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Abstract 

Mathematical models are used to study the growth of tumour for more insight about the 

spread of the tumour in different parts of the body. In this paper three models, Hossfeld, Korf 

and Levakovic III are used and four different methods are introduced to estimate the models’ 

parameters using standard growth data sets of tumour growth. The performances of the models 

have been analysed on the basis of a standard selection criterion. In this study it is found that 

the Hossfeld model performed well in comparison to the other two candidate models. The 

estimated parameters are logically and biologically significant. 

1. Introduction 

As the genetic materials of cells in the body of a host changes, solid 

tumours arise and responds differently to the growth regulations, which leads 

to uncontrolled growth of these cells [12]. As the tumour grows, these outer 

cells suck on the nutrients meant for the central cells and eventually the 

central cells become extensively deficient which cause them to die, and form a 
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region of dead cells called the necrotic core. With time, the combined action of 

necrotic disintegration, accumulation of waste products [17], cell shedding [5] 

and mitotic inhibitory factors [7] reduces the rate of in vitro tumours. In vivo 

tumours keeps developing by releasing tumour angiogenesis factors 

stimulating the growth of new capillaries from adjacent vascular tissues into 

the tumour mass, restoring the nutrient supply deeper into the tumour 

making it grows further into a large mass [6]. Transcending from the size, 

malignant tumours become invasive and settles into other vascular cavities, 

forming secondary tumour growths. In spite of tremendous progress in all 

fields of science, technology and medicine, the cure to cancer has remained 

elusive. 

Scientist and researchers are working tirelessly to elucidate the growth of 

tumour and its adversity and to explain the theoretical concepts practically, 

mathematical models come in practice [1]. Mathematical models are the 

intermediate interactive process that provides an insight about the spread or 

growth of the tumour in different parts of the body [2]. Thomlinson and Gray 

[16] proposed mathematical model that relates diffusion of nutrients with 

tumour heterogeneity. Tumour cells and normal cells are modelled as 

competing populations for space and other resources in an arbitrarily small 

volume of tissue within an organ. The mathematical models are used to 

predict phenotypic changes which are essential to examine invasive 

malignant behaviour [8]. They can give insights about the root cause of solid 

tumour growth, its invasion, metastasis and all the related phenomenon post-

growth. Some mathematical models also help in understanding various 

treatment strategies and implementing them better in the forthcoming 

stages. 3-D architectural models help to study an underlining microcellular 

growth, which help to bring out maximum effect of treatment with minimum 

suffering of the patient [10]. Combined mathematical analysis of tumour 

growth helps to indicate correlation between clinical stage and tumour size 

and give proper instances of questions related to concepts like silent interval 

of tumour growth, probable avoidable and unavoidable diagnostic gap, 

apparent and actual survival time, 5 year cure rate, postsurgical period at 

risk, etc. [14]. 

In 1822 the Hossfeld model was proposed to study the tree growth [3]. 

Kiviste [9] found that Hossfeld model was one of the best models to study the 
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volume growth of tumour. The mathematical form of the Hossfeld model is  

a

t
b

t
y

c

c



  

The Hossfeld model became the best fit to individual data and also gave 

combination of optimum merit and has been conveniently suitable for 

extended modifications [3]. The Hossfeld model has been as accurate as the 

Chapman-Richard model, which pre-dominates the growth studies. In 1939 

[9] proposed the Korf’s Model and was published by Lundqvistin 1975. Stage 

[15] reviewed the Korf’s model and used to study hight growth of the forests. 

Stage [15] used the Korf equation to study the plant growth. The Levakovic 

III (1935) model is basically a modification of the Hossfeld model. This model 

was published in Serbian over half a century ago. Kiviste [9] found that 

Levakovic III model is one of the most accurate models for growth study. The 

mathematical form of the Korf model is 

cbtaey
  

The mathematical form of the Levakovic III model is  

c

tb

t
ay 

















2

2

 

where, y is the size of the tumour at the initial state, tis the time taken and 

cba ,,  are parameters of the models. 

