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Abstract 

Ferro convection induced by magnetic field dependent viscosity in an anisotropic porous 

medium using Darcy model is studied with computational methods. Galerkin method is applied. 

Linear stability analysis is carried out for both stationary and oscillatory modes. The critical 

magnetic Rayleigh number is computed for various values of the parameters which characterize 

the flow. It is found that the increase in magneto viscosity stabilizes the system through 

stationary mode; Numerical computations are made and illustrated graphically. 

I. Introduction 

Computational Fluid Dynamics (CFD) is a sophisticated computationally 

based design and analysis technique. The crucial elements of computational 

fluid dynamics are discretization, grid generation and coordinate 

transformation, solution of the coupled algebraic equations, turbulence 

modeling and visualization. The study of ferroconvection in the fluid 

saturating a porous medium of very large permeability assumes significance. 



SURESH GOVINDAN and T. GAYATHRI 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 2, December 2021 

938 

The effect of anisotropy on ferroconvective instability saturating a porous 

medium of very large permeability has been analysed by Sekar et al. [1]. But 

the normal ferrofluid will have large concentration of ferromagnetic particle 

and hence it is advisable to consider the effect of anisotropic character due to 

anisotropic distribution of particles. Neild [2] investigated the convection in a 

porous medium with inclined temperature gradient of finite magnitude and 

confined between perfectly conducting planes using linear stability analysis. 

The modeling the effects of magnetic field or rotation on flow in a porous 

medium; momentum equation and anisotropic permeability analogy has been 

discussed as a technical note by Nield [3]. 

In the present investigation [4].an attempt is made to find the effect of 

magnetic field dependent viscosity on the onset of ferroconvetion in an 

anisotropic densely packed porous medium. The distribution is assumed to be 

isotropic along the horizontal plane and anisotropic along the vertical plane. 

The anisotropy comes from the porous medium. Hence the velocity is 

proportional to the tensor permeability and one can assume that the tensor is 

diagonal. The finite element method (FEM) [5] is used for finding 

approximate solution of partial differential equations (PDE) as well as of 

integral equations such as the heat transport equation. Galerkin method as 

employed in getting the numerical solutions. Numerical computations are 

made and are illustrated graphically also. 

II. Mathematical Formulation 

Consider an infinitely spread layer of Boussinesqferrofluid of thickness 

„d’, in the presence of transverse applied magnetic field, heated from below. 

The temperature at the bottom surface 
2

d
z


  and at the upper surface 
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
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20
T

T  respectively. Further the system is 

assumed to be an anisotropic densely packed porous medium with anisotropy 

along the vertical direction which is taken as the z-axis. The fluid is assumed 

to be incompressible fluid having a variable viscosity given by 

 B 11  (1) 

The variation coefficient of magnetic field dependent viscosity  has been 
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taken to be isotropic, .321   As a first approximation for small field 

variation, linear variation of magneto viscosity has been used. 

The governing mathematical equations used are as follows: 

The continuity equation is 

0 q  (2) 

The momentum equation for an incompressible ferromagnetic fluid with 

variable viscosity  is 

  q
k

BHgp
Dt

Dq 
0  (3) 

The temperature equation for an incompressible fluid which obeys the 

modified Fourier’s law as given by Finlayson [8] is 
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The density equation of state for Boussinesq magnetic fluid is 

   TT10  (5) 

The magnetization depends on the magnitude the magnetic field and 

temperature which can be written as 

 THM
H

H
M ,  (6) 

In order to evaluate the partial derivatives of magnetization M, the 

linearised magnetic equation of state, as followed by Finlayson [8] is 

   aTTKHHMM  200   (7) 

The Maxwell‟s equation for non-conducting fluids is 

0 H  (8) 

0 B  (9) 

The magnetic field and magnetic induction are related by 

 HMB  0  (10) 
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Basic state is assumed to be quiescent. A small perturbation has been 

imparted on all the dynamical variables and linear theory is used. Modified 

Navier Stokes equations on linearization: 
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Further analysis and techniques has been carried out as followed by 

Vaidyanathan et al. [6]. Which leads to the following vertical component of 

momentum equation: 
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III Normal mode Analysis 

The normal mode solutions of all dynamical variables can be written as 

      ykxkitzftzyxf yx  exp,,,,  (15) 
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Equation (4) is linearised and the resulting equation gives upon using 

11 H  
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where,  

.020 HKCc HV    (18) 

On simplification, 
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Using appropriate non-dimensional terms, we get 
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where the following non-dimensional parameters are used 
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IV. Numerical Solution Using Galerkin Method 

The boundary conditions for stress free boundaries are 

02   DTwDw  
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Using Galerkin technique the power series expansion for the variables 

are taken as 
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so as to satisfy the boundary conditions 

We get the equations 
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For the existence of non-trivial solutions for the above equations the 

determinant of the coefficients of A, B, and C in “(28)”, “(29)”, “(30)” is equated 

to 0. 

