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Abstract

A Cayley graph is a graph constructed from a finite group I' and a Cayley set S of I. It is
denoted by Cay(T,S). Let G=(V,E) be a graph with n vertices. A bijection

f:V(G) —1{1,28,...,n} is said to be a neighbourhood-prime labeling if for every vertex
v e V(G) with deg(v) > 1, ged{f(x) | v € N(v)} =1. A graph which admits neighbourhood-prime

labeling is called a neighbourhood-prime graph. This paper studies the result connecting Cayley
graphs and neighbourhood-prime labeling.

1. Introduction

Cayley graph was introduced by Arthur Cayley [1] in 1878 is an
important concept relating group theory and graph theory. S. K. Patel and N.
P. Shrimali [7] introduced neighbourhood-prime labeling of a graph.

Definition 1.1[4]. A subset S of a group I is called a generating set for T,

denoted by (S) =T, if every element of I' can be expressed as a finite product
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of elements in S and their inverses.

Definition 1.2 [4]. A dihedral group D,,,n >3 is a group with 2n
elements such that it contains an element ‘@’ of order 2 and an element ‘b’ of
order n with ba = ab™l. Thus Dy, = (a, bla® =b" =1, ba = ab™!). The
elements of dihedral group can be  explicitly listed as

Do, =1{1, b, 6%, 6%, ..., 6", a, ab, ab?, ab®, ..., ab™ 1.

The orders of the elements in the dihedral group D, are

n
2

o(1) =1, o(ab’) = 2 where 0 <i < n—1 and if nis even then o(b2) = 2.

Definition 1.3 [6, 8]. Let I' be a finite group with identity e and S a
subset of I. If e ¢ S and s € S implies s1 €8, then Sis called a Cayley set

of I'. The Cayley graph of I with respect to S is the graph whose vertices are
the elements of I" and two elements x, y of I' are adjacent if and only if there

is s € S such that y = xs. This graph is denoted by Cay(T, S).
Remark 1.4[8]. (1) Cay(T, S) is | S |-regular graph.
(2) Cay(T, S) is connected graph if and only if (S) = T.

The following facts are from [7].

Definition 1.5. Let G = (V, E) be a graph with n vertices. A bijective
function f:V(G) > {1,2,8,...,n} is said to be neighbourhood-prime
labeling, if for each  vertex v e V(G), with deg(v) > 1,
ged{f(v) lu € N(v)} =1. A graph which admits neighbourhood-prime
labeling is called a neighbourhood-prime graph.

Remark 1.6. A graph G in which every vertex is of degree atmost 1 is

neighbourhood-prime vacuously.

Theorem 1.7. The cycle C,, is neighbourhood-prime if n # 2(mod 4).

Theorem 1.8. The cycle C,, is not neighbourhood-prime if n = 2(mod 4).

The following theorems are from [5].

Theorem 1.9. Let G be a graph of order n such that n # 2(mod 4). If G is
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hamiltonian, then G has a neighbourhood-prime labeling.

Theorem 1.10. If the graph G contains a hamiltonian cycle C and a
chord that forms a cycle of length 4k for some positive integer k € Z using
only the chord and edges from C, then G is neighbourhood-prime.

Theorem 1.11. If G is hamiltonian and contains an odd cycle then G is
neighbourhood-prime.

Theorem 1.12. All graphs with minimum degree at least are

n
2

neighbourhood-prime.

Theorem 1.13. A hamiltonian graph of order n with | E | > nLn ; 6J +n

is neighbourhood-prime.

Theorem 1.14 [3]. Every connected Cayley graph of a finite abelian
group of order at least three is hamiltonian.

Definition 1.15 [2]. A group G is described as hamiltonian if and only if
G is a non-abelian group such that every subgroup is normal.

Theorem 1.16 [2]. Any connected Cayley graph of a finite hamiltonian
group is hamiltonian.

2. Main Results

Theorem 2.1. Cay(T, S) where o(T') < 3 is neighbourhood-prime.

Proof. Let o(I') < 3 and S, a Cayley set of T".

