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Abstract 

In this manuscript, we look for non-trivial integer solution to the equation 

Ntyx t  ,729 22  for the singular choices of particular by (i) ,1t  (ii) ,3t  (iii) ,5t  

(iv) ,2kt   (v) .,52 Nkkt   Additionally, reappearance relations on the solutions are 

obtained. 

I. Introduction 

It is well known the Pell equation  0122  DDyx  and square free) 

has at all times positive integer solutions. When ,1N  the Pell equation 

NDyx  22  possibly will not boast at all positive integer solutions. In 

favor of instance, the equations 13 22  yx  and 47 22  yx  comprise 

refusal integer solutions. 

This manuscript concerns the negative Pell equation ,729 22 tyx   

where 0t  and infinitely numerous positive integer solutions are obtained 
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for the choices oft known by (i) ,1t  (ii) 3t  (iii) 5t  (iv) k2  and (v) 

.52  kt  A few fascinating relationships surrounded by the solutions are 

obtainable. Supplementary reappearance relationships on the solutions are 

consequent. 

II. Preliminary 

The Pell equation is a Diophantine equation of the form .122  dyx

Given d, we would like to find all integer pairs  yx,  that satisfy the 

equation. Since any solution  yx,  yields multiple solutions  ,, yx   we 

may restrict our attention to solutions where x and y are nonnegative 

integers. 

We usually take d in the equation 122  dyx  to be a positive 

nonsquare integer. Otherwise, there are only uninteresting solutions: if

,0d  then    0,1, yx  in the case ,1d  and    1,0, yx  or 

 0,1  in the case ;1d  if ,0d  then 1x  (y arbitrary); and if d is a 

nonzero square, then 
2dy  and 2x  are consecutive squares, implying that 

   .0,1, yx  

Notice that the Pell equation always has the trivial solution 

   .0,1, yx
 
We now investigate an illustrate case of Pell’s equation and its 

solution involving recurrence relations. 

Theorem 1. Let p be a prime. The negative Pell’s equation 

122  pyx  

is solvable if and only if 2p  or  .4mod1p  

III. Method of Analysis 

In favor of this meticulous equation, we think about the prime .29p  

Given that p satisfies all the setting of Theorem 1, we can terminate to the 

negative Pell equation Ntyx t  ,729 22  is solvable in integers. 

3.1 Choice 1. 1t  

The Pell equation is 
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.729 22  yx  (1) 

Assent to  00, yx  be the primary key of (1) known by 

.8;43 00  yx  

In the direction of finding the additional solutions of (1), think about the Pell 

equation 

129 22  yx  

whose initial solution  nn yx ~,~  is given by 

nn fx
2

1~   

nn gy
292

1~   

where 

    11
29182098012918209801




nn
nf  

    ,2,1,0,29182098012918209801
11




ng
nn

n  

Applying Brahma Gupta lemma connecting  00, yx  and  ,~,~
nn yx  the 

progression of non-zero dissimilar integer solutions to (1) is obtained as 

 nnn gfx 29843
2

1
1   (2) 

 .43298
292

1
1 nnn gfy   (3) 

The reappearance relation fulfilled by the solutions of (1) is specified by  

019602 12   nnn xxx  

.019602 12   nnn yyy  

Choice 2. 3t  

The Pell equation is 
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.729 322  yx  (4) 

Allow  00, yx
 
be the primary solution of (4) specified by 

.4;11 00  yx  

Applying Brahma Gupta connecting  00, yx  and  ,~,~
nn yx  the progression 

of non-zero dissimilar integer solutions to (4) is obtained as 

 nnn gfx 29411
2

1
1   (5) 

 .11294
292

1
1 nnn gfy   (6) 

The reappearance relationships satisfied by the solutions of (4) are specified 

by 

019602 12   nnn xxx  

.019602 12   nnn yyy  

Choice 3. .5t  

The Pell equation is  

.713 522  yx  (7) 

Agree to  00, yx  be the primary key of (7) specified by  

.128;677 00  yx  

Applying Brahma Gupta lemma between  00, yx  and  ,~,~
nn yx  the 

sequence of non-zero distinct integer solution to (7) are obtained as 

 nnn gfx 29128677
2

1
1   (8) 

 .67729128
292

1
1 nnn gfy   (9) 

The reappearance relationships satisfied by the solutions of (7) are given by 

019602 12   nnn xxx  

.019602 12   nnn yyy  
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Choice 4. .0,2  kkt  

The Pell equation is  

.0,729 222  kyx k  (10) 

Let  00, yx  be the primary key of (10) specified by 

   .137;707 00
kk yx   

Applying Brahma Gupta lemma connecting  00, yx  and  ,~,~
nn yx  the 

progression of non-zero separate integer solution to (10) are obtained as 

 nn

k

n gfx 291370
2

7
1   (11) 

 .702913
292

7
1 nn

k

n gfy   (12) 

The reappearance relationships fulfilled by the solutions of (10) are specified 

by 

019602 12   nnn xxx  

.019602 12   nnn yyy  

Choice 5. .0,52  kkt  

The Pell equation is 

.0,729 5222   kyx k  (13) 

Let  00, yx  be the primary key of (13) given by 

   .84647;455717 1
0

1
0

  kk yx  

Applying Brahma Gupta lemma connecting  00, yx  and  ,~,~
nn yx  the 

progression of non-zero dissimilar integer way out to (13) is obtained as 

 nn

k

n gfx 29846445571
2

7 1

1 


  (14) 



M. SOMANATH, K. RAJA, J. KANNAN and K. KALEESWARI 

Advances and Applications in Mathematical Sciences, Volume 19, Issue 11, September 2020 

1094 

 .45571298464
292

7 1

1 nn

k

n gfy 


  (15) 

The reappearance relationships fulfilled employing the solutions of (13) 

are convinced utilizing 

019602 12   nnn xxx  

.019602 12   nnn yyy  

IV. Conclusion 

Solving a Pell’s equation employing the on top of technique technology 

authoritative instrument for discover solutions to equations of parallel form. 

Neglecting in the least time bearing in mind it is probable by present 

methods to find out the solvability of Pell-like an equation. 
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