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Abstract 

A Cayley graph is a graph constructed from a finite group Г and a Cayley set S of Г. It is 

denoted by  ., SCay   Let  EVG ,  be a graph with n vertices. A bijection 

   nGVf ,,3,2,1:   is said to be a neighbourhood-prime labeling if for every vertex 

 GVv   with        .1|gcd,1deg  vNuufv  A graph which admits neighbourhood-prime 

labeling is called a neighbourhood-prime graph. This paper studies the result connecting Cayley 

graphs and neighbourhood-prime labeling.  

1. Introduction 

Cayley graph was introduced by Arthur Cayley [1] in 1878 is an 

important concept relating group theory and graph theory. S. K. Patel and N. 

P. Shrimali [7] introduced neighbourhood-prime labeling of a graph.  

Definition 1.1[4]. A subset S of a group Г is called a generating set for Г, 

denoted by ,S  if every element of Г can be expressed as a finite product 



K. PALANI, G. SUGANYA and M. LALITHA KUMARI  

Advances and Applications in Mathematical Sciences, Volume 21, Issue 4, February 2022 

2170 

of elements in S and their inverses.  

Definition 1.2 [4]. A dihedral group 3,2 nD n  is a group with n2   

elements such that it contains an element ‘a’ of order 2 and an element ‘b’ of 

order n with .1 abba  Thus .,1|, 12
2

 abbababaD n
n  The 

elements of dihedral group can be explicitly listed as 

 .,,,,,,,,,,,1 132132
2

 nn
n abababababbbbD    

The orders of the elements in the dihedral group nD2  are 

    2,11  iaboo  where 10  ni  and if n is even then   .22 

n

bo   

Definition 1.3 [6, 8]. Let Г be a finite group with identity e and S a 

subset of Г. If Se   and Ss   implies ,1 Ss 
 then S is called a Cayley set 

of Г. The Cayley graph of Г with respect to S is the graph whose vertices are 

the elements of Г and two elements yx,  of Г are adjacent if and only if there 

is Ss   such that .xsy   This graph is denoted by  ., SCay   

Remark 1.4[8]. (1)  SCay ,  is S -regular graph.  

(2)  SCay ,  is connected graph if and only if .S   

The following facts are from [7].  

Definition 1.5. Let  EVG ,  be a graph with n vertices. A bijective 

function    nGVf ,,3,2,1:   is said to be neighbourhood-prime 

labeling, if for each vertex  ,GVv   with   ,1deg v  

     .1|gcd  vNuuf  A graph which admits neighbourhood-prime 

labeling is called a neighbourhood-prime graph.  

Remark 1.6. A graph G in which every vertex is of degree atmost 1 is 

neighbourhood-prime vacuously.  

Theorem 1.7. The cycle nC  is neighbourhood-prime if  .4mod2n   

Theorem 1.8. The cycle nC  is not neighbourhood-prime if  .4mod2n  

The following theorems are from [5].  

Theorem 1.9. Let G be a graph of order n such that  .4mod2n  If G is 
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hamiltonian, then G has a neighbourhood-prime labeling.  

Theorem 1.10. If the graph G contains a hamiltonian cycle C and a 

chord that forms a cycle of length k4  for some positive integer Zk   using 

only the chord and edges from C, then G is neighbourhood-prime.  

Theorem 1.11. If G is hamiltonian and contains an odd cycle then G is 

neighbourhood-prime.  

Theorem 1.12. All graphs with minimum degree at least 
2

n
 are 

neighbourhood-prime.  

Theorem 1.13. A hamiltonian graph of order n with n
n

nE 





 


8

6
 

is neighbourhood-prime.  

Theorem 1.14 [3]. Every connected Cayley graph of a finite abelian 

group of order at least three is hamiltonian.  

Definition 1.15 [2]. A group G is described as hamiltonian if and only if 

G is a non-abelian group such that every subgroup is normal.  

Theorem 1.16 [2]. Any connected Cayley graph of a finite hamiltonian 

group is hamiltonian.  