2. Material and Method 

In this paper an attempt has been made to introduce few methods of 

estimation for the candidate models based on the idea given by Borah and 

Mahanta [11]. The performances of the models have been analyzed by using 

the selection criterion given in a section below. This study involves the 

tumour growth in patients with quantitatively measurable neoplastic 

tumour. In this study nine data sets are used. The data set given in the table 

1 are relating to tumour weights published by De Wys, 1972 [4]. The data of 

tumour measurement of eight male patients with bronchogenic carcinomas 
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published by Schwartz [14] is given in table 2 to table 9 and are used to study 

in this paper. The required data sets are presented below in nine tabular 

forms. 

Table 1. Comparison of tumour weights in double tumour group and Single 

tumour group. 

Experiment days Tumour weights 

15 1.46 

18 2.68 

20 3.43 

22 4.58 

25 6.27 

Table 2. Individual measurement for Pt. L.H.-RLL epidermoid care. 

Time Post.-ant.diam,cm 

1 week 3 

2 weeks 3.2 

7 weeks 3.5 

16 weeks 4.2 

32 weeks 5.3 

35 weeks 5.2 

37 weeks 5.2 

53 weeks 7.2 
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Table 3. Individual measurement for pt. M.B.-RUL anaplastic epidermoid 

care. 

Time Post.-ant.diam,cm 

12 days 15.3 

13 days 15.2 

22 days 15.6 

40 days 15.8 

48 days 16.1 

55 days 16.3 

61 days 17.2 

73 days 17.6 

83 days 17.7 

Table 4. Individual measurement for Pt. L.H.-RLL epidermoid care. 

Time Post.-ant.diam,cm 

2 weeks 7.7 

9 weeks 8.7 

16 weeks 9.4 

27 weeks 10.6 

61 weeks 15.5 

63 weeks 15.6 

Table 5. Individual measurement for Pt. M.N.-LLL anaplastic epidermoid 

care. 

Time Post.-ant.diam,cm 

1 day 2.3 

17 days 2.6 

36 days 2.7 
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70 days 2.9 

72 days 2.9 

79 days 3 

85 days 3.2 

102 days 3.4 

Table 6. Individual measurement for Pt. J.S.,II-RLL anaplastic epidermoid 

care. 

Time Post.-ant. diam, cm 

14 months 1.4 

15 months 1.5 

16.5 months 1.6 

17 months 1.6 

18 months 1.7 

33.5 months 2.7 

35.5 months 3.1 

39.5 months 3.5 

Table 7. Individual measurement for Pt. H.J.-LUL epidermoid care. 

Time Post.-ant.diam,cm 

2 day 5.1 

14 days 5.3 

22 days 5.4 

29 days 5.4 

36 days 5.5 

43 days 5.6 

48 days 5.6 

50 days 5.6 
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58 days 5.7 

63 days 5.9 

Table 8. Individual measurement for Pt. L.H.-RLL epidermoid care. 

Time Post.-ant.diam,cm 

3 weeks 1.8 

8.3 weeks 2.2 

9 weeks 2.2 

2.56 weeks 3.3 

29.3 weeks 3.5 

31.6 weeks 3.9 

38 weeks 4.4 

39.3 weeks 4.5 

41 weeks 4.7 

51.5 weeks 5.4 

52.8 weeks 5.9 

55 weeks 6.1 

55.7 weeks 6.1 

57 weeks 6.1 

57.5 weeks 6.2 

58 weeks 6.3 

59.5 weeks 6.3 

61 weeks 6.9 

62 weeks 7.4 

69 weeks 8.9 

76 weeks 9.7 
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Table 9. Individual measurement for Pt. M.M..-RUL epidermoid care. 

Time Post.-ant.diam,cm 

2 days 3.2 

35 days 4.6 

38 days 4.8 

43 days 4.9 

50 days 5 

85 days 6.8 

126 days 9.5 

127 days 9.4 

148 days 10.3 

182 days 8.2 

185 days 7.7 

189 days 7.5 

In the tables, RUL indicates right upper lobe, LUL indicates left lower 

lobe, LLL indicates left lower lode, RLL indicates right lower lobe, RML 

indicates right middle lobe. Pt. refers to Patient initiations. 

3. Methods of Estimation 

Most of the literature discussed in this study used to fit the candidate 

models by using some well-known algorithm. This study is trying to introduce 

some new methods of estimation by which one can easily fit the candidate 

models. 

