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Abstract 

In this paper, we study a single arrival retrial queue with second optional service and 

exponentially distributed multiple working vacation. The server gives service to clients, one by 

one, on a FCFS basis. Soon after fulfillment of his administration the client may select the 

second optional service with probability or the client may leave the framework without taking 

the second optional service with probability ( ).1=+ qpq  After consummation of client’s service 

if there is no client in the circle the server may take a numerous working vacation. Using 

supplementary variable method, we obtain the probability generating function for the number of 

customers in the orbit. Some particular cases are discussed. 

1. Introduction 

Retrial queueing systems are described by the feature that the arriving 

customers who find the server busy join the retrial orbit to try their requests 

again. Retrial queues are widely and successfully used as Mathematical 

models of several Computer systems and telecommunication networks. Choi 

et al. [4] analysed an 1MM  retrial queue with general retrial times. 

Martin and Gomez-Corral [9] considered an 1MM  retrial queue with 

linear control policy. Sherman and Kharoufeh [18] studied an 1MM  

retrial queue with unreliable server. In the queueing theory, vacation queues 

and retrial queues have been intensive research topics; we can find general 

models in Artalejo and Gomez-Corral [2]. In 2002, Servi and Finn [17] first 
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introduced working vacation policy and studied an 1MM  working 

Vacation queues. The study of queueing system with working vacations can 

also provide the theory and analysis method to design the optimal lower 

speed period. Wu and Takagi [20] extended the WVMM 1  queue to an 

WVMM 1  queue using the matrix-analytic method, Baba [3] considered a 

1MGI  queue with working vacations. Krishnamoorthy and Sreenivasan 

[8] analysed an 2MM  queue with working vacations. Do [6] studied an 

1MM  retrial queue with working vacation. Zhang and Xu [21] considered 

an WVMM 1  queue with N-policy. Pazhani Bala Murugan and 

Vijaykrishnaraj [15, 16] studied A bulk arrival retrial queueing models with 

exponentially distributed multiple working vacation. 

2. Model Description 

We consider a single arrival queueing system where the primary 

customers arrive according to a Poisson process with arrival rate ( ).0  We 

assume that there is no waiting space and therefore if an arriving customer 

(external or repeated) finds the server occupied, he leaves the service area 

and joins a pool of blocked customers called orbit. We will assume that only 

the customer at the head of the orbit is allowed to reach the server at a 

service completion instant. The retrial time follows a general distribution, 

with distribution function ( ).xB  Let 𝑏(𝑥) and ( )B  denote the probability 

density function and Laplace Stieltjes Transform of ( )xB  respectively for 

regular service period and let ( ) ( )Axa ,  denote the probability density 

function and Laplace Stieltjes Transform of ( )xA  respectively for working 

vacation period. Just after the completion of a service, if any customer is in 

orbit the next customer to gain service is determined by a competition 

between the primary customer and the orbit customer.  

The service discipline is FCFS. Each arriving customer undergoes the 

first essential service which has general distribution with distribution 

function ( ),
1

xSb  the probability density function ( )xSb1
 and the Laplace-

Stieltjes transform (LST) ( )
1b

S  where 
1b

S  is the service time of the first 

essential service. 
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After completion of first essential service the customer may opt for the 

second optional service with probability p or the customer may leave the 

system without taking the second optional service with probability 

( ).1=+ qpq  The second optional service follows the general distribution 

with the distribution function ( ),
2

xSb  the probability density function ( )xSb2
 

and the LST ( )


2bS  where 
2bS  is the service time of the second optional 

service. 

During the working vacation period the server also provides two types of 

services. The first essential service time 
1v

S  of a typical customer follows a 

general distribution with the distribution function ( )  ( ),
11

xSxS vv  the 

probability density function and ( ),
1


vS  the LST] and the second optional 

service time 
2vS  also follows a general distribution with the distribution 

function ( )  ( ),
22

xsxS vv  the probability density An 1GM  Retrial Queue 

with Second Optional Service and Multiple Working Vacation function and 

( ),
2


vS  the LST]. 

Further, it is noted that the service interrupted at the end of a vacation is 

lost and it is restarted with different distribution at the beginning of the 

following service period. Inter arrival times, service times and working 

vacation times are mutually independent of each other. 

Let us define the following random variables.  

