

PELL LABELING AND MEAN SQUARE SUM LABELING FOR THE EXTENDED DUPLICATE GRAPH OF QUADRILATERAL SNAKE

P. INDIRA, B. SELVAM and K. THIRUSANGU

Research Scholar, S.I.V.E.T College University of Madras, Chennai, India E-mail: indu-sel@yahoo.in

Department of Mathematics S.I.V.E.T. College, Gowrivakkam Chennai-600 073, India E-mail: kbmselvam@gmail.com kthirusangu@gmail.com

Abstract

In this paper, we investigate the extended duplicate graph of quadrilateral snake graph admits Pell labeling and mean square sum labeling.

1. Introduction

Most graph labeling methods trace their origin to one introduced by Rosa [2] in 1967. E. Sampathkumar [3] introduced the concept of duplicate graph. Shaima [5] introduced a new labeling technique called the Pell labeling. The concept of mean square sum labeling was introduced by C. Jayasekaran, S. Robinson Chellathurai and M. Jaslin Melbha [6] and they investigated the mean square sum labeling of several standard graphs. Thirusangu et al. [4], have introduced the concept of extended duplicate graph.

²⁰¹⁰ Mathematics Subject Classification: 05C78.

Keywords: Quadrilateral snake graph, Duplicate graph, Extended duplicate graph, Pell labeling, Mean square sum labeling.

Received November 27, 2019; Accepted May 17, 2020

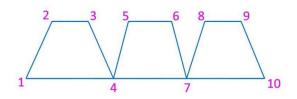
2. Preliminaries

We give the following definitions and examples which are useful for this paper.

Definition 2.1. Quadrilateral snake graph:

A quadrilateral snake QS_m is obtained from a path $u_1, u_2, u_3, \dots u_n$ by joining u_i and u_{i+1} to two new vertex v_i and w_i respectively and then joining v_i and $w_i, 1 \le i \le n-1$, where 'm' is the number of edges of the path. In general, a quadrilateral snake has 3m + 1 vertices and 4m edges.

QUADRILATERAL SNAKE GRAPH



Definition 2.2. Duplicate graph:

Let G be a simple graph with vertex set V and edge set E. The duplicate graph of G is $DG = (V_1, E_1)$ where the vertex set V_1 is the union of V and V' and the intersection of V and V' is ϕ and $f : V \to V'$ is bijective. The edge set E_1 of DG is defined as the edge $ab \in E$ if and only if both edges ab' and a'b are in E_1 .

Definition 2.3. Extended duplicate graph of Quadrilateral snake:

Let $DG = (V_1, E_1)$ be a duplicate graph of the quadrilateral snake graph G(V, E) Extended duplicate graph of quadrilateral snake graph is obtained by adding the edge $v_2v'_2$ to the duplicate graph and it is denoted by $EDG(QS_m)$. Clearly it has 6m + 2 vertices and 8m + 1 edges, where 'm' is the number of edges.

Definition 2.4. Pell labeling:

Let G be a graph with p vertices. If there exist a mapping

 $f: V(G) \rightarrow \{0, 1, 2, 3, \dots, p-1\}$ such that the induced function $f^*: E(G) \rightarrow N$ given by $f^*(uv) = f(u) + 2f(v)$, for every $uv \in E(G)$ are all distinct, where $u, v \ge 0$, then the function f is called a Pell labeling. A graph which admits Pell labeling is called Pell graph.

Definition 2.5. Mean square sum labeling:

Let G(V, E) be a graph. A bijection $f: V \to \{0, 1, 2, 3, ..., p-1\}$. Then G is said to be a mean square sum labeling if the induced function $f^*: E(G) \to N$ given by $f^*(uv) = [(f(u))^2 + (f(v))^2]/2$, for every $uv \in E(G)$ is injective.

3. Main Results

3.1. Pell Labeling

In this section we present an algorithm and prove the existence of Pell labeling for the EDG of quadrilateral snake QS_m , $m \ge 1$.

Algorithm: 3.1.1.