For Hossfeld Model 

Method I 

Let 21, yy  and 3y  be three integral forms of the Hossfeld model, such 

that 
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Where, 11, tt  and 1t   are the time intervals of the observations. 

From equation (1) we can have 

1

111

ay

tyat
b

cc 
  (4) 

From equation (2) we can have 

2

222

ay

tyat
b

cc 
  (5) 

From equation (3) we can have 

3

333

ay

tyat
b

cc 
  (6) 

Solving equations (4) and (5) we have 

 

 cc
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ttyy
a
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
  (7) 

Solving equations (5) and (6) we have 
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a
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


  (8) 

Assuming the parameter c as the known parameter we can estimate the 

parameter a either from equation (7) or from the equation (8). The parameter 
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b can be estimated from any one of the equations (4), (5) or (6) using 

estimated value of a and known value of c. 

Method II 

The Hossfeld model can be written as 
c

c

tab

at
y


   

Considering abB   and assuming c as known parameter we can have 
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Where   
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m
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From equation (9) we have  

1

1

S

BSm
a
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From equation (10) we have 
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Solving equations (11) and (12) we have 
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Using the value of B, we can estimate the parameter a and b as  
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Method III  

Considering the value of the parameter c from Method I, the Hossfeld 

model can be written as ABXY   

Where, bB
a

A
y

Y  ,
1

,
1

 and ctX   

The least square method is used to estimate the parameters a and b  

Where 

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n

x
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1
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
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22 XXn

YXXYn
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Method IV 

In this method we consider the parameter c as known parameter from the 

method II and the method of least square is used to estimate the parameters 

a and b. 

For Korf Model  

Method I 

Let 21, yy  and 3y  be three integral forms of the Korf model, such that 

cbt
aey


 1

1  (13) 
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From equation (13) we have  
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From equation (14) we have  
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From equation (16) and (17) we have 
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From equation (16) and (18) we have  
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Assuming the parameter c as the known parameter we can estimate the 

parameter a from the equations (18) or (19). The parameter b can be 

estimated from the equations (16) or (17) by using the value of a. 

Method II 

Let us consider c to be known and 
2

n
m   

The Korf model can be written as 

cbtay  loglog  

Let, 
cbtayY  loglog  
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Now,  
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From equations (20) and (21) we can estimate the parameter b as  
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Using the estimated value of b we can estimate the parameter a from the 

equation (20) as  
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Again, by using the values of the estimated parameters a and b we can 

estimate the parameter c as 
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Method III  

Considering the value of the parameter c from Method I, the Korf model 

can be written as ABXY   

Where, ctXbByY  ,,log  and aA log  
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The least square method is used to estimate the parameters a and b  

Where 
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Method IV 

In this method we consider the parameter c as known parameter from the 

method II and the method of least square is used to estimate the parameters 

a and b.  

For Levakovic III model 

Method I 

Let 21, yy  and 3y  be three integral forms of the Levakovic III model, 

such that  
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From equations (22) and (23) we have  
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From equations (23) and (24) we have 
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Assuming b as the known parameter from equations (25) we can estimate 

the parameter c as  
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Using the estimated values of b and c we can estimate the parameter a as  
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Method II  

Assuming the parameter c as known parameter and taking 
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From equations (28) and (29) we can estimate the parameter b as 
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In this method we consider the parameter c as known parameter from the 

method II and the method of least square is used to estimate the parameters 

a and b.  

4. Selection Criteria for Best fit Model 

After fitting the growth models using different methods of estimation, the 

best fit model is selected based on the standard selection criteria adopted 

from the paper [17] involving four distinct steps. 

5. Results and Discussion 

The results of the methods applied in the three models taken for study 

the growth of tumour using the standard data sets are given below. In the 

first step we take into account only those methods for each data set which 

survive with the least RMSE (Root Mean Square Error) values and the 

maximum 2
aR  (Adjusted R square value). The rest are rejected. The selected 

one are further studied for 2R  and 2
predictionR  values which gives us the best 

fit results. The 2R  values shows that how well the data points fit in the 

growth model and the 2
predictionR  indicates the predictive capacity of the 

model. The most efficient method and model in this study is finally selected 

on the basis of the optimum value of each of these criteria. 

