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Abstract

The major goal of this paper is to prove the common fixed point theorems for a complete
fuzzy 2-normed linear space using the weak commutating condition and the A-contraction type
condition, as well as to develop certain inclusion relations between these notions.

1. Introduction

S. Gahler [6] first proposed the concept of linear 2-normed space in 1964.
In the setting of linear 2-normed space, a number of mathematicians have
worked on different ideas of fixed point theory. In 1965 [13], Zadeh was
initiated the concept of fuzzy set. A satisfactory theory of fuzzy norm and a-
norm has been established by Bag and Samanta in [1, 2, 3], J. Zhang [14] has
defined fuzzy normed linear space in a varies context. Further convergence

and completeness in fuzzy 2-normed space in teams of all fuzzy points was
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discussed by Meenakshi [8]. Recently, So many researchers developed in 2-

normed spaces and fuzzy 2-normed spaces like [4, 5, 7, 9, 10, 12].

Here we prove a common fixed point theorem for two pairs of weakly
commuting mappings using the idea of A-contraction and then extend the
theorem for a family of self-mappings in a fuzzy 2-normed linear space.
Before proving our main theorem we need to state some preliminary ideas
and definitions of weakly commuting mappings in a fuzzy 2-normed linear

space.
1.1. Fuzzy 2-normed linear space.

Definition 1.1 [8]. Let X be a vector space over a field K (where K is R or
C) and * be a continuous ¢-norm. A fuzzy set N e X2 x [0, =] is called a fuzzy

2-norm on X if it satisfies the following conditions:

@) N(x, y,t)=0Vx,ye X

() N(x, y,t)=1,V¢>0 and at least two among the three points are
equal.

(ii)) N(x, y,t) = N(y, «, t)

(iv) N(x+y+2z, 8 +tg+t3) > N(x, y,t)* N(x, y,t3)Vx, y,z e X and
t1, tg, t3 > 0

(v) Vx, y € X, N(x, y, t) is left continuous and lim N(x, v, t) = 1.

t—

The triple (X, N, *) will be called fuzzy 2-normed linear space (F2-NLS).

Definition 1.2 [8]. A sequence {x,} in a F2-NLS (X, N, *) is converge to
x € X if and only if lim N(x, y,¢)=1, V¢ > 0.
t—0

Definition 1.3 [8]. A sequence {x,} in a F2-NLS (X, N, *) is said to be
fuzzy Cauchy sequence if and only if lim N(x,,, x,,, t) =1, Vi > 0.

t—0

Definition 1.4 [8]. A fuzzy 2-normed linear space in which every fuzzy

Cauchy sequence is convergent is called a fuzzy 2-Banach space.

Definition 1.5. Let S and 7 be two mappings from a fuzzy 2-normed
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linear space (X, N(, -, t)) into itself. Then a pair of mappings (S, 7') is said
to be weakly commuting on x, if N(STx — T'Sx, u, t) > N(Tx — Sx, u, t) for all
uelX.

Definition 1.6. Let a non-empty set A consisting of all fuzzy functions
A : R3 [0, 1] satisfying
(1) A 1s continuous on the set Rj{:’ of all triplets of non-negative real’s.

(i) o = A3 for some A € [0, 1), whenever a > A(a,B, B) or a > A(b, a, B)
or a > AB, B, o), for all a, B.

Definition 1.7. A self map 7 on a fuzzy 2-normed linear space (X, N, *)

is said to be A-contraction if it satisfies the condition:
N(Tx, Ty, t) > MN(x, y, t), N(x, Tx, t), N(y, Ty, t)). (1.1)

for all x, y € X and some AA.

2. Main Result

Theorem 2.1. Let I,J, S and T be four self mappings of a complete
fuzzy 2-normed linear space (X, N(, -, t)) satisfying
I(X) c T(X) and J(X) < S(X). 2.1
For L\ € A and forall x, y,u € X
N(Ix — Jy, u, t) = MN(Sx — Ty, u, t), N(Sx — Ix, u, t), N(Ty — Jy, u, t)). (2.2)

Ifoneof I,J, S and T is continuous and if I and J weakly commute with
S and T respectively, then I, J, S and T have a unique common fixed point z
in X.

