

NEIGHBOURHOOD-PRIME LABELING OF CERTAIN CLASSES OF CAYLEY GRAPHS

K. PALANI¹, G. SUGANYA² and M. LALITHA KUMARI³

¹Associate Professor
²Assistant Professor
³Research Scholar, Reg. No. 20212012092007
PG and Research, Department of Mathematics
A. P. C. Mahalaxmi College for Women
Thoothukudi, TN, India
Affiliated to Manonmaniam Sundaranar University
Abishekapatti, Tirunelveli-627012, TN, India
E-mail: palani@apcmcollege.ac.in gsuganyaveni@gmail.com lalithasat32@gmail.com

Abstract

A Cayley graph is a graph constructed from a finite group Γ and a Cayley set S of Γ . It is denoted by $Cay(\Gamma, S)$. Let G = (V, E) be a graph with n vertices. A bijection $f: V(G) \rightarrow \{1, 2, 3, ..., n\}$ is said to be a neighbourhood-prime labeling if for every vertex $v \in V(G)$ with deg(v) > 1, $gcd\{f(u) \mid u \in N(v)\} = 1$. A graph which admits neighbourhood-prime labeling is called a neighbourhood-prime graph. This paper studies the result connecting Cayley graphs and neighbourhood-prime labeling.

1. Introduction

Cayley graph was introduced by Arthur Cayley [1] in 1878 is an important concept relating group theory and graph theory. S. K. Patel and N. P. Shrimali [7] introduced neighbourhood-prime labeling of a graph.

Definition 1.1[4]. A subset *S* of a group Γ is called a generating set for Γ , denoted by $\langle S \rangle = \Gamma$, if every element of Γ can be expressed as a finite product

2020 Mathematics Subject Classification: 05C78.

Keywords: Labeling, Neighbourhood-prime labeling, Hamiltonian, Cayley graphs. Received November 15, 2021; Accepted December 27, 2021 of elements in S and their inverses.

Definition 1.2 [4]. A dihedral group D_{2n} , $n \ge 3$ is a group with 2n elements such that it contains an element 'a' of order 2 and an element 'b' of order n with $ba = ab^{-1}$. Thus $D_{2n} = \langle a, b \mid a^2 = b^n = 1, ba = ab^{-1} \rangle$. The elements of dihedral group can be explicitly listed as $D_{2n} = \{1, b, b^2, b^3, ..., b^{n-1}, a, ab, ab^2, ab^3, ..., ab^{n-1}\}.$

The orders of the elements in the dihedral group D_{2n} are o(1) = 1, $o(ab^i) = 2$ where $0 \le i \le n-1$ and if n is even then $o(b^{\frac{n}{2}}) = 2$.

Definition 1.3 [6, 8]. Let Γ be a finite group with identity e and S a subset of Γ . If $e \notin S$ and $s \in S$ implies $s^{-1} \in S$, then S is called a Cayley set of Γ . The Cayley graph of Γ with respect to S is the graph whose vertices are the elements of Γ and two elements x, y of Γ are adjacent if and only if there is $s \in S$ such that y = xs. This graph is denoted by $Cay(\Gamma, S)$.

Remark 1.4[8]. (1) $Cay(\Gamma, S)$ is |S|-regular graph.

(2) $Cay(\Gamma, S)$ is connected graph if and only if $\langle S \rangle = \Gamma$.

The following facts are from [7].

Definition 1.5. Let G = (V, E) be a graph with *n* vertices. A bijective function $f: V(G) \rightarrow \{1, 2, 3, ..., n\}$ is said to be neighbourhood-prime labeling, if for each vertex $v \in V(G)$, with $\deg(v) > 1$, $\gcd\{f(u) \mid u \in N(v)\} = 1$. A graph which admits neighbourhood-prime labeling is called a neighbourhood-prime graph.

Remark 1.6. A graph G in which every vertex is of degree atmost 1 is neighbourhood-prime vacuously.

Theorem 1.7. The cycle C_n is neighbourhood-prime if $n \neq 2 \pmod{4}$.