The results for each data set of the four methods of each model with 

parameters ,, ba  care shown in the Table 10 to Table 18. 

Table 10. Results of the different methods corresponding to data set of Table 

1. 

Growth 

model  

methods  a  b  c  RMSE  2
aR   

2R   

(in %)  

2
predictionR   

(in %)  

Hossfeld  

 

I  -60.059  0.7016  0.8479  0.2717  0.9453  97.2683  95.1539  

 II  -0.8888  1.7686  0.2000  0.1401  0.9855  99.2732  98.9386  

 III  660.578  0.6842  0.8479  0.2977  0.9344  96.7195  90.1420  
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 IV  -0.8259  1.8723  0.2000  0.3036  0.9318  96.5888  90.4980  

Korf  

 

I  5.8989  0.7162  0.8236  1.1423  0.0342  51.7087  12.1472  

 II  4.1674  1.2880  0.8284  1.0867  1.3059  115.293  99.9109  

 III  8.2993  1.8111  0.8236  0.5865  0.7453  87.2664  69.3903  

       IV  8.2506  1.8054  0.8284  0.5883  0.7438  87.1903  63.1763  

Levakovic 

III  

 

 7.4734  -118.59  0.1955  1.0828  0.9393  94.9427  99.9097  

   II  5.1811  -0.9717  -0.365  0.9298  0.7495  87.4754  99.8514  

 III  1.8603  -10.443  0.1955  2.1362  -1.752  -37.574  -329.028  

        II  5.1811  -0.9717  -0.365  0.9298  0.7495  87.4754  99.8514  

Table 11. Results of the different methods corresponding to data set of Table 

2. 

Growth 

model  

methods  a  b  c  RMSE  2
aR   

2R   

(in %)  

2
predictionR   

(in %)  

Hossfeld I  2.4787  -0.070  -0.6188  0.3929  0.8752  91.088  85.5274  

         II 2.2963  -0.086  -0.590  0.3910  0.8764  91.174  86.109  

       III  2.4008  -0.074  -0.619  0.3874  0.8787  91.337  86.111  

       IV  2.3588  -0.081  -0.590  0.3883  0.8778  91.273  85.900  

Korf  

 

I  9.6322  0.8573  0.2455  1.0671  0.0798  34.271  12.2363  

          II  506881  1.7836  0.9733  1.3603  104177  129.84  99.9485  

        III  19.134  2.0016  0.2455  0.6307  0.6786  77.041  58.7542  

        IV  5.8860  0.8249  0.9733  0.8384  0.4320  59.431  28.075  

Levakovic 

III  

 

I  17.919  -349415  0.1214  0.9009  0.3442  53.155  9.16875  

         II  5.6895  0.6067  1.3497  1.0887  0.0429  31.585  5.3914  
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        III  4.3155  20.4438  0.1214  1.2944  -0.3539  3.2861  -84.946  

        IV  4.8668  0.5098  1.3497  1.0324  0.1388  38.485  -11.010  

Table 12. Results of the different methods corresponding to data set of Table 

3. 

Growth 

model  

methods  a  b  c  RMSE  2
aR   

2R   

(in %)  

2
predictionR   

(in %)  

Hossfeld  I  15.2467  -0.0002  -1.6652  0.2302  0.9147  93.600  90.36823  

II      14.9749  -0.0006  -1.3000  0.1718  0.9525  96.434  94.96733  

III      15.1610  -0.0003  -1.6652  0.173  0.9521  96.405  94.40274  

IV      14.9745  -0.0006  -1.3000  0.708  0.9530  96.474  95.04084  

Korf  

 

I  15.8000  31.0973  10.210  5.1995  -42.55  -3166.4  -3276.971  

II      15.0010  -0.0081  -1.4493  0.2613  0.8900  91.750  86.8163  

III      16.4140  0.0703  10.209  0.8367  -0.1278  15.413  -24.139  

IV      15.260  -0.0072  -1.4493  0.1662  0.9554  96.659  95.2316  

Levakovic 

III  

 

I 16.1448  -57.3951  0.0113  0.8535  -0.1699  12.250  -49.9777  

II      16.7869  0.0623  1.5335  0.7878  -0.0001  24.996  1.7867  

III      15.6451  8.3644  0.0113  1.1333  -1.0693  -55.200  -163.0560  

IV      16.5588  0.0675  1.5335  0.7564  0.0784  30.879  -1.5202  

Table 13. Results of the different methods corresponding to data set of Table 

4. 