Procedure: (Pell labeling for $EDG(QS_m)$, $m \ge 1$)

 $V \leftarrow \{v_1, v_2, \dots, v_{3m}, v_{3m+1}, v'_1, v'_2, \dots, v'_{3m}, v'_{3m+1}\}$ $E \leftarrow \{e_1, e_2, \dots, e_{4m}, e_{4m+1}, e'_1 e'_2, \dots, e'_{4m}\}$ $v_1 \leftarrow 0, v'_1 \leftarrow 1$ for i = 0 to (m - 1)/2for j = 0 to 1 $v_{2+6i+2j} \leftarrow 3 + 4j + 12i$

$$v'_{2+6i+2j} \leftarrow 2+4j+12i$$

end for

end for

```
for i = 0 to (m - 2)/2
for j = 0 to 1
v_{5+6i+2j} \leftarrow 8 + 12i + 4j
v'_{5+6i+2j} \leftarrow 9 + 12i + 4j
end for
```

end for

for i = 0 to (m - 1)/2 $v_{3+6i} \leftarrow 4 + 12i$ $v'_{3+6i} \leftarrow 5 + 12i$ end for for i = 0 to (m - 2)/2 $v_{6+6i} \leftarrow 11 + 12i$ $v_{6+6i} \leftarrow 10 + 12i$ end for

end procedure

Theorem 3.1.2. The extended duplicate graph of quadrilateral snake QS_m , $m \ge 1$ admits Pell labeling.

Proof. Let QS_m , be the quadrilateral snake graph. Let $EDG(QS_m)$ be the extended duplicate graph of quadrilateral snake and has 6m + 2 vertices and 8m + 1 edges.

Using the algorithm 3.1.1, the vertices function $f: G \rightarrow \{0, 1, 2, 3, ..., (p-1)\}$ as follows:

The vertices v_1 receive the label 0 and v_1 ' receive the label 1;

For $0 \le i \le (m-1)/2$ and $0 \le j \le 1$, the vertices $v_{2+2j+6i}$ receive the

Advances and Applications in Mathematical Sciences, Volume 20, Issue 9, July 2021

1712

label 3 + 4j + 12i and $v'_{2+2j+6i}$ the vertices $v'_{2+2j+6i}$ receive the label 2 + 4j + 12;

For $0 \le i \le (m-2)/2$ and $0 \le j \le 1$, the vertices $v_{5+2j+6i}$ receive the label 8 + 4j + 12i and the vertices $v'_{5+2j+6i}$ receive the label 9 + 4j + 12i;

For $0 \le i \le (m-1)/2$ the vertices v_{3+6i} receive the label 4 + 12i and the vertices v'_{3+6i} receive the label 5 + 12i;

For $0 \le i \le (m-2)/2$ the vertices v_{6+6i} receive the label 11 + 12i and the vertices v'_{6+6i} receive the label 10 + 12i.

Thus, the entire 6m + 2 vertices are labeled.

To obtain the labels for edges, we define the induced function $f^*(uv) = f(u) + 2f(v)$, for every $uv \in E(G)$ is bijective.

The induced function yields the label 7 for the edge e_{3m+1} ;

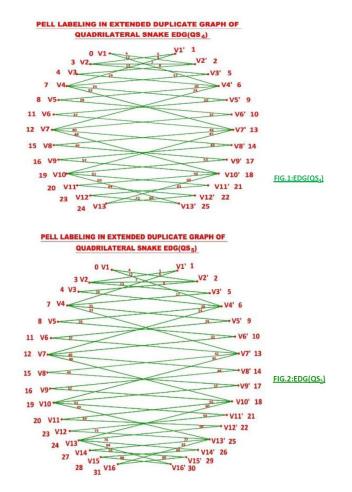
For $0 \le i \le (m-1)/2$ and $0 \le j \le 1$, the edges $e_{1+3j+8i}$ receive the label 4 + 12j + 36i; the edges $e'_{1+3j+8i}$ receive the label 5 + 12j + 36i the edges e_{2+j+8i} receive the label 12 + j + 36i and the edges e'_{2+j+8i} receive the label 9 - j + 36i;

For $0 \le i \le [(m-2)/2]$ and $0 \le j \le 1$, the edges $e_{5+3j+8i}$ receive the label 25 + 12j + 36i; the edges e_{6+j+8i} receive label 33 - 5j + 36i; the edges $e'_{5+3j+8i}$ receive label 20 + 12j + 36i and the edges e'_{6+j+8i} receive label 24 + 5j + 36i.