Theorem 1.8. The cycle C_n is not neighbourhood-prime if $n \equiv 2 \pmod{4}$. The following theorems are from [5].

Theorem 1.9. Let G be a graph of order n such that $n \neq 2 \pmod{4}$. If G is

hamiltonian, then G has a neighbourhood-prime labeling.

Theorem 1.10. If the graph G contains a hamiltonian cycle C and a chord that forms a cycle of length 4k for some positive integer $k \in Z$ using only the chord and edges from C, then G is neighbourhood-prime.

Theorem 1.11. If G is hamiltonian and contains an odd cycle then G is neighbourhood-prime.

Theorem 1.12. All graphs with minimum degree at least $\frac{n}{2}$ are neighbourhood-prime.

Theorem 1.13. A hamiltonian graph of order n with $|E| > n \left\lfloor \frac{n-6}{8} \right\rfloor + n$

is neighbourhood-prime.

Theorem 1.14 [3]. Every connected Cayley graph of a finite abelian group of order at least three is hamiltonian.

Definition 1.15 [2]. A group G is described as hamiltonian if and only if G is a non-abelian group such that every subgroup is normal.

Theorem 1.16 [2]. Any connected Cayley graph of a finite hamiltonian group is hamiltonian.

2. Main Results

Theorem 2.1. Cay(Γ , S) where $o(\Gamma) \leq 3$ is neighbourhood-prime.

Proof. Let $o(\Gamma) \leq 3$ and *S*, a Cayley set of Γ .

Case (i). $o(\Gamma) = 1$.

Here $Cay(\Gamma, S) \cong K_1$ and so is neighbourhood-prime vacuously.

Case (ii). $o(\Gamma) = 2$.

Let $\Gamma = \{e, x\}$ where *e* is the identity element. Then $S = \Phi$ or $\{x\}$.

Therefore, $cay(\Gamma, S) \cong \begin{cases} \overline{K_2} & \text{if } S = \Phi \\ K_2 & \text{if } S = \{x\} \end{cases}$. Obviously K_2 and $\overline{K_2}$ are

neighbourhood-prime.

2172 K. PALANI, G. SUGANYA and M. LALITHA KUMARI

Case (iii). $o(\Gamma) = 3$.

Let $\Gamma = \{e, x, y\}$ where e is the identity element. Since the order of every element of the group divides the order of the group, every element of Γ is of order 1 or 3. Therefore, x and y are generators of Γ and so $x^2 \neq e, y^2 \neq e$. Then $x \neq x^{-1}, y \neq y^{-1}$ and $x^2 = y, y^2 = x$. Hence $x^{-1} = y; y^{-1} = x$. Therefore, either $S = \Phi$ or $S = \{x, y\}$. Therefore, $cay(\Gamma, S)$ $\cong \begin{cases} \overline{K_3} & \text{if } S = \Phi\\ K_3 & \text{if } S = \{x, y\} \end{cases}$. Clearly K_3 and $\overline{K_3}$ are neighbourhood-prime.

Hence the theorem.

Observation 2.2. (1) $Cay(\Gamma, S)$ of a finite group Γ of order n with $S = \Phi$ is isomorphic to $\overline{K_n}$ and so is neighbourhood-prime vacuously.

(2) By theorem 1.12, $Cay(\Gamma, S)$ of a finite group Γ of order n with $|S| \ge \frac{n}{2}$ is neighbourhood-prime, since $Cay(\Gamma, S)$ is a regular graph of degree |S|.

Theorem 2.3. Let Γ be a finite abelian group of order n. Let S be a Cayley set of Γ such that $\langle S \rangle = \Gamma$. Then, $Cay(\Gamma, S)$ is neighbourhood-prime if $n \leq 3$ or if $n \neq 2 \pmod{4}$ for n > 3.

Proof. Let Γ be a finite abelian group of order *n* and *S*, a Cayley set of Γ such that $\langle S \rangle = \Gamma$.

Case (i). $n \leq 3$

By theorem 2.1, $Cay(\Gamma, S)$ is neighbourhood-prime.