Growth 

model  

methods  a  b  c  RMSE  2
aR   

2R   

(in %)  

2
predictionR   

(in %)  

Hossfeld  

 

I   7.1202  -0.0106  -1.0647  1.4187  0.6642  79.853  59.9430  

II   5.7833  -0.0377       -0.600     0.9564  0.8474  90.843  83.5980  

III     7.0142  -0.0122       -1.0647     1.002  0.8326  89.954  79.8035  

IV     5.871  -0.036        -0.600     0.982  0.8391  90.345  82.7404  

Korf  

 

I   9.4014  5.0090  6.5045  4.7514  -2.7667  -126.0  -296.668  

II     5.6161  -0.2463       -0.7939     0.9845  0.8382  90.296  83.5286  
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III    11.614  0.4142        6.5405     2.7416  -0.2541  24.756  -47.9931  

IV    5.6871  -0.2436       -0.7939     0.9845  0.8382  90.296  83.6074  

Levakovic 

III  

 

I  34.566  -7941210.3  0.0908  2.9376  -0.4398  13.607  -97.9363  

II   14.349  0.650       1.242     2.5402  -0.0767  35.402  10.0115  

III   10.44  -46.740       0.0908     2.3104  -0.1093  46.559  -18.0580  

IV   12.185  0.5049       1.2428     2.4088  0.0319  4.0914  -18.8142  

Table 14. Results of the different methods corresponding to data set of Table 

5. 

Growth 

model  

methods  a  b  c  RMSE  2
aR   

2R   

(in %)  

2
predictionR   

(in %)  

Hossfeld  

 

I  -0.584  2.1460  0.0309  0.0743  0.9259  94.71  92.17179  

II       2.3320  -0.0200  -0.900  0.0734  0.9277  94.833  93.9763  

III       -0.613  2.0637  0.0309  0.0693  0.9356  95402  92.1017  

IV        2.2858  -0.0223  -0.9000  0.0719  0.9307  95.051  94.2505  

Korf  

 

I  2.9001  4.3131  6.1147  0.8301  -8.2424  -560.20  -608.78  

II       2.3033  -0.0563  -0.9298  0.0729  0.9289  94.921  93.8244  

III       2.9487  0.2503  6.1147  0.2371  0.2456  46.119  11.6533  

IV       2.2644  -0.0579  -0.9298  0.0669  0.9399  95.712  94.9377  

Levakovic 

III  

 

I  2.9029  -20.077  0.0663  0.1486  1.0250  101.79  97.16119  

II       3.1182  0.1172  2.7456  0.2055  0.4337  59.551  43.1502  

III       2.8663  -38.8373  0.0663  0.1094  1.8366  159.76  225.4827  

IV       3.0246  0.1149  2.7456  0.1915  0.5080  64.857  39.9323  

Table 15. Results of the different methods corresponding to data set of Table 

6. 

Growth 

model  

methods  a  b  c  RMSE  2
aR   

2R   

(in %)  

2
predictionR

 (in %)  

Hossfeld  

 

I  1.3913  -0.005  -2.1923  0.3189  0.7636  83.116  73.3265  

II  1.2730  -0.0415      -1.200  0.2096  0.898  92.705  89.3083  
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III  1.4308  -0.0048      -2.1923  0.324  0.755  82.541  67.6365  

IV  1.2738  -0.0414      -1.200  0.2101  0.8974  92.673  89.2580  

Korf  

 

I  1.600  7.4873  6.1147  1.0632  -1.627  -87.65  -218.37  

II  2.656  2.216      1.002  0.7922  1.1333  109.52  94.3409  

III  2.1217  0.4211      6.114  0.7316  -0.2442  11.122  -53.942  

IV  2.655  0.819      1.002  0.948  0.1775  41.253  -0.2284  

Levakovic 

III  

 

I  2.9019  -1958081.7  0.0482  0.8856  -0.823  -30.21  -145.730  

II  2.6466  0.687      1.216  0.6858  -0.931  21.915  -9.724  

III  1.6622  -45.722     0.0482  0.8109  -0.4918  -6.559  -103.95  

IV  2.153  0.510    1.216  0.6939  -0.1193  20.048  -43.569  

Table 16. Results of the different methods corresponding to data set of Table 

7. 