Thus the entire 8m + 1 edges are labeled and satisfied the required condition.

Hence the extended duplicate graph of quadrilateral snake graph $QS_m, m \ge 1$ admits Pell labeling.

Example 3.1.3. A graph and its Pell labeling is shown in figure 1 and figure 2



3.2. Mean Square Sum Labeling

Here we present an algorithm and prove the existence of mean Square sum labeling for the EDG of Quadrilateral snake QS_m , $m \ge 1$.

Algorithm 3.2.1.

Procedure: (Mean square sum labeling for $EDG(QS_m)$, $m \ge 1$)

 $V \leftarrow \{v_1, \, v_2, \, \dots, \, v_{3m}, \, v_{3m+1}, \, v'_1 \, , \, v'_2 \, , \, \dots, \, v'_{3m} \, , \, v'_{3m+1}\}$

 $E \leftarrow \{e_1, e_2, \dots, e_{4m}, e_{4m+1}, e'_1, e'_2, \dots, e'_{4m}\}$

 $v_1 \leftarrow 0, v'_1 \leftarrow 1$

Advances and Applications in Mathematical Sciences, Volume 20, Issue 9, July 2021

1714

for
$$i = 0$$
 to $(m - 1)/2$
for $j = 0$ to 1
 $v_{2+6i+2j} \leftarrow 3 + 4j + 12i$
 $v'_{2+6i+2j} \leftarrow 2 + 4j + 12i$
end for

end for

```
for i = 0 to (m - 2)/2
for j = 0 to 1
v_{5+6i+2j} \leftarrow 8 + 12i + 4j
v'_{5+6i+2j} \leftarrow 9 + 12i + 4j
end for
```

end for

for i = 0 to (m - 1)/2 $v_{3+6i} \leftarrow 4 + 12i$ $v'_{3+6i} \leftarrow 5 + 12i$

end for

for
$$i = 0$$
 to $(m - 2)/2$
 $v_{6+6i} \leftarrow 11 + 12i$
 $v_{6+6i} \leftarrow 10 + 12i$

end for

end procedure

Theorem 3.2.2. The extended duplicate graph of quadrilateral snake QS_m , $m \ge 1$ admits mean square sum labeling.

1716 P. INDIRA, B. SELVAM and K. THIRUSANGU

Proof. Let QS_m , be the quadrilateral snake graph. Let $EDG(QS_m)$ be the extended duplicate graph of quadrilateral snake and has 6m + 2 vertices and 8m + 1 edges.

Defining the set of vertices and edges are

 $V(G) = \{v_1, v_2, v_3, \dots, v_{3m}, v_{3m+1}, v'_1, v'_2, \dots, v'_{3m}, v'_{3m+1}\}$ $E(G) = \{e_1, e_2, e_3, \dots, e_{4m}, e_{4m+1}, e'_1, e'_2, \dots, e'_{4m}\}.$

Using the algorithm 3.2.1, the vertices function $f: G \rightarrow \{0, 1, 2, 3, ..., (p-1)\}$ as follows: The vertices v_1 receive the label 0 and v'_1 receive the label 1;

For $0 \le i \le (m-1)/2$ and $0 \le j \le 1$, the vertices $v_{2+2j+6i}$ receive the label 3 + 4j + 12i and the vertices $v'_{2+2j+6i}$ receive the label 2 + 4j + 12i;

For $0 \le i \le (m-2)/2$ and $0 \le j \le 1$, the vertices $v_{5+2j+6i}$ receive the label 8 + 4j + 12i and the vertices $v'_{5+2j+6i}$ receive the label 9 + 4j + 12i;

For $0 \le i \le (m-1)/2$ the vertices v_{3+6i} receive the label 4 + 12i and the vertices v'_{3+6i} receive the label 5 + 12i;

For $0 \le i \le (m-2)/2$ the vertices v_{6+6i} receive the label 11 + 12i and the vertices v'_{6+6i} receive the label 10 + 12i.