( )-tN  the orbit size at time t 

( )-0 tA the remaining retrial time in working vacation period  

( )-0 tB the remaining retrial time in regular service period 

( )-0 tS
iv

the remaining service time in working vacation period, for 2,1=i  

( )-0 tS
ib

the remaining service time in regular service period, for 2,1=i  

( ) 0=tY  if the server is on working vacation period at time t but not 
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occupied, 1 if the server is in regular service period at time t but not occupied, 

2 if the server is busy for giving first essential service in working vacation 

period at time t, 3 if the server is busy for giving second optional service in 

working vacation period at time t, 4 if the server is busy for giving first 

essential service in regular service period at time t, 5 if the server is busy for 

giving second optional service in regular service period at time t.  

so that the supplementary variables ( ) ( ) ( ) ( ) ( )tStStStBtA
bvv
00000

121
,,,,  

and ( )tS
b
0

2
 are introduced in order to obtain the bivariate Markov Process 

( ) ( ) ,0;,  tttN  where ( )  ( ) ( ) ( )tBtYiftAt 00 ,0==  if ( ) ( )tStY
v
0

1
;1=  if 

( ) ( ) ( ) ( ) ( ) ( ) ( ) .5;4;3,2 000

222
=== tYiftStYiftStYiftStY

bbv
 We define the 

following limiting probabilities: 

( ) ( ) 0,0Prlim0,0 ===
→

tYtNQ
t

 

 ( ) ( ) ( )  1;,0,Prlim 0
,0 +===

→
ndxxtAxtYntNQ

t
n  

 ( ) ( ) ( )  1;,1,Prlim 0
,0 +===

→
ndxxtBxtYntNP

t
n  

 ( ) ( ) ( )  0;,2,Prlim 0
,1

1
+===

→
ndxxtSxtYntNQ

vt
n  

 ( ) ( ) ( )  0;,3,Prlim 0
,2

2
+===

→
ndxxtSxtYntNQ

vt
n  

 ( ) ( ) ( )  0;,4,Prlim 0
,1

1
+===

→
ndxxtSxtYntNP

bt
n  

 ( ) ( ) ( )  .0;,5,Prlim 0
,2

2
+===

→
ndxxtSxtYntNP

bt
n  

We define the Laplace Stieltjes Transform and the probability generating 

functions as follows, for ,2,1=i  ( ) ( )
 − =
0

;dxxSeS
ii b

x
b  

( ) ( ) ( ) ( )
 − − ==
00

;; dxxaeAdxxSeS x
v

x
v ii
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( ) ( ) ( ) ( ) ( ) ( )


−


− ===
0

,0
0

,0,0
0

,0 ;0;; dxxQQdxxQeQdxxbeB nnn
x

n
x  

( ) ( ) ( ) ( ) ( ) ( )


−


− ===
0

,0,0
0

,
0

,,, ;;0; dxxPePdxxQQdxxQeQ n
x

nninini
x

ni  

( ) ( ) ( ) ( ) ( ) ( )


=




=




 ===

1

,0

1

,0,0
0

0,0,0 ;00,;,;0

n

n
n

n

n
n

nnn zQzQzQzQdxxPP  

( ) ( ) ( ) ( ) ( )


=




=

 ==

1

,

1

,00 0,;,;00,

n

i
n

ni

n

i
n

n zQzQzQzQzQ  

( ) ( ) ( ) ( )


=




=

 ==

1

0,1

1

1, ,;00,;0

n

n
n

n

n
ni zPzQzQzQ  

( ) ( ) ( ) ( )


=




=

 ==

1

0,0

1

0,0 0,;00,,

n

n
n

n

n
n zPzPzPzP  

( ) ( ) ( ) ( )


=




=

 ==

1

,

1

,0 0,;,;0

n

i
n

ni

n

i
n

n zPzPzPzP  

( ) ( ) ( )


=




=

 ==

1

,

1

, .00,;0

n

n
ni

n

i
n

ni zPzPzP  

3. The Orbit Size Distribution 

By assuming that the system is in steady state condition, the differential 

difference equations governing the systems are as follows: 

( ) ( ) ( ) ( )0000 0,20,10,20,10,0 QQqPPqQ +++=  (1) 

( ) ( ) ( ) ( ) ( )xaQqxQxQ
dx

d
nnn 0,1,0,0 ++−=−  

( ) ( ) 1;0,2 + nxaQ n  (2) 

( ) ( ) ( ) ( ) ( ) ( )xsQxsQxQxQ
dx

d
vv 11 0,01,00,10,1 0 +++−=−  (3) 
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( ) ( ) ( ) ( ) ( ) ( )xsQxQxQxQ
dx

d
vnnnn 1

01,01,1,1,1 +− +++−=−  

( ) ( )


+
0

,0 1;
1

ndxxQxs nv  (4) 

( ) ( ) ( ) ( ) ( )xsQpQxQ
dx

d
v2

00 0,10,20,2 ++−=−  (5) 