Growth 

model  

methods  a  b  c  RMSE  2
aR   

2R   

(in %)  

2
prediction

R

(in %)  

Hossfeld  

 

I  4.6733  -0.0179  -0.3640  0.0555  0.9117  93.133  89.89950  

II  4.9843  -0.0071  -0.6000  0.0546  0.9147  93.366  90.39359  

III  4.7179  -0.0169  -0.3640  0.0541  0.9161  93.473  90.0144  

IV  4.9665  -0.0073  -0.6000  0.0541  0.9162  93.484  90.69635  

Korf  

 

I  1.6000  7.4873  6.1147  1.0632  -1.6271  -87.65  -218.3742  

II  5.2049  -0.0058  -1.3346  0.0711  0.8553  88.746  85.77384  

III  5.5542  0.0860  6.1147  0.1608  0.2595  42.409  16.02971  

IV  5.2013  -0.0055  -1.3346  0.0664  0.8737  90.174  88.16203  

Levakovic 

III  

 

I  6.2221  -5211.3  0.0234  0.075  0.8392  87.7494  78.3528  

II  5.6787  0.0601  1.8425  0.1552  0.3101  46.339  33.1627  

III  5.7118  -141.5  0.0234  0.0499  0.9288  94.461  92.0965  

IV  5.5944  0.0575  1.8425  0.1351  0.4776  59.376  38.8281  
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Table 17. Results of the different methods corresponding to data set of Table 

8. 

Growth 

model  

methods  a  b  c  RMSE  2
aR   

2R   

(in %)  

2
predictionR   

(in %)  

Hossfeld  

 

I  -9.684  0.6588  0.3587  0.5324  0.9242  93.181  91.77516  

II  -0.921  1.6267  0.100  0.470  0.9408  94.677  93.76296  

III  -8.606  0.7140  0.3587  0.5083  0.9309  93.783  92.2077  

IV  9.4315  0.5338  0.8000  0.9677  0.750  77.471  71.16482  

Korf  

 

I  6.3986  0.7885  0.8736  1.5197  0.3827  44.440  35.3977  

II  2.4572  -0.0483  -1.1174  0.7813  0.8368  85.311  82.8158  

III  7.0697  1.7962  0.8736  1.1713  0.6333  66.995  59.14183  

IV  2.4324  -0.0468  -1.1174  0.6772  0.8774  88.966  87.62075  

Levakovic 

III  

 

I  8.5082  -1869.3  0.236  0.5641  0.9150  92.353  90.57969  

II  6.7394  2.8022  0.9885  1.6704  0.2541  32.874  26.4468  

III  4.391  45.6071  0.2360  2.1756  -0.2752  -13.87  -41.5591  

IV  5.1173  2.2390  0.9885  1.7263  0.2033  28.304  11.31055  

Table 18. Results of the different methods corresponding to data set of Table 

9. 

Growth 

model  

methods  a  b  c  RMSE  2
aR   

2R   

(in %)  

2
prediction

R   

(in %)  

Hossfeld  

 

I  14.5011  0.2435  0.6347  1.2766  0.5664  63.8647  56.6843  

II  10.434  0.3516  1.3000  1.3383  0.5233  60.2828  51.21669  

III  14.6364  0.2509  0.6347  1.2876  0.559  63.2342  55.9831  

IV  8.0124  0.2054  1.3000  1.4109  0.4703  55.8564  48.76815  

Korf  

 

I  8.3030  1.0488  0.8725  1.4711  0.4241  52.0076  43.73704  

II  11.4042  1.9892  0.6268  1.6773  0.2513  37.6116  27.62832  

III  9.0759  1.1767  0.8725  1.3263  0.5319  60.9907  54.98856  

IV  10.8052  1.3273  0.6268  1.281  0.5634  63.6192  57.3389  
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Levakovic 

III  

 

I  7.0612  -40.19  0.1890  0.894  0.8836  90.2965  93.8489  

II  8.7291  1.1418  1.3176  1.7686  0.168  30.6379  23.48437  

III  9.6519  -912.7  0.1890  1.3847  0.4898  57.482  48.3476  

IV  7.1749  0.9321  1.3176  1.6089  0.3112  42.5982  33.5889  

In each of the data set above we can see that some of the methods 

produce results that are out rightly logically insignificant and shows 

inconsistency. We reject such methods straightaway. 

