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Abstract 

The purpose this paper is to establish the Ulam-Hyers stability and Ulam-Hyers-Rassias 

stability of the Damped Helmholtz Nonlinear differential equations with initial conditions. 

Moreover, the Ulam stability constants for this Damped Helmholtz equations are obtained. 

1. Introduction and Preliminaries 

A classical question in the theory of functional equation is the following : 

“when is it true that a function which approximately satisfies a functional 
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equation g must be close to an exact solution of g?” If the problem accepts a 

solution, we say that the equation g is stable. 

The Hyers-Ulam stability problem was introduced by S. M. Ulam [1] in 

1940. He discussed the number of important unsolved problems in a talk 

concerning the study of stability problems for various functional equations. 

Among such problems, a problem concerning the stability of functional 

equations “Give conditions for a order mapping near approximately linear 

mapping to exist”. D. H. Hyers [2] found the partial solution of the Ulam’s 

problem on Banach spaces in 1941. Further more, in 1978, Th. M. Rassias [3] 

formulated and proved the special case of Hyers Theorem. For a decades, 

many researchers have extended the theory of Hyers-Ulam stability to other 

functional equations, and generalized the Hyers result in different directions 

(See for example, [4, 5, 6, 7, 8]). 

Recently, Hyers-Ulam stability of differential equation has been given 

attention. Obloza [9, 10] was the first author, who introduced the Hyers-Ulam 

stability of linear differential equation and connections between Hyers and 

Lyapunov stability of the ordinary differential equation. Alsina and Ger [11], 

continued and investigated the Hyers-Ulam stability of the differential 

gg '  and this result was generalized by Miura [12], Takahasi [13] and Jung 

[14, 15, 16, 17, 18] they proved the Hyers-Ulam stability of linear differential 

equation. 

Thereafter, The theory of Hyers-Ulam stability of differential equations 

was developed in a series of papers [19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 

31, 32, 33] and the investigation is ongoing. 

Now a days, only some authors are discussing the Hyers-Ulam stability of 

Nonlinear differential equations (for example [34, 35, 36, 37, 38, 39]). 

Motivated by the above ideas, our main intention is to obtain the Ulam-

Hyers-Rassias stability and Ulam-Hyers stability of the Damped Helmholtz 

oscillator. The Helmholtz oscillator is nonlinear differential equation of 

second order, which takes the form 

 .cos'" 2 wtFxxxx   

Here, we study the Ulam-Hyers stability and Ulam-Hyers-Rassias stability of 

the Damped Helmholtz equations of the form 
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0'" 2  xxxx  (1) 

and 

 wtFxxxx cos'" 2   (2) 

with initial conditions 

    0'  axax  (3) 

where      baIICx ,,2  and ,, F  and w are positive constants. 

Now, we provide the Deffnitions of the Ulam-Hyers stability and the 

Ulam-Hyers-Rassias stability of the differential equations (1) and (2) with 

initial conditions (3). 

Definition 1. We say that the nonlinear differential equation (1) has the 

Ulam-Hyers stability, if there exists a constant 0K  with the following 

properties: For every ,0  there exists  baCx ,2  satisfies the inequality 

 2xxxx  

with initial condition (3), then there exists some  baCy ,2  satisfies the 

differential equation 0'" 2  yyyy  with     0'  ayay  such that 

    .Ktytx   We call such K as a Ulam-Hyers stability constant for the 

differential equation (1). 

Definition 2. We say that the nonlinear differential equation (2) has the 

Ulam-Hyers stability, if there exists a constant 0K  with the following 

conditions: For every  ,,,0 2 baCx   satisfies the inequality  

   wtFxxxx cos'" 2  

with initial condition (3), then there exists a  baCy ,2  satisfying the 

differential equation  wtFyyyy cos2   with initial conditions 

    0'  ayay  such that     .Ktytx   We call such K as a Ulam-

Hyers stability constant for the differential equation (2). 
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Definition 3. We say that the nonlinear differential equation (1) has the 

Ulam-Hyers-Rassias stability, if there exists a constant 0K  with the 

following properties: For every 0  and  ,,2 baCx   if there exists 

    ,0,0:  satisfying  

 txxxx  2'"  

with initial condition (3), then there exists a solution  baCy ,2  satisfying 

the differential equation 0'" 2  yyyy  with     0 ayay  such 

that       .tKtytx   We call such K as a Ulam-Hyers-Rassias stability 

constant for (1). 

