Cxx.

Keywords: Edge isolated domination, Edge isolated domination number of generalized Janhangir graphs $(J_{s,m})$.

Jahangir graph $J_{2,8}$ [2]. This graph $J_{2,8}$ appears on the Jahangir's tomb in his mausoleum. It lies in 5 kilometer north-west of Lahore, Pakistan across the River Ravi. His tomb was built around 1637 A. D. by his Queen Noor Jehan and his son Shah-Jehan, the emperor who constructed one of the wonders of the world Taj Mahal in India. It has a majestic structure made of red sand-stone and marble. The definition of Jahangir graph $J_{2,m}$ was introduced by Surahmat and Tomescu in 2006 [1].

Definition 1.1. An edge dominating set $S \subset V$ is called an edge isolated dominating set if S has an isolated vertex or $\langle V - S \rangle$ is a single vertex [4]. The minimum cardinality of an edge isolated dominating set is called edge isolated domination number of G, and is denoted by $\gamma_{ei}(G)$ [5].

Definition 1.2. Jahangir graphs $J_{s,m}$ for $s \ge 2$, $m \ge 2$, is a graph on sm + 1 vertices consisting of a cycle C_{sm} with one additional vertex which is adjacent to m vertices of C_{sm} at distance s to each other on C_{sm} . The definition of Jahangir graph $J_{2,m}$ was introduced by Surahmat and Tomescu in [1].

Example 1.3. The following figure shows Jahangir graphs $J_{2.8}$.

Theorem 1.4. Let G be a Jahangir graph $J_{s,m}$. Then $\gamma_{ei}(G) = \lfloor \frac{|V|}{2} \rfloor$, if s is even and $m \ge 2$.

Proof. Let G be a Jahangir graph $J_{s,m}$ with sm + 1 vertices and sm + m edges. Let C_{sm} be the cycle with sm vertices and w_1 be the middle vertex of $J_{s,m}$. Let $\{v_{s1}, v_{s2}, v_{s3}, \ldots, v_{si}, \ldots, v_{sm-1}, v_{sm}, w_1\} \in V(G)$, where w_1 is adjacent to m vertices on the cycle C_{sm} with distance s. Since s is even sm is even and hence C_{sm} is an even cycle with $v_{s1} = v_{sm}$. $d(v_{si}) = 2$ for $i = 1, 2, 3, \ldots, m$ and since w_1 is adjacent to m vertices on the cycle C_{sm} there exist exactly m vertices of degree 3.

Choose $v_{s1} \in \gamma_{ri}(G)$, such that $d(v_{s1}) = 3$. Where v_{s1} is adjacent to $v_{s1}v_{s2}$, $v_{s1}w_1$, $v_{s1}v_{sm-1}$.

To cover the remaining edges which are not incident with v_{s1} ,

Omitting the next vertex v_{s2} such that $d(v_{s2}) = 2$ since $s \ge 2$.

Without loss of generality, choose $v_{s3} \in \gamma_{ei}(G)$, such that $d(v_{s3}) = 3$, v_{s3} is at the even distance from v_{s1} .

 v_{s3} is adjacent to $v_{s3}v_{s2}$, $v_{s3}w_1$, $v_{s3}v_{s4}$, based on the distance s on the cycle C_{sm} .

To cover the remaining edges which are not incident with v_{s3} .

Omitting the next vertex v_{si} , where $d(v_{si}) = 2$, since v_{si} is in the odd distance from v_{s1} . v_{si} is adjacent to $v_{si}v_{si-1}$, $v_{si}v_{si+1}$.

Choose $v_{si+1} \in \gamma_{ei}(G)$, and $d(v_{si+1}) = 3$, since v_{si+1} is at the even distance from $v_{s1}v_{si+1}$ is adjacent to $v_{si+1}v_{si}$, $v_{si+1}w_1$, $v_{si+1}v_{si+2}$, based on the distance s on the cycle C_{sm} .

Proceeding in the same way, choose $v_{sm-4} \in \gamma_{ei}(G)$, since v_{sm-4} is at the even distance from $v_{s1}v_{sm-4}$ is adjacent to $v_{sm-4}v_{sm-5}$, $v_{sm-4}w_1$, $v_{sm-4}v_{sm-3}$, based on the distance s on the cycle C_{sm} . Similarly, choose $v_{sm-2} \in \gamma_{ei}(G)$, since v_{sm-2} is at the even distance from $v_{s1}v_{sm-2}$ is adjacent to $v_{sm-2}v_{sm-3}$, $v_{sm-2}w_1$, $v_{sm-2}v_{sm-1}$, based on the distance s on the cycle C_{sm} . By the above selection procedure. If v_{s1} is selected in $\gamma_{ei}(G)$ set, then

 $v_{s3}, v_{s5}, \ldots, v_{sm-4}, v_{sm-2}$ has to be selected in $\gamma_{ei}(G)$ set. Hence $\{v_{s1}, v_{s3}, v_{s5}, \ldots, v_{sm-4}, v_{sm-2}\}$ is a set in which all v_{sj} 's are at even distance from v_{s1} and since w_1 is adjacent to m vertices at even distance, thus w_1 is adjacent to either of the vertices in this set.