Case (i). o(I') = 1.

Here Cay(T, S) = K; and so is neighbourhood-prime vacuously.

Case (ii). o(T') = 2.

Let T ={e, x} where e is the identity element. Then S =® or {x}.

Ky, ifS=0
K, ifS={x}

I

Therefore, cay(T, S) Obviously Ky and ITQ are

neighbourhood-prime.
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Case (iii). o(I') = 3.

Let T = {e, x, y} where e is the identity element. Since the order of every

element of the group divides the order of the group, every element of I' is of

2

order 1 or 3. Therefore, x and y are generators of I and so x° = e, y2 £ e.

Then x = x_l, y # y_1 and x? = v, y2 =x. Hence x!-= v; y_1 = x.
Therefore, either S=® or S={x, y}. Therefore, cay(T, S)

N{E if S=a

= . Clearly K. and K5 are nei hbourhood-prime.
Ky ifS = {x, y} v ’ ¢

Hence the theorem.
Observation 2.2. (1) Cay(T, S) of a finite group I of order n with S = ®

1s isomorphic to ITn and so 1s neighbourhood-prime vacuously.

(2) By theorem 1.12, Cay(I, S) of a finite group I' of order n with
| S| 2% is neighbourhood-prime, since Cay(T', S) is a regular graph of
degree | S |.

Theorem 2.3. Let I be a finite abelian group of order n. Let S be a Cayley
set of T such that (S) = T. Then, Cay(T, S) is neighbourhood-prime if n < 3

orif n # 2(mod 4) for n > 3.

Proof. Let I' be a finite abelian group of order n and S, a Cayley set of I'
such that (S) =T.

Case (i). n <3
By theorem 2.1, Cay(T, S) is neighbourhood-prime.
Case (ii). n > 3 and n # 2(mod 4)

Since (S) =T, Cay(T, S) is connected. Therefore, by theorem 1.14,
Cay(T, S) is hamiltonian. Therefore, by theorem 1.9, Cay(T, S) is

neighbourhood-prime.

Hence the theorem.
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Corollary 2.4. Let T be a finite cyclic group of order n. Let S be a Cayley
set of T such that (S) = T. Then, Cay(T, S) is neighbourhood-prime if n < 3

orif n # 2(mod 4) for n > 3.

Proof. Since any cyclic group is abelian, the result follows.

Theorem 2.5. Every Cayley graph of a finite group of prime order is

neighbourhood-prime.
Proof. Let I" be a finite group of prime order p and S, a Cayley set of I.
Case (i). S=0
Here, Cay(T, S) = K_p and so is neighbourhood-prime.

Case (ii). S = @
When p = 2, Cay(T, S) = K, and so is neighbourhood-prime.

Let p > 3. Since p is prime, every element of I' except identity is a

generator of I'. Therefore, S is always a generating set of I'. Further, since p is

prime, I'is cyclic and p # 2(mod 4). Hence the result follows from 2.4.

Theorem 2.6. Let I" be a finite hamiltonian group of order n. Let S be a
Cayley set of ' such that (S) =T. Then Cay(T, S) is neighbourhood-prime if

n # 2(mod 4).

Proof. Let I' be a finite hamiltonian group of order n and S, a Cayley set
of I' such that (S) =T. Then Cay(T, S) is connected. Therefore, by theorem

1.16, Cay(I', S) is hamiltonian. Hence, by theorem 1.9, Cay(T, S) is
neighbourhood-prime if n # 2(mod 4).
Theorem 2.7. Let ' be a finite abelian group of order n. Let S be a Cayley

n-=6
8

set of I' such that (S)=T and |S|> 2@ J+1). Then Cay(T, S) is

neighbourhood-prime.

Proof. Let I' be a finite abelian group of order n and S, a Cayley set of I"

such that (S) = T and | S| > 2&” - 6J " 1).
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Case (i). n < 3
By theorem 2.1, Cay(T, S) is neighbourhood-prime.
Case (ii). n > 3
Since (S) =T, Cay(T, S) is connected regular graph of degree |S| By
6

theorem 1.14, Cay(T, S) is hamiltonian. Also, |E| = %| S|> nq_ng J + 1)

= nLn é BJ + n. Hence by theorem 1.13, Cay(T, S) is neighbourhood-prime.