Case (ii). n > 3 and $n \neq 2 \pmod{4}$

Since $\langle S \rangle = \Gamma$, $Cay(\Gamma, S)$ is connected. Therefore, by theorem 1.14, $Cay(\Gamma, S)$ is hamiltonian. Therefore, by theorem 1.9, $Cay(\Gamma, S)$ is neighbourhood-prime.

Hence the theorem.

Corollary 2.4. Let Γ be a finite cyclic group of order n. Let S be a Cayley set of Γ such that $\langle S \rangle = \Gamma$. Then, $Cay(\Gamma, S)$ is neighbourhood-prime if $n \leq 3$ or if $n \neq 2 \pmod{4}$ for n > 3.

Proof. Since any cyclic group is abelian, the result follows.

Theorem 2.5. Every Cayley graph of a finite group of prime order is neighbourhood-prime.

Proof. Let Γ be a finite group of prime order *p* and *S*, a Cayley set of Γ .

Case (i). $S = \Phi$

Here, $Cay(\Gamma, S) \cong \overline{K_p}$ and so is neighbourhood-prime.

Case (ii). $S \neq \Phi$

When p = 2, $Cay(\Gamma, S) \cong K_2$ and so is neighbourhood-prime.

Let $p \ge 3$. Since p is prime, every element of Γ except identity is a generator of Γ . Therefore, S is always a generating set of Γ . Further, since p is prime, Γ is cyclic and $p \neq 2 \pmod{4}$. Hence the result follows from 2.4.

Theorem 2.6. Let Γ be a finite hamiltonian group of order n. Let S be a Cayley set of Γ such that $\langle S \rangle = \Gamma$. Then $Cay(\Gamma, S)$ is neighbourhood-prime if $n \neq 2 \pmod{4}$.

Proof. Let Γ be a finite hamiltonian group of order n and S, a Cayley set of Γ such that $\langle S \rangle = \Gamma$. Then $Cay(\Gamma, S)$ is connected. Therefore, by theorem 1.16, $Cay(\Gamma, S)$ is hamiltonian. Hence, by theorem 1.9, $Cay(\Gamma, S)$ is neighbourhood-prime if $n \neq 2 \pmod{4}$.

Theorem 2.7. Let Γ be a finite abelian group of order n. Let S be a Cayley set of Γ such that $\langle S \rangle = \Gamma$ and $|S| > 2\left(\left\lfloor \frac{n-6}{8} \right\rfloor + 1\right)$. Then $Cay(\Gamma, S)$ is neighbourhood-prime.

Proof. Let Γ be a finite abelian group of order n and S, a Cayley set of Γ such that $\langle S \rangle = \Gamma$ and $|S| > 2\left(\left\lfloor \frac{n-6}{8} \right\rfloor + 1\right)$.

Case (i). $n \leq 3$

By theorem 2.1, $Cay(\Gamma, S)$ is neighbourhood-prime.

Case (ii). n > 3

Since $\langle S \rangle = \Gamma$, $Cay(\Gamma, S)$ is connected regular graph of degree |S|. By theorem 1.14, $Cay(\Gamma, S)$ is hamiltonian. Also, $|E| = \frac{n}{2}|S| > n\left(\left\lfloor \frac{n-6}{8} \right\rfloor + 1\right)$

 $= n \left\lfloor \frac{n-6}{8} \right\rfloor + n$. Hence by theorem 1.13, $Cay(\Gamma, S)$ is neighbourhood-prime.

Corollary 2.8. Let Γ be a finite cyclic group of order n. Let S be a Cayley set of Γ such that $\langle S \rangle = \Gamma$ and $|S| > 2\left(\left\lfloor \frac{n-6}{8} \right\rfloor + 1\right)$. Then $Cay(\Gamma, S)$ is neighbourhood-prime.

Proof. Since any cyclic group is abelian, the result follows.

Theorem 2.9. Let Γ be a finite hamiltonian group of order n. Let S be a Cayley set of Γ such that $\langle S \rangle = \Gamma$ and $|S| > 2\left(\left\lfloor \frac{n-6}{8} \right\rfloor + 1\right)$. Then $Cay(\Gamma, S)$ is neighbourhood-prime.