 $\therefore \{v_{s1}, v_{s3}, v_{s5}, \dots, v_{sm-4}, v_{sm-2}\}$ is an *ei*-set which covers all the sm + m edges of G.

Let $I = \{v_{s1}, v_{s3}, v_{s5}, \dots, v_{sm-4}, v_{sm-2}\}$ is a *ei*-set, and $I' = \{v_{s1}, v_{s3}, v_{s5}, \dots, v_{sm-4}, v_{sm-2}, w_1\}$ is also a *ei* set. But |I| < |I'| and there exist no $v_{sk}, k = 1, 3, 5, \dots, sm - 4, sm - 2$, such that $\{v_{s1}, v_{s3}, v_{s5}, \dots, v_{sk-1}, v_{sk+1}, \dots, v_{sm-4}, v_{sm-2}\}$ is an *ei*-set.

 $\therefore I$ is a minimum γ_{ei} set and $|I| = \frac{sm}{2}$.

Hence,

$$\begin{split} \gamma_{ei}(J_{s,m}) &= \gamma_{ei}(C_{sm}) \\ \gamma_{ei}(J_{s,m}) &= \left\lfloor \frac{\mid v \mid}{2} \right\rfloor. \end{split}$$

Theorem 1.5. Let G be a Jahangir graph $J_{s,m}$. Then $\gamma_{ei}(J_{s,m}) = \lfloor \frac{|v|}{2} \rfloor$, if s is odd and m is even.

Proof. Let G be a Jahangir graph $J_{s,m}$ with sm + 1 vertices and sm + m edges. Let C_{sm} be the cycle with sm vertices and w_1 be the middle vertex of $J_{s,m}$. Let $\{v_{s1}, v_{s2}, v_{s3}, \ldots, v_{si}, \ldots, v_{sm-1}, v_{sm}, w_1\} \in V(G)$, where w_1 is adjacent to m vertices on the cycle C_{sm} with distance s. Since s is odd and m is even sm is even and hence C_{sm} is an even cycle with $v_{s1} = v_{sm}$, $d(v_{si}) = 2$ for $i = 1, 2, 3, \ldots, m$ and since w_1 is adjacent to m vertices on the cycle, C_{sm} there exist exactly m vertices of degree 3.

Choose $v_{s1} \in \gamma_{ei}(G)$, such that $d(v_{s1}) = 3 \cdot v_{s1}$ is adjacent to $v_{s1}v_{s2}$, $v_{s1}w_1$, $v_{s1}v_{sm-1}$.

To cover the remaining edges which are not incident with v_{s1} , omitting the next vertex v_{s2} such that $d(v_{s2}) = 2$ since $s \ge 2$.

Advances and Applications in Mathematical Sciences, Volume 20, Issue 9, July 2021

1846

Without loss of generality, choose $v_{s3} \in \gamma_{ei}(G)$, such that $d(v_{s3}) = 2$, since v_{s3} is at the even distance from v_{s1} , v_{s3} is adjacent to $v_{s3}v_{s2}$, $v_{s3}v_{s4}$. To cover the remaining edges which are not incident with v_{s3} . Omitting the next vertex v_{si} , where v_{si} is in the odd distance from v_{s1} and w_1 is adjacent to v_{si} , based on the distance s on C_{sm} . v_{si} is adjacent to $v_{si}v_{si-1}, v_{si}w_1$, $v_{si}v_{si+1}$.

Choose $v_{si+1} \in \gamma_{ei}(G)$, and $d(v_{si+1}) = 2$, since v_{si+1} is at the even distance from $v_{s1}v_{si+1}$ is adjacent to $v_{si+1}v_{si}$, $v_{si+1}v_{si+2}$. By choosing the vertices v_{s3} and v_{si+1} , the edges $v_{si}v_{si-1}$ and $v_{si}v_{si+1}$ of v_{si} are covered for $\gamma_{ei}(G)$, but the edge $v_{si}w_1$ of v_{si} is not covered. Proceeding in the same way, choose $v_{sm-4} \in \gamma_{ei}(G)$, such that $d(v_{sm-4}) = 2$, since v_{sm-4} is at the even distance from v_{s1} , v_{sm-4} is adjacent to $v_{sm-4}v_{sm-5}$, $v_{sm-4}v_{sm-3}$.