Corollary 2.8. Let I be a finite cyclic group of order n. Let S be a Cayley
n- GJ + 1). Then Cay(T, S) is

set of I such that (S)=T and |S|> 2@ 3

neighbourhood-prime.

Proof. Since any cyclic group is abelian, the result follows.

Theorem 2.9. Let T be a finite hamiltonian group of order n. Let S be a
n- GJ N 1). Then Cay(T, S)

Cayley set of I" such that (S) =T and | S| > 2@

is neighbourhood-prime.
Proof. Let I' be a finite hamiltonian group of order n and S, a Cayley set

" g GJ + 1). Then, Cay(T, S) is

connected regular graph of degree |S| By theorem 1.16, Cay(T, S) is

of T' such that (S)=T and |S|> 2@

8 8
theorem 1.13, Cay(T, S) is neighbourhood-prime.

hamiltonian. Also, |E|= %| S|> nqn _ BJ + 1) = nLn — GJ +n. Hence by

Observation 2.10. (1) Cay(Z,, {1, 2, 3, ..., n —1}) is isomorphic to the
complete graph K, and so by theorem 1.12, is neighbourhood-prime.

2) Cay(Zy,, {1, 3, 5, ..., 2n —1}) is isomorphic to the complete n-regular

bipartite graph K, ,, and so by theorem 1.12, is neighbourhood-prime.

(3) Cay(Zs,, {n}) is isomorphic to nKs and so is neighbourhood-prime

vacuously.
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4) Cay(Z,, {x, x 1)) where n>3 and x is a generator of Z,, is
isomorphic to the cycle C,, and so by 1.7 and 1.8, is neighbourhood-prime if
and only if n # 2(mod 4).

(5) Let S be a Cayley set of Z, containing atleast one generator of Z,.
Then Cay(Z,, S) is hamiltonian. Hence, by theorem 1.9, Cay(Z,, S) is
neighbourhood-prime if n # 2(mod 4).

Theorem 2.11. Let n >3 and S be a Cayley set of Z, such that
{1, k} = S for some k # 1(mod 4). Then Cay(Z,,, S) is neighbourhood-prime.

Proof. Let n >3 and S be a Cayley set of Z, such that {I, k} = S for
some k # 1(mod4). Since 1 e S, Cay(Z,, S) contains a hamiltonian cycle
C=(0,12..,n-10)

Therefore, by theorem 1.9, Cay(Z,, S) is neighbourhood-prime if
k # 2(mod 4).

Suppose k = 2(mod4). Since ke S, Cay(Z,, S) contains a chord
connecting 0 and k.

Case (i). £ = 0, 2(mod 4).

Then % is even and so Cp,1(0, 1, 2, ..., k, 0) is an odd cycle in Cay(Z,,, S).
Therefore, by theorem 1.11, Cay(Z,,, S) is neighbourhood-prime.

Case (ii). £ = 3(mod 4).

Here C,.1(0,1,2, ..., k 0) is a cycle of length 4m for some m e Z

formed by the chord and edges from C. Therefore, by theorem 1.10,
Cay(Z,, S) is neighbourhood-prime.

Hence the theorem.

Theorem 2.12. Let n>3 and S be a Cayley set of Z, such that
{x, ¥y =S where ged(x,n)=1 and y is even. Then Cay(Z,,S) is

neighbourhood-prime.
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Proof. Let n > 3 and S be a Cayley set of Z,, satisfying the hypothesis
of the theorem. Since x € S and ged(x, n) =1, (x) = Z,. Then Cay(Z,, S)
contains a hamiltonian cycle C=(x,x®x,..., x ®x ®...(n — 1 times),
0, x). Therefore, by theorem 1.9, Cay(Z,, S) is neighbourhood-prime if
n # 2(mod 4).