Thus, the entire 6m + 2 vertices are labeled.

To obtain the labels for edges, we define the induced function $f^*: E(G) \to N$ given by $f^*(uv) = ([f(u)]^2 + [f(v)]^2)/2$, for every $uv \in E(G)$ is bijective.

The induced function yields the label 7 for the edge e_{4m+1} ;

(i) $f^*(v_i, v'_{i+1}) = 2(2i^2 - 2i + 1)$ for $i = 1, 3, 5 \cdots (2n - 1), n \in N$. (ii) $f^*(v'_i, v_{i+1}) = 2(2i^2 - 2i + 1)$ for $i = 2, 4, 6 \cdots (2n), n \in N$. (iii) $f^*(v'_i, v_{i+1}) = 4i^2 + 1$ for $i = 1, 3, 5, \dots, (2n - 1), n \in N$.

(iv) $f^*(v_i, v'_{i+1}) = 4i^2 + 1$ for $i = 2, 4, 6...(2n), n \in N$. (v) $f^*(v'_{3i-2}, v_{3i+1}) = 18(2i^2 - 2i + 1)$ for $i = 1, 3, 5...(2n - 1), n \in N$. (vi) $f^*(v'_{3i-2}, v_{3i+1}) = 18(2i^2 - 2i + 1)$ for $i = 2, 4, 6, 8...(2n), n \in N$. (vii) $f^*(v'_{3i-2}, v_{3i+1}) = 36i^2 - 24i + 13$ for $i = 1, 3, 5, 7...(2n - 1), n \in N$. (vii) $f^*(v_{3i-2}, v'_{3i+1}) = 36i^2 - 24i + 13$ for $i = 2, 4, 6...2n, n \in N$.

Thus the entire 8m + 1 edges are labeled and satisfied the required condition.

Hence the extended duplicate graph of quadrilateral snake graph $QS_m, m \ge 1$ admits mean square sum labeling.

Example 3.2.3. A graph and its Mean square sum labeling is shown in figure 3.

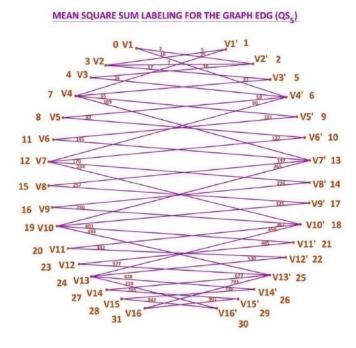


Figure 3.

4. Conclusion

In this paper, we have presented algorithms and investigate the extended duplicate graph of quadrilateral snake graph $(QS_m, m \ge 1)$ admits Pell labeling and mean square sum labeling.

References

- J. A. Gallian, A Dynamic Survey of graph labeling, the Electronic Journal of Combinatorics 19, DS6 (2015).
- [2] A. Rosa, On certain Valuations of the vertices of a graph, Theory of graphs (Internat. Symposium, Rome, July 1966), Gordon and Breech, N. Y. and Dunodparis (1967), 349-355.
- E. Sampathkumar, On duplicate graphs, Journal of the Indian Math. Soc. 37 (1973), 285-293.
- [4] K. Thirusangu, B. Selvam and P. P. Ulaganathan, Cordial labelings in extended duplicate Graph of twig graphs, International Journal of Computer, Mathematical Sciences and Applications 4(3-4) (2010), 319-328.
- [5] J. Shaima, Pell labeling for some graphs, Asian Journal of Current Engineering and Maths 2 (2013), 267-272.
- [6] C. Jayasekaran, S. Robinson Chellathurai and M. Jaslin Melbha, Mean square sum labeling of some graphs, Mathematical Sciences International Research Journal 4(2) (2015), 238-242.