( ) ( ) ( ) ( ) ( ) ( ) 1;0 1,2,1,2,2 2
+++−=− − nxQxsQpxQxQ

dx

d
nvnnn  (6) 

( ) ( ) ( ) ( ) ( ) ( ) ( )xbxbPxbqPxPxP
dx

d
nnnn +++−=− 00 ,2,1,0,0  

( )



0

,0 1; ndxxQ n  (7) 

( ) ( ) ( ) ( ) ( ) ( )


++−=−
0

0,11,00,10,1 11
0 dxxQxsxsPxPxP

dx

d
bb  (8) 

( ) ( ) ( ) ( ) ( ) ( ) ( )


−+ +++−=−
0

,11,11,0,1,1 11
0 dxxQxsxPxsPxPxP

dx

d
nbnbnnn  

 ( ) ( ) 1;
0

,01
+ 



ndxxPxs nb  (9) 

( ) ( ) ( ) ( ) ( ) ( )


++−=−
0

0,20,10,20,2 22
0 dxxQxsxsPpxPxP

dx

d
bb  (10) 

( ) ( ) ( ) ( ) ( ) ( )xsxPxsPpxPxP
dx

d
bnbnnn 22 1,2,1,2,2 0 +++−=− −  

( ) .
0

,2


dxxQ n  (11) 

Taking LST on both sides of the equation from (2) to (11) we get,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )−−+=−  AQAQqQQQ nnnnn 000 ,2,1,0,0,0  (12) 

( ) ( ) ( ) ( ) ( ) ( )−−+=− 
11 0,01,00,10,10,1 00 vv SQSQQQQ  (13) 
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( ) ( ) ( ) ( ) ( ) ( ) ( )−−+=− 
+


−


1

00 1,01,1,1,1,1 vnnnnn SQQQQQ  

( ) ( )0,01

 −− nv QS  (14) 

( ) ( ) ( ) ( ) ( ) ( )−+=− 
2

00 0,10,20,20,2 vSQpQQQ  (15) 

( ) ( ) ( ) ( ) ( ) ( ) ( )−−+=− 
−


1,2,10,2,2,2 2

00 nvnnnn QSQpQQQ  (16) 

( ) ( ) ( ) ( ) ( ) ( )000 ,2,1,0,0,0 nnnnn PBPqPPP −−=−   

( ) ( ) ( )0,0
 − nQBB  (17) 

( ) ( ) ( ) ( ) ( ) ( ) ( )000 0,11,00,10,10,1 11

 −−=− QssPPPP bb  (18) 

( ) ( ) ( ) ( ) ( ) ( )−−=− 
−


+


1,11,0,1,1,1 1

00 nbnnnn PsPPPP  

( ) ( ) ( ) ( )00 ,0,1 11

 −− nbnb PSQS  (19) 

( ) ( ) ( ) ( ) ( ) ( ) ( )000 0,20,10,20,2,2 22

 −−=− QssPpPPP bbn  (20) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).000 ,21,2,1,2,2,2 22


−

 −−−=− nbnbnnnn QsPsPpPPP  (21) 

Multiplying (12) with nz  and summed over n from 1 to ∞, we get  

( )  ( ) ( ) ( ) ( )0,0,, 100 zQqAzQzQ −=+−   

( ) ( ) ( ) ( ) ( ) ( ).00,0 0,220,1 QAzQAQqA +−+   (22) 

Multiplying (14) with nz  and summed over 𝑛 from 1 to ∞ and added up with 

(13) gives 

( )  ( ) ( )
( )

( )0,0,, 011
1 zQ
z

S
zQzQz

v 
−=+−−


  

( ) ( ) .0,011
QS

z

z
S

z

z
vv 


−


−   (23) 

Inserting +=  in (22), we get  



K. SANTHI 

Advances and Applications in Mathematical Sciences, Volume 20, Issue 6, April 2021 

1136 

( ) ( )  ( ) ( ) ( ) ( ).00,00,0, 0,220,110 QzQQqzQqAzQ −+−+=   (24) 

Substituting 0=  in (22) and using (24), we get 

( )
( )

 ( ) ( ) ( ) ( ).00,00,
1

0, 0,220,110 QzQQqzQq
A

zQ −+−
+

+−
=


  (25)  

Inserting +−= z  in (23), we get 

( ) ( ) 
( )

( ) .0,
0,

0, 0,00
0

1 1
Q

z

z
zQ

x

z

z

zQ
zSzQ v


+


++−=   (26) 

Multiplying (16) with nz  and summed over n from 1 to ∞ and added up 

with (15) gives 

( )  ( ) ( ) ( ) ( ).0,0,,
2122 −=+−− 

vSzQpzQzQz  (27) 

Inserting +−= z  in (27), we get 

( ) ( ) ( ).0,0, 12 2
zQpzSzQ v +−=   (28) 

Substituting (24), (25) and (28) in (26), we get 

( ) =0,0 zQ  

( ) ( )  ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
.