Similarly, choose $v_{sm-2} \in \gamma_{ei}(G)$, such that $d(v_{sm-2}) = 2$, since v_{sm-2} is at the even distance from v_{s1} . v_{sm-2} is adjacent to $v_{sm-2}v_{sm-3}$, $v_{sm-2}v_{sm-1}$.

By the above selection procedure. If v_{s1} is selected in $\gamma_{ei}(G)$ set, then $v_{s3}, v_{s5}, \ldots, v_{sm-4}, v_{sm-2}$ has to be selected in $\gamma_{ei}(G)$ set. In this selection process, exactly $\frac{m}{2}$ edges of w_1 is not covered by any of the vertices in the set $\{v_{s1}, v_{s3}, v_{s5}, \ldots, v_{sm-4}, v_{sm-2}\}$, hence to cover the $\frac{m}{2}$ edges of w_1 . Choose $w_1 \in \gamma_{ei}(G)$, such that $d(w_1) = m, w_1$ is adjacent to $w_1v_{s1}, \ldots, w_1v_{sj}, j = \text{odd}$ distance from v_{s1} .

 $\therefore \{v_{s1}, v_{s3}, v_{s5}, \dots, v_{sm-4}, v_{sm-2}, w_1\} \text{ is a } ei\text{-set with } \frac{sm}{2} + 1 \text{ vertices.}$

Let $I = \{v_{s1}, v_{s3}, v_{s5}, \dots, v_{sm-4}, v_{sm-2}, w_1\}$ is a *ei*-set, and $I' = \{v_{s1}, v_{s2}, v_{s3}, \dots, v_{sm-2}, v_{sm-1}, w_1\}$ is also a *ei*-set.

But |I| < |I'| and there exist no v_{sk} , k = 1, 3, 5, ..., sm - 4, sm - 2, such that $\{v_{s1}, v_{s3}, v_{s5}, ..., v_{sk-1}, v_{sk+1}, ..., v_{sm-4}, v_{sm-2}, w_1\}$ is an *ei*-set.

 $\therefore I$ is a minimum γ_{ei} set and $|I| = \frac{sm}{2} + 1$.

Therefore $\gamma_{ei}(J_{s,m}) = \gamma_{ei}(C_{sm}) + 1$

$$\gamma_{ei}(J_{s,m}) = \left\lceil \frac{|v|}{2} \right\rceil.$$

Theorem 1.6. Let G be a Jahangir graph $J_{s,m}$. Then $\gamma_{ei}(G) = \frac{|v|}{2} + 1$, if both s and m are odd.

Proof. Let G be a Jahangir graph $J_{s,m}$ with sm+1 vertices and sm+m edges. Let C_{sm} be the cycle with sm vertices and w_1 be the middle vertex of $J_{s,m}$.

Let $\{v_{s1}, v_{s2}, v_{s3}, \dots, v_{si}, \dots, v_{sm-1}, v_{sm}, w_1\} \in V(G)$, where w_1 is adjacent to *m* vertices on the cycle C_{sm} with distance *s*. Since *s* is odd and *m* is odd *sm* is odd and hence C_{sm} is an odd cycle with $v_{s1} = v_{sm}$, $d(v_{si}) = 2$ for $i = 1, 2, 3, \dots, m$ and since w_1 is adjacent to *m* vertices on the cycle C_{sm} there exist exactly *m* vertices of degree 3.

Choose $v_{s1} \in \gamma_{ei}(G)$, such that $d(v_{s1}) = 3$. v_{s1} is adjacent to $v_{s1}v_{s2}, v_{s1}w_1, v_{s1}v_{sm-1}$. To cover the remaining edges which are not incident with v_{s1} . Omitting the next vertex v_{s2} such that $d(v_{s2}) = 2$ since $s \ge 2$. Without loss of generality, choose $v_{s3} \in \gamma_{ei}(G)$, such that $d(v_{s3}) = 2$ since v_{s3} is at the even distance from v_{s1}, v_{s3} is adjacent to $v_{s3}v_{s2}, v_{s3}v_{s4}$.

To cover the remaining edges which are not incident with v_{s3} , Omitting the next vertex v_{si} , where v_{si} is in the odd distance from v_{s1} and w_1 is adjacent to v_{si} based on the distance s on C_{sm} . v_{si} is adjacent to $v_{si}v_{si-1}, v_{si}w_1, v_{si}v_{si+1}$. Choose $v_{si+1} \in \gamma_{ei}(G)$, and $d(v_{si+1}) = 2$, since v_{si+1} is at the even distance from v_{s1}, v_{si+1} is adjacent to $v_{si+1}v_{si}, v_{si+1}v_{si+2}$.