Suppose n =2(mod4). Since y e S, Cay(Z,, S) contains a chord

connecting 0 and y. Further, n is even and so x is odd. Hence y is even
implies, C contains a path P joining O and y of even length. Therefore, P
together with the chord (0, y) forms an odd cycle in Cay(Z,, S). Hence by

theorem 1. 11, Cay(Z,,, S) is neighbourhood-prime.

Theorem 2.13. Let n > 2k and n = 2k(mod 4k) where k € Z*. Let S be
a Cayley set of Z, such that (S)=Z, and 2k € S. Then Cay(Z,, S) is

neighbourhood-prime.

Proof. Let n > 2k and n = 2k(mod 4k) where k € Z*. Let S be a Cayley
set of Z, satisfying the hypothesis of the theorem. Since
(S) = Z,, Cay(Z,, S) is connected. (Z,, ®) is finite and cyclic implies
(Z,, ®) is abelian. Therefore, by theorem 1.14, Cay(Z,, S) is hamiltonian.

Let n = 4kt + 2k for some t € Z*. Let [ be the order of the element 2k.
Since 2k € S, Cay(Z,,, S) contains the cycle,

C = (2k, 2k ® 2k, 2k ® 2k ® 2k, ..., 2k ©® 2k @ ...(I — 1 times),
2k ® 2k @ ...(I times), 2k)
= (2k, 2(2k), 3(2F), ..., n — 2k, O, 2k)
= (2k, 2(2k), 3(2F), ..., 4kt, O, 2k)
= (2k, 2(2k), 3(2F), ..., 2t(2k), O, 2k)
Obviously C is of odd length 2¢ + 1.

Hence by theorem 1.11, Cay(Z,, S) is neighbourhood-prime.
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Theorem 2.14. Let n > 1 and x # n € Zg,,. Let S be a Cayley set of Zsy,

such that {x,x ®x ®...(2m times)} = S for some me Z* and 2m <1

where | = o(x). If (S) = Z,,,, then Cay(Zs,, S) is neighbourhood-prime.

Proof. Let n>1 and x #n e Zy,. Let S be a Cayley set of Z,,
satisfying the hypothesis of the theorem. Since (S) = Z,,, Cay(Z,,, S) is
connected. (Zy,,, @) is finite and cyclic implies (Zy,,, ®) is abelian. Therefore,
by theorem 1.14, Cay(Zs,,, S) is hamiltonian.

Let y=x@®x®...(2m times) for some m e Z" and 2m <! where
I =o(x). Since x €S, Cay(Zy,, S) contains the cycle, C = (x, x @ x, ...,
x®x®...(n—1 times), 0, x). Hence C contains a path P joining 0 and y of
even length. Since y e S, Cay(Z,,,, S) contains an edge connecting 0 and y.
Therefore, P together with the edge (0, y) forms an odd cycle in Cay(Zs,, S).
Hence by theorem 1.11, Cay(Zs,, S) is neighbourhood-prime.

Lemma 2.15. Let x € Z, where n is even and ged(x, n) =1. Then

n,. n
x@x@x@...(itzmes) =3

Proof. Let x € Z, where n is even. Further, ged(x, n) =1 and so x is

n

odd. Let x = 2k + 1 for some k € Z*. Therefore, X = %(21@ +1)=nk + %

Hence x ®x ® x @ ...(%times) = %
Theorem 2.16. Let n = 6(mod 8) and S be a Cayley set of Z, such that

{x, %} < S where ged(x, n) = 1. Then Cay(Z,,, S) is neighbourhood-prime.

Proof. Let n =6(mod8) and S be a Cayley set of Z, satisfying the
hypothesis of the theorem. Since x € S and ged(x, n) =1, (x) = Z,,. Then
Cay(Z,, S) contains a hamiltonian cycle C=(x,x®x,..., xDx ®...