From the methods that survive the first analysis, we check the method 

with the lowest RMSE values. After checking the values of RMSE we check 

the values of 2
aR  for the methods. The higher the value of 2

aR  and approaches 

to 0.99 the performance of the method is better. 

In the final level of checking, we analysis the 2R  and 2
predictionR  values of 

the surviving methods. A high value of 2R  shows us that the data set points 

fit well and the high value of 2
predictionR  gives us the model that has higher 

predictive capacity. 

The best fit results obtained satisfying all these criteria in our study are 

detailed in the table below. 

The survive methods having the lowest RMSE for each table are given in 

Table 19. 

Table 19. List of surviving methods having the lowest RMSE corresponding 

to nine data sets used. 

Sets of 

data in the 

Table  

Model Method  RMSE  2
aR   

2R   

(in %)  

2
prediction

R   

(in %)  

Table 1  Hossfeld  II  0.14013  0.98546  99.27324  98.93858  

Table 2  Hossfeld  III  0.38741  0.87872  91.33702  86.11175  

Table 3  Korf  IV  0.16629  0.95545  96.65911  95.23169  

Table 4  Hossfeld  II  0.95640  0.84738  90.84299  83.59809  

Table 5  Korf  IV  0.06690  0.93997  95.71229  94.93775  

Table 6  Hossfeld  II  0.20962  0.89788  92.70537  89.30834  
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Table 7  Levakovic 

III  

III  0.04987  0.92879  94.46122  92.09652  

Table 8  Hossfeld  II  0.47038  0.94085  94.67678  93.76296  

Table 9  Levakovic 

III  

I  0.89366  0.88356  90.29651  93.84898  

In our study from the above analysis, we have observed that the method 

II of the Hossfeld model gives efficient results for four different data sets. 

Similarly, method IV of the Korf model gives efficient results for two different 

data sets. All other methods give efficient results only once and hence 

rejected the efficiency of these methods. In this study methods producing 2
aR  

value less than 0.99 or 2
predictionR  value less than 0.90 are rejected due to 

undermining efficiency level. 

The final finding of the best fit methods of this study with the analysis 

based on the prescribed criteria are shown below: 

Table 20. The final list of best fit methods and models. 

Sets of 

data in the 

Table  

Model  Method  RMSE  2
aR   2R   

(in %)  

2
prediction

R   

(in %)  

Table 1  Hossfeld  II  0.14013  0.98546  99.27324  98.93858  

Table 3  Korf  IV  0.16629  0.95545  96.65911  95.23169  

Table 5  Korf  IV  0.06690  0.93997  95.71229  94.93775  

In this study we have observed that the Hossfeld Model with method II 

produced the highest predictive probability with the highest 2
predictionR  and 

2R  values. It has also the highest 2
aR  value making it suitable method of the 

model in this study. On the other hand, the method IV of the Korf model has 

produced the least RMSE values among all the three models. Considering all 

these observations we can conclude that the method II of the Hossfeld model 

is the best fit method. This method is the most efficient method having high 

predictive capacity which is useful for further studies. 
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6. Conclusion 

Analyzing the best fit model helps us in the prediction of the probable 

growth of tumour since its initiation helps to study required steps to be taken 

accordingly against the growth. It also helps us to study any further growth 

that may occur even after the regression of the primary growth. Tumour 

growth is a highly unpredictable and fatal phenomenon that is seen to be on 

rise. This study helps to decide on the model that best fit any data and gives a 

view of the future scope of analysis. Study about the tumour growth helps us 

to know more about the probabilities and reasons of occurrence of tumour 

which is necessary to understand the various actions related to the process of 

advancement of tumour in different individuals. 
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