2. Main Results 

Theorem 2.1.  SCay ,  where   3o  is neighbourhood-prime.  

Proof. Let   3o  and S, a Cayley set of Г.  

Case (i).   .1o   

Here   1, KSCay   and so is neighbourhood-prime vacuously.  

Case (ii).   .2o  

Let  xe,  where e is the identity element. Then S  or  .x  

Therefore,  
 

.
S if

if
,

2

2










xK

SK
Scay  Obviously 2K  and 2K   are 

neighbourhood-prime.  
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Case (iii).   .3o   

Let  yxe ,,  where e is the identity element. Since the order of every 

element of the group divides the order of the group, every element of Г is of 

order 1 or 3. Therefore, x and y are generators of Г and so ., 22 eyex   

Then 11,   yyxx  and ., 22 xyyx   Hence .; 11 xyyx    

Therefore, either S  or  .,S yx  Therefore,  Scay ,  

 
.

,S if

if

3

3










yxK

SK
 Clearly 3K  and 3K  are neighbourhood-prime.  

Hence the theorem.  

Observation 2.2. (1)  SCay ,  of a finite group Г of order n with S  

is isomorphic to nK  and so is neighbourhood-prime vacuously.  

(2) By theorem 1.12,  SCay ,  of a finite group Г of order n with 

2

n
S   is neighbourhood-prime, since  SCay ,  is a regular graph of 

degree .S   

Theorem 2.3. Let Г be a finite abelian group of order n. Let S be a Cayley 

set of Г such that .S  Then,  SCay ,  is neighbourhood-prime if 3n  

or if  4mod2n  for .3n   

Proof. Let Г be a finite abelian group of order n and S, a Cayley set of Г 

such that .S  

Case (i). 3n   

By theorem 2.1,  SCay ,  is neighbourhood-prime.  

Case (ii). 3n  and  4mod2n   

Since  SCayS ,,   is connected. Therefore, by theorem 1.14, 

 SCay ,  is hamiltonian. Therefore, by theorem 1.9,  SCay ,  is 

neighbourhood-prime.  

Hence the theorem.  
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Corollary 2.4. Let Г be a finite cyclic group of order n. Let S be a Cayley 

set of Г such that .S  Then,  SCay ,  is neighbourhood-prime if 3n  

or if  4mod2n  for .3n   

Proof. Since any cyclic group is abelian, the result follows.  

Theorem 2.5. Every Cayley graph of a finite group of prime order is 

neighbourhood-prime.  

Proof. Let Г be a finite group of prime order p and S, a Cayley set of Г.  

Case (i). S   

Here,   pKSCay ,  and so is neighbourhood-prime.  

Case (ii). S   

When   2,,2 KSCayp   and so is neighbourhood-prime.  

Let .3p  Since p is prime, every element of Г except identity is a 

generator of Г. Therefore, S is always a generating set of Г. Further, since p is 

prime, Г is cyclic and  .4mod2p  Hence the result follows from 2.4.  

Theorem 2.6. Let Г be a finite hamiltonian group of order n. Let S be a 

Cayley set of Г such that .S  Then  SCay ,  is neighbourhood-prime if 

 .4mod2n  

Proof. Let Г be a finite hamiltonian group of order n and S, a Cayley set 

of Г such that .S  Then  SCay ,  is connected. Therefore, by theorem 

1.16,  SCay ,  is hamiltonian. Hence, by theorem 1.9,  SCay ,  is 

neighbourhood-prime if  .4mod2n    

Theorem 2.7. Let Г be a finite abelian group of order n. Let S be a Cayley 

set of Г such that S  and .1
8

6
2 







 





 


n
S  Then  SCay ,  is 

neighbourhood-prime.  

Proof. Let Г be a finite abelian group of order n and S, a Cayley set of Г 

such that S  and .1
8

6
2 







 





 


n
S  
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Case (i). 3n   

By theorem 2.1,  SCay ,  is neighbourhood-prime.  