By choosing the vertices v_{s3} and v_{si+1} , the edges $v_{si}v_{si-1}$ and $v_{si}v_{si+1}$ of v_{si} are covered for $\gamma_{ei}(G)$, but the edge $v_{si}w_1$ of v_{si} is not covered.

Proceeding in the same way, choose $v_{sm-3} \in \gamma_{ei}(G)$, such that $d(v_{sm-3}) = 3$, since v_{sm-3} is at the even distance from $v_{s1}v_{sm-3}$ is adjacent to $v_{sm-3}v_{sm-2}$, $v_{sm-3}w_1$, $v_{sm-3}v_{sm-4}$ based on the distance s on C_{sm} .

Similarly, choose $v_{sm-1} \in \gamma_{ei}(G)$, such that $d(v_{sm-1}) = 2$, since v_{sm-1} is at the even distance from v_{s1} , v_{sm-1} is adjacent to $v_{sm-1}v_{sm-2}$, $v_{sm-1}v_{sm}$.

By the above selection procedure, if v_{s1} is selected in $\gamma_{ei}(G)$ set, then $v_{s3}, v_{s5}, \ldots, v_{sm-3}, v_{sm-1}$ has to be selected in $\gamma_{ei}(G)$ set. In this selection process, exactly $\frac{m-1}{2}$ edges of w_1 is not covered by any of the vertices in the set $\{v_{s1}, v_{s3}, v_{s5}, \ldots, v_{sm-3}, v_{sm-1}\}$, hence to cover the $\frac{m-1}{2}$ edges of w_1 , Choose $w_1 \in \gamma_{ei}(G)$, such that $d(w_1) = m, w_1$ is adjacent to $w_1v_{s1}, \ldots, w_1v_{sj}, j =$ odd distance from v_{s1} .

 $\therefore \{v_{s1}, v_{s3}, v_{s5}, \dots, v_{sm-3}, v_{sm-1}, w_1\}$ is an *ei*-set with $\frac{(sm+1)}{2} + 1$ vertices.

Let $I = \{v_{s1}, v_{s3}, v_{s5}, \dots, v_{sm-3}, v_{sm-1}, w_1\}$ is a *ei*-set, and $I' = \{v_{s1}, v_{s2}, v_{s3}, \dots, v_{sm-2}, v_{sm-1}, w_1\}$ is also a *ei*-set.

But |I| < |I'| and there exist no v_{sk} , k = 1, 3, 5, ..., sm - 3, sm - 1, such that $\{v_{s1}, v_{s3}, v_{s5}, ..., v_{sk-1}, v_{sk+1}, ..., v_{sm-3}, v_{sm-1}, w_1\}$ is an *ei*-set.

 $\therefore I$ is a minimum γ_{ei} set and $|I| = \frac{sm+1}{2} + 1$.

Hence $\gamma_{ei}(J_{s,m}) = \gamma_{ei}(C_{sm}) + 1$

$$\therefore \gamma_{ei}(J_{s,m}) = \frac{|v|}{2} + 1.$$

Theorem 1.7. Let G be a Jahangir graph $J_{s,m}$, $s \ge 2$, $m \ge 2$, then $\gamma_{ei}(S(G)) = sm + 1$.

Proof. Let G be a Jahangir graph $J_{s,m}$, with sm+1 vertices and sm+m edges.

Let S(G) be the subdivision graph of G.

$$\begin{split} \gamma_{ei}(S(J_{sm})) &= \gamma_{ei}(C_{2sm}) + 1 \\ &\therefore \gamma_{ei}(S(G)) = sm + 1. \end{split}$$

References

- [1] Kashif Ali, Edy Tri Baskoro and I. Tomescu, On the Ramsey numbers for paths and generalized Jahangir graphs $J_{s,m}$, Bull. Math. Soc. Sci. Math. Roumanie Tome 51 (2008), 177-182.
- [2] D. Angel and A. Amutha, A study on the covering number of generalized Jahangir graphs $J_{s,m}$, International Journal of Pure and Applied Mathematics 87(6) (2013), 835-844.
- [3] F. Harary, Graph Theory, Narosa Publishing House, New Delhi, 1998.
- T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced [4] Topics, Marcel Dekker, New York (1998).
- T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, [5]Marcel Dekker, New York (1998).
- K. R. Parthasarathy, Basic Graph Theory, McGraw-Hill Professional Publishing, 1994. [6]
- J. Robin and Wilson, Introduction to Graph Theory, Fourth edition, Published by Dorling [7] Kindersley (India) Pvt. Ltd., Licenses of Pearson Education in South Asia, New Delhi.

Advances and Applications in Mathematical Sciences, Volume 20, Issue 9, July 2021

1850