00

21

1 0,20,10,0

++−++−++−−+

++−++−++−





AzzzspqzSz

AzzQqQQzzS

vv

v
 (29) 

Substituting (28) and (29) in (24), we get 

( )=0,0 zQ  

( ) ( ) ( ) ( )

 ( ) ( )

( ) ( ) ( ) ( ) ( )
.

00

21

21

0,20,1

0,0

++−++−++−−+

+−

+−++−++





AzzzspqzSz

QqQz

QzzpSqzSA

vv

vv

 (30) 

Let ( ) ( ) ( )  ( )  ( )+−++−++−−+=  zzzSpqzSzzf vv 11
 

( )+A  at ( ) ( )  ( )+++−== 
21

0,0 vv SpqSfz   ( ) 0++ A  

and at ( ) ( ) ( )  ( )+−+== 
21

1,1 vv SpqSfz   ( ) .0++ A  
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This implies that there exists a real root ( )1,01 z  for the equation  

( ) .0=zf  Hence at 1zz =  the equation (30) becomes 

( ) ( ) ( ) 0,010,20,1 00 QzUQQq =+  (31) 

where  

( ) ( )  ( ).111 21
+−++−=  zpSqzSzU vv  (32) 

Using (31) in (30), we get 

( ) =0,0 zq  

( ) ( )  ( )  ( ) ( )

( ) ( )  ( )  ( ) ( )
.

21

21 0,01

++−++−++−−+

−+−++−++





AzzzspqzSz

QzUzpSqzzSAz

vv

vv
 (33) 

Using (31) in (29), we get 

( )

( )  ( ) ( )  ( )

( )

( ) ( )  ( )  ( )

( )

.0,

21

1

0,0

1

1

+

+−++−++−−+

+

+−+−++−

=









A

zzzspqzSz

QA

zzzUzzS

zQ

vv

v

(34) 

Using (33) in (28), we get 

( )

( ) ( ) ( ) ( )

 ( ) ( )

( ) ( )  ( )

 ( ) ( )

.0,

21

21

0,0

1

2

++−+

+−++−−+

++−+

−++−+−

=









Azz

zspqzSz

QAzz

zUzzSzSp

zQ

vv

vv

 (35) 

Substituting (31), (33) and (34) in (25), we get 

( )

 ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )

.

1

0,

21

21

0,01
0

+

+−++−++−−+

−

+−++−+−

=









A

zzzspqzSz

QzU

zSpqzSAz

zQ

vv

vv

 (36) 

Inserting 0=  in (23) and Substituting (32), (33) and (35), we get 
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( )

 ( ) ( ) ( )

 ( ) ( )

  ( ) ( )  ( )

 ( ) ( )

.

1

0,

21

1

0,0

1

1

++−+

+−++−−++−

++−+

−++−−

=











Azz

zspqzSzz

QAzz

zUzzS

zQ

vv

v

 (37) 

Inserting 0=  in (27) and using (33), we get 

( )

 ( )  ( ) ( ) ( )

 ( ) ( )

  ( ) ( )  ( )

 ( ) ( )

.

1

0,

21

21

0,0

1

2

++−+

+−++−−++−

++−+

−++−−+−

=











Azz

zspqzSzz

QAzz

zUzzSzSp

zQ

vv

vv

 (38) 

Multiplying (17) with nz  and summed over 𝑛 from 1 to ∞, we get 

( ) ( ) ( ) ( ) ( )0,0,, 100 zPBqzPzP −=−   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).0,00,0 00,220,1 zQBPBzPBPBq  −+−+  (39) 

Inserting =  in (38), we get 

( ) ( ) ( ) ( ) ( ) ( ) 0,010,0210 0,0,0, QzUQBzPzPqBzP −−+=   

( ) ( ).0,0 zQB  +  (40) 

Inserting 0=  in (38) and using (39), we get 

( )
( )

 ( ) ( ) ( )10,0210 0,0,
1

0, zUQzPzqP
B

zP +−+










−
=


  

( ).0,00,0 zQQ +  (41) 

Multiplying (19) with nz  and summed over 𝑛 from 1 to ∞ and added with 

(18), gives 

( )  ( ) ( ) ( ) ( ) ( )0,0,0,0, 1011 1

1 zQSzP
z

s
zPzPz b

b 


 −−=−−  

( ) ( ).0,01
zPSb

 −  (42) 
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Inserting z−=  in (41), we get  