Stationary stability is analysed using the expression 
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V. Results and Discussions 

The effect of magnetic field dependent viscosity on ferroconvection in an 

anisotropic densely packed porous medium has been analysed using Darcy 
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model. The permeability value of the porous medium has been taken using 

the values proposed by Walker and Homsy [7]. The magnetization parameter 

1M  has been taken to be 1000 [9]. For these fluids 2M  is assumed to have 

negligible value and hence taken to be zero. The magnetization parameter 

3M  is varied from 1 to 10. The effect of anisotropy is studied by taking the 

anisotropic parameter , which is the ratio of vertical to horizontal 

permeability and is varied form 1 to 70 [8]. The permeability of the porous 

medium is varied from 0.0001 to 0.001, the coefficient of magnetic field 

dependent viscosity  has been analysed form 0.01 to 0.05 [6]. 

The Critical magnetic thermal Rayleigh number cN  is obtained for 

different values of permeability, anisotropic parameter , coefficient of 

magnetic field dependent viscosity parameter , and the magnetization 

parameter .3M  From the Figure 1 and 2, one can find that oscillatory 

instability is not possible for a densely packed anisotropic porous medium 

having a variable viscosity. One can also observe from the figures as the 

coefficient of magnetic field dependent viscosity  is increased, the critical 

magnetic thermal Rayleigh number cN  also increases, this would imply that 

the magnetic field dependent viscosity stabilizes through viscosity variations 

with respect to magnetic field. 

It is clear from the Figures 1 and 2 that, as the anisotropy parameter  

increases, the critical magnetic thermal Rayleigh number cN  is found to 

decrease. This indicates that, the system destabilizes. Similar results were 

also found for different values of the permeability parameter. 

From the above discussion and analysis one can conclude that the 

variable viscosity tends to stabilizes the system, when compared with the 

constant viscosity system. The increase in magnetization tends to destabilize 

the system. The presence of anisotropic densely packed porous medium 

destabilizes the system. On comparison with theoretical results obtained by 

the author in an earlier paper [4], the present computational results are 

found to be fully in agreement to the possible extent of accuracy. 
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Table 1. Marginal stability of magnetic field dependent viscosity of Ferro 

fluid saturating a densely packed porous medium destabilize by stationary 

mode having .0,1000 21  MM  

1k    3M   ca   cc RMN 1  

0.0001 

10 

0.01 

1 5.17 237643 

3 5.17 195968 

5 5.17 188211 

7 5.17 185308 

0.03 

1 5.17 238653 

3 5.17 198458 

5 5.17 192179 

7 5.17 190755 

0.05 

1 5.17 239664 

3 5.17 200947 

5 5.17 196148 

7 5.17 196202 

30 

0.01 

1 5.17 203619 

3 5.17 167477 

5 5.17 160434 

7 5.17 157555 

0.03 

1 5.17 203956 

1 5.17 203956 

3 5.17 168307 

5 5.17 161757 

0.05 

7 5.17 159371 

1 5.17 204293 

3 5.17 169136 
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5 5.17 163079 

Table 2. Marginal stability of magnetic field dependent viscosity of Ferro 

fluid saturating a densely packed porous medium destabilize by stationary 

mode having .0,1000 21  MM  

1k    3M   ca   cc RMN 1  

0.0001 

10 

0.01 

1 5.17 237643 

3 5.17 195968 

5 5.17 188211 

7 5.17 185308 

0.03 

1 5.17 238653 

3 5.17 198458 

5 5.17 192179 

7 5.17 190755 

0.05 

1 5.17 239664 

3 5.17 200947 

5 5.17 196148 

7 5.17 196202 

30 

0.01 

1 5.17 203619 

3 5.17 167477 

5 5.17 160434 

7 5.17 157555 

0.03 

1 5.17 203956 

1 5.17 203956 

3 5.17 168307 

5 5.17 161757 

0.05 

7 5.17 159371 
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1 5.17 204293 

3 5.17 169136 

5 5.17 163079 

 

Figure 1. 

 

Figure 2. 

where 

-1k Brinkman Number 

- Anisotropy parameter 

- Coefficient of Magnetic field dependent viscosity 

-3M Magnetization 

-ca Critical value Number 
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-cN Thermal Rayleigh Number 
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