Proof. Let x; be an arbitrary element of X. We define Ixq, 1 = ¥9,19,
Txgy = ¥y and Jxg, = Yopi1, SXopi1 = Yons1, B =1, 2, ... Taking x = xg, 1

and y = x9, in (2.2) we have

N(Ixgp 1 — Jxoy, t, 1) = MN(Sxgp 41 — Ty, U, t), N(Sxy 1 — Ixgp,q, U, t),
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N(Txy, — Jxo9,, u, t))
or
N(Yon+2 = Yons1> U 1) = MN(Y2ns1 = Yons U )y N(Vna1 = Yoni2s Us 1),
N(¥2n = Y2n+15 U, t)).
So by axiom (1) of function 2,
N(Y2n11 = Yon+2s Us t) = @ - N(¥9,, — Yops1, U, t) where £ €[0,1)  (2.9)
Similarly by putting x = xg,,_; and y = xg,, in (2.2) we get
N(Ixgp 1 = Jxgp 2, Us 1) 2 MN(Sxgn_1 — Doy, u, t), N(Sxgpy — Irgyq, u, 1),
N(Txop 1 — Jxzp, u, t))
or
N(on = Yon+1s U 8) = MN(V2n-1 = Yon> Uy t), N(Vp-1 — Yons2, U, t),
N(y2n = Y2n+15 U, t)).
So by axiom (2) of function A,
N(Yop+1 — Yonsa, U, t) = a - N(yg, — Yons1, U, t) where k € [0, 1) (2.4)
So by (2.3) and (2.4) we get
N(yons1 = Yons2: U 1) 2 @ N(ygy — Yops1, U ) 2 @ - N(yop_1 — Yan, s )
Proceeding in this way
N(Yane1 = Yonsos 4 8) 2 a®* - Ny = 31, u, t)
and
N(yan = ¥ons1s s 8) 2 @ - Nyo = 31, u, )
So in general
N(¥p = Y15 s 1) 2 @" - N(yo = 31, U, 1) (2.5)

Then using property (4) of fuzzy 2-normed linear space we get
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N(p = Yns1> 1) 2 N(¥y = Yni2s Ynats ) * Ny = Ypa1s 4, 1)

*N(yn+1 —Yn+2, U, t) (2-6)

1
= r/—\O(N(yn ~ In+2> Yn+1» t) * N(yn+r ~ Yntr+1s Us t)) 2.7

Here we consider two  possible cases to show  that
N(n = Yns2s Yns1, ) = 0.

Case

n = even = 2m (say), therefore
N = Yn+2s Yne1s 1) = NVom = Yomezs Yoms1s t)
= N(Yom+2 = Yoma+1s Yom» t)
> N(Ixgm 1 = JXoms Yoms t)
> MN(Sx2m41 = T2 Yoms t)
N(Sxomi1 = Legms Yoms th N(T%2p — Jxopm, Yom t))
> MN(Y2me1 = Yoms Yoms O N(Voma1 = Yoms Yoms 0
N(¥2m = Yom+1> Yoms 1))
> M0, N(¥2m+1 = Yoms> Yoms t); 0).
So by axiom (1) of function A,
N(n = Yn+2s Yne1> 1) = NVom — Yoms2s Yom1> £) = @ - 0 where & € [0, 1)
which implies N(y,, — ¥p492> Yna1s t) = 0.
Case II

n =odd = 2m +1 (say), therefore
N(p = Yns2> Yns1s ) = N(Vomi1 = Yomess Yom+2s t)
= N(Yom+3 = Yom+2s Yom+1s t)
> N(Jxomeo — Dom1s Yom1s t)
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2 MN(Sxomi1 — Toomyis Yoms1s t), N(Sxomi1 — Komi1, Yome1s b