Proof. Let Γ be a finite hamiltonian group of order n and S, a Cayley set of Γ such that $\langle S \rangle = \Gamma$ and $|S| > 2\left(\left\lfloor \frac{n-6}{8} \right\rfloor + 1\right)$. Then, $Cay(\Gamma, S)$ is connected regular graph of degree |S|. By theorem 1.16, $Cay(\Gamma, S)$ is hamiltonian. Also, $|E| = \frac{n}{2}|S| > n\left(\left\lfloor \frac{n-6}{8} \right\rfloor + 1\right) = n\left\lfloor \frac{n-6}{8} \right\rfloor + n$. Hence by theorem 1.13, $Cay(\Gamma, S)$ is neighbourhood-prime.

Observation 2.10. (1) $Cay(Z_n, \{1, 2, 3, ..., n-1\})$ is isomorphic to the complete graph K_n and so by theorem 1.12, is neighbourhood-prime.

(2) $Cay(Z_{2n}, \{1, 3, 5, ..., 2n-1\})$ is isomorphic to the complete *n*-regular bipartite graph $K_{n,n}$ and so by theorem 1.12, is neighbourhood-prime.

(3) $Cay(Z_{2n}, \{n\})$ is isomorphic to nK_2 and so is neighbourhood-prime vacuously.

(4) $Cay(Z_n, \{x, x^{-1}\})$ where $n \ge 3$ and x is a generator of Z_n , is isomorphic to the cycle C_n and so by 1.7 and 1.8, is neighbourhood-prime if and only if $n \ne 2 \pmod{4}$.

(5) Let S be a Cayley set of Z_n containing atleast one generator of Z_n . Then $Cay(Z_n, S)$ is hamiltonian. Hence, by theorem 1.9, $Cay(Z_n, S)$ is neighbourhood-prime if $n \neq 2 \pmod{4}$.

Theorem 2.11. Let $n \ge 3$ and S be a Cayley set of Z_n such that $\{1, k\} \subseteq S$ for some $k \not\equiv 1 \pmod{4}$. Then $Cay(Z_n, S)$ is neighbourhood-prime.

Proof. Let $n \ge 3$ and S be a Cayley set of Z_n such that $\{1, k\} \subseteq S$ for some $k \ne 1 \pmod{4}$. Since $1 \in S$, $Cay(Z_n, S)$ contains a hamiltonian cycle C = (0, 1, 2, ..., n - 1, 0).

Therefore, by theorem 1.9, $Cay(Z_n, S)$ is neighbourhood-prime if $k \neq 2 \pmod{4}$.

Suppose $k \equiv 2 \pmod{4}$. Since $k \in S$, $Cay(Z_n, S)$ contains a chord connecting 0 and k.

Case (i). $k \equiv 0, 2 \pmod{4}$.

Then k is even and so $C_{k+1}(0, 1, 2, ..., k, 0)$ is an odd cycle in $Cay(Z_n, S)$. Therefore, by theorem 1.11, $Cay(Z_n, S)$ is neighbourhood-prime.

Case (ii). $k \equiv 3 \pmod{4}$.

Here $C_{k+1}(0, 1, 2, ..., k, 0)$ is a cycle of length 4m for some $m \in Z$ formed by the chord and edges from C. Therefore, by theorem 1.10, $Cay(Z_n, S)$ is neighbourhood-prime.

Hence the theorem.

Theorem 2.12. Let $n \ge 3$ and S be a Cayley set of Z_n such that $\{x, y\} \subseteq S$ where gcd(x, n) = 1 and y is even. Then $Cay(Z_n, S)$ is neighbourhood-prime.

2176 K. PALANI, G. SUGANYA and M. LALITHA KUMARI

Proof. Let $n \ge 3$ and S be a Cayley set of Z_n satisfying the hypothesis of the theorem. Since $x \in S$ and gcd(x, n) = 1, $\langle x \rangle = Z_n$. Then $Cay(Z_n, S)$ contains a hamiltonian cycle $C = (x, x \oplus x, ..., x \oplus x \oplus ...(n-1 \text{ times}),$ 0, x). Therefore, by theorem 1.9, $Cay(Z_n, S)$ is neighbourhood-prime if $n \ne 2 \pmod{4}$.