Case (ii). 3n   

Since  SCayS ,,   is connected regular graph of degree .S  By 

theorem 1.14,  SCay ,  is hamiltonian. Also, 






 





 
 1

8

6

2

n
nS

n
E  

.
8

6
n

n
n 






 
  Hence by theorem 1.13,  SCay ,  is neighbourhood-prime.  

Corollary 2.8. Let Г be a finite cyclic group of order n. Let S be a Cayley 

set of Г such that S  and .1
8

6
2 







 





 


n
S  Then  SCay ,  is 

neighbourhood-prime.  

Proof. Since any cyclic group is abelian, the result follows.  

Theorem 2.9. Let Г be a finite hamiltonian group of order n. Let S be a 

Cayley set of Г such that S  and .1
8

6
2 







 





 


n
S  Then  SCay ,  

is neighbourhood-prime.  

Proof. Let Г be a finite hamiltonian group of order n and S, a Cayley set 

of Г such that S  and .1
8

6
2 







 





 


n
S  Then,  SCay ,  is 

connected regular graph of degree .S  By theorem 1.16,  SCay ,  is 

hamiltonian. Also, .
8

6
1

8

6

2
n

n
n

n
nS

n
E 






 








 





 
  Hence by 

theorem 1.13,  SCay ,  is neighbourhood-prime.  

Observation 2.10. (1)   1,,3,2,1, nZCay n   is isomorphic to the 

complete graph nK  and so by theorem 1.12, is neighbourhood-prime.  

(2)   12,,5,3,1,2 nZCay n   is isomorphic to the complete n-regular 

bipartite graph nnK ,  and so by theorem 1.12, is neighbourhood-prime.  

(3)   nZCay n,2  is isomorphic to 2nK  and so is neighbourhood-prime 

vacuously.  
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(4)   1,, xxZCay n  where 3n  and x is a generator of ,nZ  is 

isomorphic to the cycle nC  and so by 1.7 and 1.8, is neighbourhood-prime if 

and only if  .4mod2n   

(5) Let S be a Cayley set of nZ  containing atleast one generator of .nZ  

Then  SZCay n,  is hamiltonian. Hence, by theorem 1.9,  SZCay n,  is 

neighbourhood-prime if  .4mod2n  

Theorem 2.11. Let 3n  and S be a Cayley set of nZ  such that 

  Sk ,1  for some  .4mod1k  Then  SZCay n,  is neighbourhood-prime.  

Proof. Let 3n  and S be a Cayley set of nZ  such that   Sk ,1  for 

some  .4mod1k  Since  SZCayS n,,1   contains a hamiltonian cycle 

 .0,1,,2,1,0  nC    

Therefore, by theorem 1.9,  SZCay n,  is neighbourhood-prime if 

 .4mod2k   

Suppose  .4mod2k  Since  SZCaySk n,,  contains a chord 

connecting 0 and k.  

Case (i).  .4mod2,0k   

Then k is even and so  0,,,2,1,01 kCk   is an odd cycle in  ., SZCay n  

Therefore, by theorem 1.11,  SZCay n,  is neighbourhood-prime.  

Case (ii).  .4mod3k   

Here  0,,,2,1,01 kCk   is a cycle of length m4  for some Zm   

formed by the chord and edges from C. Therefore, by theorem 1.10, 

 SZCay n,  is neighbourhood-prime.  

Hence the theorem.  

Theorem 2.12. Let 3n  and S be a Cayley set of nZ  such that 

  Syx ,  where   1,gcd nx  and y is even. Then  SZCay n,  is 

neighbourhood-prime.  
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Proof. Let 3n  and S be a Cayley set of nZ  satisfying the hypothesis 

of the theorem. Since Sx   and   .,1,gcd nZxnx   Then  SZCay n,  

contains a hamiltonian cycle   ,times1,,,  nxxxxxC   

.,0 x  Therefore, by theorem 1.9,  SZCay n,  is neighbourhood-prime if 

 .4mod2n   

Suppose  .4mod2n  Since  SZCaySy n,,  contains a chord 

connecting 0 and y. Further, n is even and so x is odd. Hence y is even 

implies, C contains a path P joining 0 and y of even length. Therefore, P 

together with the chord  y,0  forms an odd cycle in  ., SZCay n  Hence by 

theorem 1. 11,  SZCay n,  is neighbourhood-prime.  