N(Txopy0 — Xomi2s Yoms1s t))
> MN(Yoms1 = Yome2s Yomsts O N(V2me1 = Yome2s Yome1s O
N(Y2m+2 = Yom+3> Yom1, b))
= M0, 0, N(Yom+2 = Yom+3> Y2ma1s £))-
So by axiom (1) of function A,

N(n = Yns2s Yns1> 1) = N(Vomi1 = Y2m+3> Yomszs t) 2 a -0 where k [0, 1)

So in either cases N(¥, — Y4495 Yn+1> £) = 0. Therefore from (2.6) we

have

1
N(yn ~— Yn+2, U, t) 2 r/:\O N(yn+r — Yn+r+1> U, t)'

Proceeding in the same fashion we have for any p > 0,

p—-1
N(y, - Yn+ps Us t) 2 r/—\O Npir = Ynire1> U t).

Then by (2.5) we get
N(¥p = Ypsps U t) 2 K"N(yg =y, u,t) >0 as n—>ow,p>0 and

an

k" = 7 e [0, 1).

Hence {y,} is a fuzzy Cauchy sequence. Then by completeness of X, {y,}

convergestoapoint z € X ie. y, >ze X as n > .

Since {y,} is a fuzzy Cauchy sequence and taking limit as n — oo, we get
Ixg, = Tx9,,1 — 2, Jx9,,_1 = Sx9, — 2z and also Jxg,,,; — 2. Next suppose
that S is continuous. Then {SIxg,} converges to Sz. Then by property (4) of

fuzzy 2-normed linear space, we have

N(ISxy,, — Sz, u, t) > N(ISxy, — Sz, Slxy,, t) * N(ISxy,, — Slxy,, u, t)
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*N(SIxy, — Sz, u, t)
> N(SIxy,, — Sz, Slxy,,, t) * N(Sxg,, — Ixg,, u, t) * N(Slky,, — Sz, u, t)
since I and S weakly commute.

Letting n — oo, it follows that {Slxy,} converges to Sz. Again by using
2.2)

we have
N(ISxy,, — Jx9p41, U, t) = N(ISxy,, — Sz, Slxy,,, t) * N(ISxy, — Skks,,, u, t)
*N(Skg,, — Sz, u, t)
> MN(S%xg, — Toni1, U, t) * N(S?xy,, — ISxs,, u, t)
*N(Txgps1 — Jxoni1, Us 1)),
Since A is continuous, taking limit as n — o we get
N(Sz —z,u, t) > MN(Sz — z, u, t), N(Sz — Sz, u, t), N(z - z, u, t))
implies
N(Sz -z, u, t) > MN(Sz - z, u, t), 0, 0)
So by axiom (1) of function A,
N(Sz -z, u,t) > a-0 =0 which gives Sz = z. (2.8)
Again using the inequality (2.2) we have
N(Iz — Jxg,.1, u, t) = MN(Sz — Txg,,1, U, t), N(Sz — Iz, u, t),
N(Txgpi1 — Jxgni1s U, t)).
Passing limit as n — «© we get
NIz -z, u,t) > MN(Sz -z, u, t), N(z — Iz, u, t), N(z — 2, u, t))
implies
NIz - z,u, t) 2 M0, N(z — Iz, u, t), 0).
Then by axiom (1) of function A,
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N(Sz -z, u, t) > a-0 = 0 which gives Iz = z. (2.9)

Since I(X) < T(X), there exists a point € X such that z = Iz, so by
(2.2) we have

N(z —Jz, u, t) = N(z — Jz, u, t)
> MN(Sz - Tz, u, t), N(Sz — Iz, u, t), N(Tz — Jz, u, t))
=MN(z -2z ut), Nz-z ut), Niz-dJz, u, t))
= M0, 0, N(z — Jz, u, t))
Then by axiom (1) of function A,
N(z - Jz, u, t) > a-0 = 0 which implies Jz = z.
As J and T weakly commute
N(JTz - TJz, u, t) > N(Tz — Jz, u, t)
which gives JTz = TJz implies
Jz =JTz =Tdz =Tz (2.10)
N(z Tz u, t) = N(Iz — Jz, u, t)
> MN(Sz — Tz, u, t), N(Sz — Iz, u, t), N(Tz — Jz, u, t))
= MN(z — T%, u, t), 0, 0).
Then by axiom (1) of function A,
N(z - Tz u, t) > a-0 = 0 which implies 7z = z. (2.11)

So by (2.8), (2.9), (2.10) and (2.11) we conclude that z is a common fixed
point of I, J, S and T.