Definition 4. We say that the nonlinear differential equation (2) has the 

Ulam-Hyers-Rassias stability, if there exists a constant 0K  with the 

following property: For every 0  and  ,,2 baCx   if there exists 

    ,0,0:  satisfying the inequality 

   twtFxxxx  cos'" 2  

with initial condition (3), then there exists  baCy ,2  satisfies the 

differential equation  wtFyyyy cos'" 2   with     0'  ayay  such 

that 

      .tKtytx   

We call such K as a Ulam-Hyers-Rassias stability constant for (2). 

2. Hyers-Ulam Stability 

In this section, we prove the Ulam-Hyers stability of the nonlinear 

differential equation (1) and (2) with (3). 

Theorem 5. Suppose that F,  and w are positive constants and 

 baCx ,2  such that    txtx '  and which satisfying the following in 

equation 

        
2

'" txtxtxtx  
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with initial condition (3), then the nonlinear differential equation (1) has 

Ulam-Hyers stability. 

Proof. For every 0  there exists   Cbax ,:  be a twice 

continuously differentiable function such that    txtx '  and satisfies 

the inequality 

        ,'"
2  txtxtxtx  (4) 

with initial condition (3). Let   .max txM
It

  From the inequality (4), we 

have 

        .'"
2   txtxtxtx  (5) 

Multiplying the above inequality (5) by  tx  and then integrating a to t, we 

get 

                   
t

a

t

a

t

a

t

a

t

a
dttxtxdttxtxdttxdttxtxdttx ''''"'

22  

 
t

a
dttx'  

         
t

a

t

a

t

a
dttxxxdttxtxdttx '623'6'3'6 3222   

    .'6'623
232

 
t

a

t

a
dttxdttxxx   

From which we get that 

    
t

a

t

a
dttxdttxx

22 '6'6  

 abMMM  22 66  

,
1

6





M  where,  .6 ab   

Hence   .Ktx   for all  ,, bat   where .
1

6


K  Obviously, 
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  0ty  is a solution of (1) with initial condition (3) such that 

    .Ktytx   

In the next theorem, we are going to prove the Ulam-Hyers stability of 

the nonlinear differential equation (2) with initial conditions (3). 

Theorem 6. Suppose that F,  and w are positive constants and 

 baCx ,2  such that    txtx '  and satisfies the inequality 

           wttxtxtxtx Fcos'"
2

 

with initial condition (3). Then the differential equation (2) has Ulam-Hyers 

stability. 

Proof. For every ,0  there exists   ,,: Cbax   a twice continuously 

differentiable function such that    txtx   and satisfies the inequality 

          ,cos'"
2  wtFtxtxtxtx  (6) 

with initial condition (3). Define   .:max IttxM   From the 

inequality (6), we have 

          .cos'"
2   wtFtxtxtxtx  (7) 

Multiplying the above inequality (7) by  tx'  and then integrating, we get 

                   
t

a

t

a

t

a

t

a

t

a
dttxtxdttxtxdttxdttxtxdttx ''''"'

22  

      
t

a

t

a
dttxdttxwtF


 .''cos  

           
t

a

t

a

t

a
dttxwtFxxdttxtxdttx 'cos623'6'3'6 3222  

 
t

a
dttx'6  

         
t

a

t

a

t

a
dttxwtFdttxdttxxx 'cos6'6'623

232   
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From which we obtain 

         
t

a

t

a

t

a
dttxwtFdttxdttxx 'cos6'6'6

22   

   abCMabMMM  666 22   

  
,

1

6






abC
M


 where,  .6 ab   

Hence    ,Ktx   for all  ,, bat   where  
  

.
1

6






abC
K


  

Obviously,   0ty  is a solution of (2) with initial condition (3) such that 

    .Ktytx   

3. Hyers-Ulam-Rassias Stability 

Theorem 7. Assume that F,  and w are positive constants and 

 baCx ,2  satisfies the inequality    txtx   and if there is a function 

    ,0,0:  such that          ttxtxtxtx 
2

'"  with initial 

condition (3), then the nonlinear differential equation (1) has Ulam-Hyers-

Rassias stability. 