Theorem 2.13. Let kn 2  and  kkn 4mod2  where . Zk  Let S be 

a Cayley set of nZ  such that nZS   and .2 Sk    Then  SZCay n,  is 

neighbourhood-prime.  

Proof. Let kn 2  and  kkn 4mod2  where . Zk  Let S be a Cayley 

set of nZ  satisfying the hypothesis of the theorem. Since 

 SZCayZS nn ,,  is connected.  ,nZ  is finite and cyclic implies 

 ,nZ  is abelian. Therefore, by theorem 1.14,  SZCay n,  is hamiltonian. 

Let kktn 24   for some . Zt  Let l be the order of the element .2k   

Since  SZCaySk n,,2   contains the cycle,  

  ,times122,,222,22,2  lkkkkkkkkC    

  klkk 2,times22   

    kknkkk 2,0,2,,23,22,2    

    kktkkk 2,0,4,,23,22,2   

      kktkkk 2,0,22,,23,22,2   

Obviously C is of odd length .12 t   

Hence by theorem 1.11,  SZCay n,  is neighbourhood-prime.  
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Theorem 2.14. Let 1n  and .2nZnx   Let S be a Cayley set of nZ2  

such that    Smxxx  times2,   for some  Zm  and lm 2  

where  .xol   If ,2nZS   then  SZCay n,2  is neighbourhood-prime.  

Proof. Let 1n  and .2nZnx   Let S be a Cayley set of nZ2  

satisfying the hypothesis of the theorem. Since  SZCayZS nn ,, 22  is 

connected.  ,2nZ  is finite and cyclic implies  ,2nZ  is abelian. Therefore, 

by theorem 1.14,  SZCay n,2  is hamiltonian.  

Let  times2mxxy   for some  Zm  and lm 2  where 

 .xol   Since  SZCaySx n,, 2  contains the cycle,  ,,, xxxC   

  .,0,times1 xnxx    Hence C contains a path P joining 0 and y of 

even length. Since  SZCaySy n,, 2  contains an edge connecting 0 and y. 

Therefore, P together with the edge  y,0  forms an odd cycle in  .,2 SZCay n  

Hence by theorem 1.11,  SZCay n,2  is neighbourhood-prime.  

Lemma 2.15. Let nZx   where n is even and   .1,gcd nx  Then 

.
22

n
times

n
xxx 







   

Proof. Let nZx   where n is even. Further,   1,gcd nx  and so x is 

odd. Let 12  kx  for some . Zk  Therefore,   .
2

12
22

n
nkk

n
x

n
  

Hence .
2

times
2

nn
xxx 







    

Theorem 2.16. Let  8mod6n  and S be a Cayley set of nZ  such that 

S
n

x 








2
,  where   .1,gcd nx  Then  SZCay n,  is neighbourhood-prime.  

Proof. Let  8mod6n  and S be a Cayley set of nZ  satisfying the 

hypothesis of the theorem. Since Sx   and   .,1,gcd nZxnx   Then 

 SZCay n,  contains a hamiltonian cycle    xxxxxC ,,,  

  .,0,times1 xn   Let 68  tn  for some  .0 Zt  Clearly, n is even. 
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By lemma 2.15, .
2

times
2

nn
xxx 







   Hence C contains a path P 

joining 0 and 
2

n
 of length .34 t  Since  SZCayS

n
n,,

2
  contains a chord 

connecting 0 and .
2

n
 Therefore, P together with the chord 








2

,0
n

 forms a 

cycle of length  14 t  in  ., SZCay n  Hence by theorem 1.10,  SZCay n,  is 

neighbourhood-prime.  