For uniqueness, Let w be another common fixed point in X such that
Iz=Jz=8z=Tz=zand Iw = Jw = Sw =Tw = w.
Then by (2.2) we have
Nw -z u,t)= NIw — Jz, u, t)
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> MN(Sw — Tz, u, t), N(Sw — Iw, u, t), N(Tz — Jz, u, t))
= MNw - z, u, t), 0, 0).
Then by axiom (1) of function A,
N(z — Tz u, t) > a-0 =0 which implies w = z.

So uniqueness of z is proved. The same result holds if any one of I, J and

T is continuous. |

Corollary 2.2. Let S, T, I and J be four self mappings of a complete
fuzzy 2-normed linear space (X, N(, -, t)) satisfying

I(X) c T(X) and J(X) < S(X) (2.12)
N(Ix — Jy, u, t) > ¢ - max{N(Ix — Jy, u, t), N(Sx — Ix, u, t), N(Ty — Jy, u, t)}.
(2.13)

for all x, y, u in X, where 0 >c < 1. Ifoneof S, T, I and J is continuous
and if I and J weakly commute with S and T respectively, then I, J, S and T

have a unique common fixed point z in X.

Lemma 2.3. Let I, J, S and T be four self mappings of a complete fuzzy
2-normed linear space (X, N(, -, t)). If the inequality (2.2) holds for L € A
and for all x, y, u € X.

Then (Fg A Fp) A Fy = (Fg A Fp) A Fy.
Proof. Let x € (Fg A Fp) A Fy. Then by (2.2)
N(x — Jx, u, t) = N(Ix — Jx, u, t)
> MN(Sx — Tx, u, t), N(Sx — Ix, u, t), N(Tx — Jx, u, t))
= MO, 0, N(x — Jx, u, t)).
Then by axiom (1) of function 2,
N(x — Jx, u,t) > a-0 =0 implies x = Jx
thus
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(Fs A Fr) n Fr < (Fs A Fr) A Fy.
Similarly we have
(Fs A Fr) A Fy < (Fs A Fr) A Fr.
and so (Fg A Fp) A F; < (Fg A Fp) A Fj. O

Theorem 2.4. Let S, T and {I,},_n be mappings from a complete fuzzy
2-normed space (X, N(, -, t)) into itself satisfying

L(X) c T(X) and A I(X) < S(X) (2.14)
For L € A and forall x, y,u € X,
N(I,x — 1,1y, u, t) > MN(Ix — Jy, u, t), N(Sx — Lx, u, t),
NIy - L1, u, t)). (2.15)

holds for all n € N. Ifoneof S, T, I and I, is continuous and if I; and I,
weakly commute with S and T respectively, then S, T and {I,}, € N have a

unique common fixed point z in X.

Proof. By Theorem (2.1), S, 7, I; and I, have a unique common fixed
point z in X. Now z is a unique common fixed point of S, 7', I; and also by
Lemma (2.3), (Fg A Fr) A Fy, = (Fg A Fr) A Fr,, z is a common fixed point
of S, T, I5. Also z is unique common fixed point of S, T, I5. If not, let w be
another common fixed point of S, 7', I5. Then by (2.15)

Nz -w, u, t) = N(I1z - Iow, u, t)
> MN(Sz — Tw, u, t), N(Sz — Liz, u, t), NTw — Iw, u, t))
=MNEz-w, u, t), Nz -z u, t), Nw—-w, u, t))
= MN(z - w, u, t), 0, 0)
Then by axiom (1) of function 2,

N(z-w,u,t)>a-0=0 implies z = w
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In the similar manner we can show that z is a unique common fixed point

of S, T and I,. Continuing in this way, we arrive at desired result. |
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