Suppose $n \equiv 2 \pmod{4}$. Since $y \in S$, $Cay(Z_n, S)$ contains a chord connecting 0 and y. Further, n is even and so x is odd. Hence y is even implies, C contains a path P joining 0 and y of even length. Therefore, P together with the chord (0, y) forms an odd cycle in $Cay(Z_n, S)$. Hence by theorem 1. 11, $Cay(Z_n, S)$ is neighbourhood-prime.

Theorem 2.13. Let n > 2k and $n \equiv 2k \pmod{4k}$ where $k \in Z^+$. Let S be a Cayley set of Z_n such that $\langle S \rangle = Z_n$ and $2k \in S$. Then $Cay(Z_n, S)$ is neighbourhood-prime.

Proof. Let n > 2k and $n \equiv 2k \pmod{4k}$ where $k \in Z^+$. Let S be a Cayley set of Z_n satisfying the hypothesis of the theorem. Since $\langle S \rangle = Z_n$, $Cay(Z_n, S)$ is connected. (Z_n, \oplus) is finite and cyclic implies (Z_n, \oplus) is abelian. Therefore, by theorem 1.14, $Cay(Z_n, S)$ is hamiltonian. Let n = 4kt + 2k for some $t \in Z^+$. Let l be the order of the element 2k. Since $2k \in S$, $Cay(Z_n, S)$ contains the cycle,

$$C = (2k, 2k \oplus 2k, 2k \oplus 2k \oplus 2k, \dots, 2k \oplus 2k \oplus \dots (l-1 \text{ times})),$$

 $2k \oplus 2k \oplus \dots (l \text{ times}), 2k)$

$$= (2k, 2(2k), 3(2k), \dots, n - 2k, 0, 2k)$$
$$= (2k, 2(2k), 3(2k), \dots, 4kt, 0, 2k)$$
$$= (2k, 2(2k), 3(2k), \dots, 2t(2k), 0, 2k)$$

Obviously *C* is of odd length 2t + 1.

Hence by theorem 1.11, $Cay(Z_n, S)$ is neighbourhood-prime.

Theorem 2.14. Let n > 1 and $x \neq n \in Z_{2n}$. Let S be a Cayley set of Z_{2n} such that $\{x, x \oplus x \oplus ... (2m \text{ times})\} \subseteq S$ for some $m \in Z^+$ and 2m < lwhere l = o(x). If $\langle S \rangle = Z_{2n}$, then $Cay(Z_{2n}, S)$ is neighbourhood-prime.

Proof. Let n > 1 and $x \neq n \in Z_{2n}$. Let S be a Cayley set of Z_{2n} satisfying the hypothesis of the theorem. Since $\langle S \rangle = Z_{2n}$, $Cay(Z_{2n}, S)$ is connected. (Z_{2n}, \oplus) is finite and cyclic implies (Z_{2n}, \oplus) is abelian. Therefore, by theorem 1.14, $Cay(Z_{2n}, S)$ is hamiltonian.

Let $y = x \oplus x \oplus ...(2m \text{ times})$ for some $m \in Z^+$ and 2m < l where l = o(x). Since $x \in S$, $Cay(Z_{2n}, S)$ contains the cycle, $C = (x, x \oplus x, ..., x \oplus x \oplus ...(n-1 \text{ times}), 0, x)$. Hence C contains a path P joining 0 and y of even length. Since $y \in S$, $Cay(Z_{2n}, S)$ contains an edge connecting 0 and y. Therefore, P together with the edge (0, y) forms an odd cycle in $Cay(Z_{2n}, S)$. Hence by theorem 1.11, $Cay(Z_{2n}, S)$ is neighbourhood-prime.

Lemma 2.15. Let $x \in Z_n$ where n is even and gcd(x, n) = 1. Then $x \oplus x \oplus x \oplus ... \left(\frac{n}{2} times\right) = \frac{n}{2}$.