(n -1 times), 0, x). Let n = 8 + 6 for some ¢t € Z* J {0}. Clearly, n is even.
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By lemma 2.15, x @ x ® x ® (% timesj = % Hence C contains a path P

joining 0 and % of length 4t + 3. Since % e S, Cay(Z,, S) contains a chord

n
2

cycle of length 4(t +1) in Cay(Z,, S). Hence by theorem 1.10, Cay(Z,, S) is

connecting 0 and —. Therefore, P together with the chord (0, %) forms a

neighbourhood-prime.

Theorem 2.17. Let n > 3 and n = 0(mod 3). Then, Cay(Zn, {%, 2?”}) is

not neighbourhood-prime.

Proof. Let n>3 and n=0mod3). Let S = {%, %L} Then

Cay(Z,, S) = %03. Further, to label each cycle we need a minimum of two

odd positive integers and so totally 2?’1 odd positive integers. But there

are only ’V%—‘ odd positive integers < n. Also [%—‘ < 2?” and so the

neighbourhood-prime labeling is not possible. Hence Cay(Z,, S) is not

neighbourhood-prime.

Observation 2.18. (1) Cay(Dy,, {ab'}) where 0<i<n-1 and

n
Cay(Dy,,, {b2}) where n 1is even, are isomorphic to nK, and so

neighbourhood-prime vacuously.

Theorem 2.19. Let S be a Cayley set of a dihedral group Ds,, such that
{b, a} = S. Then, Cay(Dy,,, S) is neighbourhood-prime.

Proof. Let S be a Cayley set of a dihedral group Dy, satisfying the
hypothesis of the theorem. Since b € S and o(b) = n, Cay(Dy,,, S) contains
two disjoint cycles C; = (b, b2, b3, ..., "1, 1, b) and Cy = (ab, ab?, ab®, ...,

ab™ !, a, ab) of length n. Hence C; contains a path P, joining b and 1 of
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length n —1 and Cy contains a path P, joining @ and ab™ ! of length n —1.

Since a € S, Cay(Dsy,,, S) contains an edge connecting 1 and a and also
contains an edge connecting ab™ ! and ab"'a = aab = b. Therefore, P +
1, @)+ Py +(ad™ L, b) = (b, b2, b3, ..., 0" 1, 1, a, ab, ab?, ab®, ..., ab™ !, b)
is a hamiltonian cycle in Cay(Ds,,, S) of length 2n.

Case (i). n1s odd

Then C; is an odd cycle in Cay(Ds,,, S). Hence by theorem 1.11,
Cay(Ds,,,, S) is neighbourhood-prime.

Case (ii). n is even

Then 2n = 0(mod4) and so 2n # O(mod4). Hence by theorem 1.9,
Cay(Ds,,, S) is neighbourhood-prime.

Theorem 2.20. Let S be a Cayley set of a dihedral group D, such that
', ab'y = S where 1<i<n-1 and ged(i, n) =1. Then Cay(Ds,, S) is

neighbourhood-prime.

Proof. Let S be a Cayley set of a dihedral group Ik, satisfying the
hypothesis of the theorem. Let 1<i<n-1. Since b eS and
ged(i, n) =1, (') = n. Then Cay(Dy,, S) contains two disjoint cycles
Cy =B, b2, % "V 1 b)) and Cy = (ab’, ab™i, ab™i, ..., ab "V
a,ab') where r, = remainder of x(mod n), of length n. Hence C; contains a
path P joining b’ and 1 of length n —1 and C, contains a path P, joining
abl and a of length n—1. Since ab’ € S, Cay(D,,,, S) contains an edge
connecting 1 and abi and also contains an edge connecting a and aab’ = b'.
Therefore, P, + (1, ab’)+ Py + (a, b') = (6%, b2, 6% ..., 6"V 1 ab’, ab™,
ab™i, ..., ab""V @, b') is a hamiltonian cycle in Cay(Ds,, S) of length 2n.

Case (i). n is odd
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Then C; is an odd cycle in Cay(Ds,,, S). Hence by theorem 1.11,

Cay(Ds,,,, S) is neighbourhood-prime.

Case (ii). n is even

Then 2n =0(mod4) and so 2n # O(mod4). Hence by theorem 1.9,

Cay(Ds,,, S) is neighbourhood-prime.
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