Theorem 2.17. Let 3n  and  .3mod0n  Then, 
















3

2
,

3
,

nn
ZCay n  is 

not neighbourhood-prime.  

Proof. Let 3n  and  .3mod0n  Let .
3

2
,

3 







nn
S  Then 

  .
3

, 3C
n

SZCay n   Further, to label each cycle we need a minimum of two 

odd positive integers and so totally 
3

2n
 odd positive integers. But there       

are only 






2

n
 odd positive integers .n  Also 

3

2

2

nn







  and so the 

neighbourhood-prime labeling is not possible. Hence  SZCay n,  is not 

neighbourhood-prime.  

Observation 2.18. (1)   i
n abDCay ,2  where 10  ni  and 

  2
2 ,

n

n bDCay  where n is even, are isomorphic to 2nK  and so 

neighbourhood-prime vacuously.  

Theorem 2.19. Let S be a Cayley set of a dihedral group nD2  such that 

  ., Sab   Then,  SDCay n,2  is neighbourhood-prime.  

Proof. Let S be a Cayley set of a dihedral group nD2  satisfying the 

hypothesis of the theorem. Since Sb   and    SDCaynbo n,, 2  contains 

two disjoint cycles  bbbbbC n ,1,,,,, 132
1

   and  ,,,, 32
2 abababC   

abaabn ,,1  of length n. Hence 1C  contains a path 1P  joining b and 1 of 



NEIGHBOURHOOD-PRIME LABELING OF CERTAIN … 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 4, February 2022 

2179 

length 1n  and 2C  contains a path 2P  joining a and 1nab  of length .1n  

Since  SDCaySa n,, 2  contains an edge connecting 1 and a and also 

contains an edge connecting 1nab  and .1 baabaabn   Therefore, 1P  

     babababababbbbbabPa nnn ,,,,,,,1,,,,,,,1 1321321
2

    

is a hamiltonian cycle in  SDCay n,2  of length .2n  

Case (i). n is odd  

Then 1C  is an odd cycle in  .,2 SDCay n  Hence by theorem 1.11, 

 SDCay n,2  is neighbourhood-prime.  

Case (ii). n is even  

Then  4mod02 n  and so  .4mod02 n  Hence by theorem 1.9, 

 SDCay n,2  is neighbourhood-prime.  

Theorem 2.20. Let S be a Cayley set of a dihedral group nD2  such that 

  Sabb ii ,  where 11  ni  and   .1,gcd ni  Then  SDCay n,2  is 

neighbourhood-prime.  

Proof. Let S be a Cayley set of a dihedral group nD2  satisfying the 

hypothesis of the theorem. Let .11  ni  Since Sbi   and 

    .,1,gcd nboni i   Then  SDCay n,2  contains two disjoint cycles 

   i
rrri bbbbbC inii ,1,,,,, 132

1
   and    ,,,,, 132

2
inii

rrri ababababC    

iaba,  where xr  remainder of  ,mod nx  of length n. Hence 1C  contains a 

path 1P  joining ib  and 1 of length 1n  and 2C  contains a path 2P  joining 

iab  and a of length .1n  Since  SDCaySab n
i ,, 2  contains an edge 

connecting 1 and 𝑎𝑏𝑖 and also contains an edge connecting a and .ii baab   

Therefore,        ,,,1,,,,,,,1 2132
21

iinii rirrriii ababbbbbbaPabP    

  i
rr

baabab ini ,,,, 13   is a hamiltonian cycle in  SDCay n,2  of length 2𝑛.  

Case (i). n is odd  
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Then 1C  is an odd cycle in  .,2 SDCay n  Hence by theorem 1.11, 

 SDCay n,2  is neighbourhood-prime.  

Case (ii). n is even  

Then  4mod02 n  and so  .4mod02 n  Hence by theorem 1.9, 

 SDCay n,2  is neighbourhood-prime.  
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