Proof. Let $x \in Z_n$ where *n* is even. Further, gcd(x, n) = 1 and so *x* is odd. Let x = 2k + 1 for some $k \in Z^+$. Therefore, $\frac{n}{2}x = \frac{n}{2}(2k + 1) = nk + \frac{n}{2}$. Hence $x \oplus x \oplus x \oplus ...(\frac{n}{2} \text{ times}) = \frac{n}{2}$.

Theorem 2.16. Let $n \equiv 6 \pmod{8}$ and S be a Cayley set of Z_n such that $\left\{x, \frac{n}{2}\right\} \subseteq S$ where gcd(x, n) = 1. Then $Cay(Z_n, S)$ is neighbourhood-prime.

Proof. Let $n \equiv 6 \pmod{8}$ and S be a Cayley set of Z_n satisfying the hypothesis of the theorem. Since $x \in S$ and gcd(x, n) = 1, $\langle x \rangle = Z_n$. Then $Cay(Z_n, S)$ contains a hamiltonian cycle $C = (x, x \oplus x, ..., x \oplus x \oplus ... (n-1 \text{ times}), 0, x)$. Let n = 8t + 6 for some $t \in Z^+ \cup \{0\}$. Clearly, n is even.

By lemma 2.15, $x \oplus x \oplus x \oplus ...\left(\frac{n}{2} \text{ times}\right) = \frac{n}{2}$. Hence *C* contains a path *P* joining 0 and $\frac{n}{2}$ of length 4t + 3. Since $\frac{n}{2} \in S$, $Cay(Z_n, S)$ contains a chord connecting 0 and $\frac{n}{2}$. Therefore, *P* together with the chord $\left(0, \frac{n}{2}\right)$ forms a cycle of length 4(t+1) in $Cay(Z_n, S)$. Hence by theorem 1.10, $Cay(Z_n, S)$ is neighbourhood-prime.

Theorem 2.17. Let n > 3 and $n \equiv 0 \pmod{3}$. Then, $Cay\left(Z_n, \left\{\frac{n}{3}, \frac{2n}{3}\right\}\right)$ is not neighbourhood-prime.

Proof. Let n > 3 and $n \equiv 0 \pmod{3}$. Let $S = \left\{\frac{n}{3}, \frac{2n}{3}\right\}$. Then $Cay(Z_n, S) \cong \frac{n}{3}C_3$. Further, to label each cycle we need a minimum of two odd positive integers and so totally $\frac{2n}{3}$ odd positive integers. But there are only $\left\lceil \frac{n}{2} \right\rceil$ odd positive integers $\leq n$. Also $\left\lceil \frac{n}{2} \right\rceil < \frac{2n}{3}$ and so the neighbourhood-prime labeling is not possible. Hence $Cay(Z_n, S)$ is not neighbourhood-prime.

Observation 2.18. (1) $Cay(D_{2n}, \{ab^i\})$ where $0 \le i \le n-1$ and $Cay(D_{2n}, \{b^{\frac{n}{2}}\})$ where *n* is even, are isomorphic to nK_2 and so neighbourhood-prime vacuously.

Theorem 2.19. Let S be a Cayley set of a dihedral group D_{2n} such that $\{b, a\} \subseteq S$. Then, $Cay(D_{2n}, S)$ is neighbourhood-prime.

Proof. Let S be a Cayley set of a dihedral group D_{2n} satisfying the hypothesis of the theorem. Since $b \in S$ and o(b) = n, $Cay(D_{2n}, S)$ contains two disjoint cycles $C_1 = (b, b^2, b^3, ..., b^{n-1}, 1, b)$ and $C_2 = (ab, ab^2, ab^3, ..., ab^{n-1}, a, ab)$ of length n. Hence C_1 contains a path P_1 joining b and 1 of

Advances and Applications in Mathematical Sciences, Volume 21, Issue 4, February 2022

length n-1 and C_2 contains a path P_2 joining a and ab^{n-1} of length n-1. Since $a \in S$, $Cay(D_{2n}, S)$ contains an edge connecting 1 and a and also contains an edge connecting ab^{n-1} and $ab^{n-1}a = aab = b$. Therefore, $P_1 + (1, a) + P_2 + (ab^{n-1}, b) = (b, b^2, b^3, ..., b^{n-1}, 1, a, ab, ab^2, ab^3, ..., ab^{n-1}, b)$ is a hamiltonian cycle in $Cay(D_{2n}, S)$ of length 2n.