Proof. For each ,0  there exists a twice continuously differentiable 

function   Cbax ,:  such that    txtx '  if there is a function 

    ,0,0:  satisfying the inequality  

          ,'"
2 ttxtxtxtx   (8) 

with initial condition (3). Take   .max txM
It

  From the inequality (8), we 

have 

            .'"
2  ttxtxtxtxt   (9) 

Multiplying the above in equation (9) by  tx'  and then integrating it, we get 

                
t

a

t

a

t

a

t

a
dttxtxdttxdttxtxdttxt '''"'

2  
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         
t

a

t

a
dttxtdttxtx ''

2   

              
t

a

t

a

t

a
dttxtxxdttxtxdttxt '623'6'3'6 3222   

      .'6'623
232

  
t

a

t

a
dttxtdttxxx   

From which we obtain 

      
t

a

t

a
dttxdttxtx

22 '6'6  

   abMtMM  22 66   

 
,

1

6






t
M  where,  .6 ab   

Hence     ,tKtx   for all  ,, bat   where .
1

6


K  Obviously, 

  0ty  is a solution of (1) with initial condition (3) such that 

      .tKtytx   

Theorem 8. Suppose that F,  and w are positive constants and 

 baCx ,2  such that    txtx '  and satisfies the inequality 

           twtFtxtxtxtx  cos'"
2

 

with (3), then the nonlinear differential equation (2) has Ulam-Hyers-Rassias 

stability. 

Proof. For every ,0  there exists a   baCx ,2  such that 

   txtx '  if there is a function     ,0,0:  satisfies 

            ,cos'"
2 twtFtxtxtxtx   (10) 

with initial condition (3). Let   .max txM
It

  From the inequality (10), we 

have 
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              .cos'"
2  twtFtxtxtxtxt   (11) 

Multiplying the above inequality (11) by  tx'  and then integrating a to t, we 

obtain 

                
t

a

t

a

t

a

t

a
dttxtxdttxdttxtxdttxt '''"'

2  

              
t

a

t

a

t

a
dttxtdttxwtFdttxtx ''cos'

2   

             
t

a

t

a

t

a
dttxwtFxxdttxtxdttxt 'cos623'6'3'6 3222  

    
t

a
dttxt '6  

          .'6'cos6'623
232

   
t

a

t

a

t

a
dttxtdttxwtFdttxxx   

From which we get that 

           
t

a

t

a

t

a
dttxwtFdttxdttxtx 'cos6'6'6

22   

     abCMabMMtM  666 22   

    
,

1

6






abCt
M


 where,  ab  6  

Hence      ,tKtx    for all  ,, bat   where 

   
    

.
1

6






abCt
tK


  

Obviously   0ty  is a solution of (2) with equation (3) such that 

       .tKtytx    

This completes the proof.  

Conclusion 

The Definition of Hyers-Ulam stability and Hyers-Ulam-Rassias stability 
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have applicable significance since it means that if one is studying the Hyers-

Ulam stable system then one does not have to reach the exact solution. 

(Which usually is quite difficult or time consuming). This is quite useful in 

many applications, for example Numerical Analysis, Optimization, Biology, 

and Economics etc., where finding the exact solution is quite difficult. Finally, 

in this paper, we studied the Ulam-Hyers stability and Ulam-Hyers-Rassias 

stability of the Damped Helmholtz Nonlinear differential equations with 

initial conditions. Moreover, the Ulam stability constants for this Damped 

Helmholtz equations are obtained. It will be very useful to the readers to 

apply more problems. 
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