Case (i). n is odd

Then C_1 is an odd cycle in $Cay(D_{2n}, S)$. Hence by theorem 1.11, $Cay(D_{2n}, S)$ is neighbourhood-prime.

Case (ii). n is even

Then $2n \equiv 0 \pmod{4}$ and so $2n \neq 0 \pmod{4}$. Hence by theorem 1.9, $Cay(D_{2n}, S)$ is neighbourhood-prime.

Theorem 2.20. Let S be a Cayley set of a dihedral group D_{2n} such that $\{b^i, ab^i\} \subseteq S$ where $1 \le i \le n-1$ and gcd(i, n) = 1. Then $Cay(D_{2n}, S)$ is neighbourhood-prime.

Proof. Let S be a Cayley set of a dihedral group D_{2n} satisfying the hypothesis of the theorem. Let $1 \le i \le n-1$. Since $b^i \in S$ and gcd(i, n) = 1, $o(b^i) = n$. Then $Cay(D_{2n}, S)$ contains two disjoint cycles $C_1 = (b^i, b^{r_{2i}}, b^{r_{3i}}, ..., b^{r(n-1)i}, 1, b^i)$ and $C_2 = (ab^i, ab^{r_{2i}}, ab^{r_{3i}}, ..., ab^{r(n-1)i}, a, ab^i)$ where r_x = remainder of $x \pmod{n}$, of length n. Hence C_1 contains a path P_1 joining b^i and 1 of length n-1 and C_2 contains a path P_2 joining ab^i and a of length n-1. Since $ab^i \in S$, $Cay(D_{2n}, S)$ contains an edge connecting 1 and abi and also contains an edge connecting a and $aab^i = b^i$. Therefore, $P_1 + (1, ab^i) + P_2 + (a, b^i) = (b^i, b^{r_{2i}}, b^{r_{3i}}, ..., b^{r(n-1)i}, 1, ab^i, ab^{r_{2i}}, ab^{r_{3i}}, ..., ab^{r(n-1)i}, a, b^i)$ is a hamiltonian cycle in $Cay(D_{2n}, S)$ of length 2n.

Case (i). n is odd

Then C_1 is an odd cycle in $Cay(D_{2n}, S)$. Hence by theorem 1.11, $Cay(D_{2n}, S)$ is neighbourhood-prime.

Case (ii). *n* is even

Then $2n \equiv 0 \pmod{4}$ and so $2n \neq 0 \pmod{4}$. Hence by theorem 1.9, $Cay(D_{2n}, S)$ is neighbourhood-prime.

References

- Arthur Cayley, The theory of groups: Graphical representation, American Journal of Mathematics 1(2) (1878), 174-176.
- [2] Babak Miraftab and Tim Ruhmann, Hamilton circles in cayley graphs, The Electronic Journal of Combinatorics 25(2) (2018), 1-17.
- [3] Dragan Marusic, Hamiltonian circuits in cayley graphs, Discrete Mathematics 46(1) (1983), 49-54.
- [4] D. S. Dummit and R. M. Foote, Abstract algebra, 3rd edition, Wiley, New York, (2003).
- [5] John Asplund, N. Bradley Fox and Arran Hamm, New perspectives on neighborhoodprime labelings of graphs, arXiv:1804.02473v1 [math.CO] 6 (2018), 1-21.
- [6] J. J. Montellano-Ballesteros and A. Santiago Arguello, Hamiltonian normal cayley graphs, Discussiones Mathematicae Graph Theory 39 (2019), 731-740.
- [7] S. K. Patel and N. P. Shrimali, Neighborhood prime labeling, Int. Journal of mathematics and soft computing 5(2) (2015), 135-143.
- [8] Sanming Zhou, Labeling Cayley graphs on abelian groups, SIAM Journal on Discrete Mathematics 19(4) (2005), 985-1003.