( ) ( )
( )

( ) ( ) .0,0,
0,

0, 01
0

1 1 





++−=  zPzQ

z

zP
zSzP b  (43) 

Multiplying (21) with nz  and summed over n from 1 to ∞ and added with 

(20) gives 

( )  ( ) ( ) ( ) ( ) ( ) ( ).0,0,0,, 2122 22
zQSzPSpzPzPz bb

 −−=−−  (44) 

Inserting ( )z−=  in (44), we get 

( ) ( )  ( ) ( ).0,0,0, 212 2
zQzPpzSzP b

 +−=  (45) 

Using (39), (40) and (36) in (42), we get 

( )

( )  ( ) ( ( )   ( )

( ) ( )  ( ) 

( )  ( )

 ( ) ( ( )) zBB

zSpqzSz

QzUzQzQ

zSzBBzS

zP

bb

bb

−+

−+−−

−−+

−−+−

=









1

10,0,

1

0,

21

21

0,0102
1  

( ) ( )

( )  ( )  ( ) ( ( )) 
.

1

0,

21

1 1

zBBzSpqzSz

zQzSz

bb

b

−+−+−−

−
+





 (46) 

Using (45) in (44), we get 

( )
( )  ( )  ( ) ( ( ))  ( )

( )  ( )  ( ) ( ( )) zBBzSpqzSz

zQzBBzqSzzS
zP

bb

bb

−+−+−−

−+−−−
=





1

0,1
0,

21

12 2
2  

 ( ) ( )  ( ) ( ( )) 

 ( )  ( ) 

( )  ( )

 ( ) ( ( )) 

.

1

10,

10,

21

1

0,010

1

zBB

zSpqzSz

QzUzQ

zBBzQzzSp

bb

b

−+

−+−−

−−

−++−

+









 (47) 

Using (35), (45) and (46) in (40), we get 
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( )
( )

( ) 0,0
0

0
0 0, Q

zD

zN
zP =  (48) 

where 

( )  ( ) ( )  ( )  ( )+−−−+−−=  zSzSpqzSBzzN vbb 121
110  

( ) ( )  ( ) ( )++−+−+ AzzzUz 1  

( ) ( )  ( )+−−+−−  zSzSzz vv 21
11  

( ) ( )  ( ) ( )++−+−+ AzzzUz 1  

 ( )  ( )  +−+−−+  zABz 11  

 ( )  ( ) ( ) zzUzSqzzS vv 121
−+−++−   

 ( )  ( ) ( )+−−−−  zzUBz 111  

( ) ( )  ( )+−++−−+  zpSqzSz vv 21
 

 ( ) ( )++−+ Azz  

( )  ( )  ( )  ( ) ( ( ))   +−−+−+−−=  zzBBzSpqzSzzD bb 1
210  

( ) ( )  ( )+−++−−+  zSpqzSz vv 21
 

 ( ) ( ).+−+ Azz  

Inserting 0=  and using (36), (39), (45) and (47) in (41), we get  

( )
( )

( ) 0,0
1

1
1 0, Q

zD

zN
zP =  (49) 

where 

( ) ( ) ( ) ( ( ))  ( ) ( )+−−+−−+−=  zSzSzBBzpSzN vvb 112
111  

( ) ( )  ( ) ( )++−+−+ AzzzUz 1  
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 ( ) ( ) ( )  ( ) ( )++−+−++−−  AzzzUzzSz v 11
1  

 ( )    ( ) ( ( )) zBBzA −++−+−+  11  

 ( )  ( )+−++−  zSpqzSv vv 21
 

( )   ( )  +−−−− zzUzzU 11 1  

 ( ) ( ( )) ( ) ( ) ( )+−++−−+−+  zSpqzSzzBB vv 21
1  

 ( ) ( )++−+ Azz  

( )   ( ) ( ) ( ) ( ( ))  .1
211 +−−+−+−−−=  zzBBzSpqzSzzzD bb  

( ) ( )  ( )+−++−−+  zSpqzSz vv 21
 

 ( ) ( ).++−+ Azz  

Inserting 0=  and using (37), (45) and (46) in (43), we get  

( )
( )

( ) 0,0
2

2
2 0, Q

zD

zN
zP =  (50) 

Where 

( )  ( )  ( ) ( ( ))  ( )+−−+−−=  zpSzBBzqSzzN vb 11
12  

 ( )  ( ) ( )  ( ) ( )++−+−++−−  AzzzUzzSv 11
1  

( )  ( )+−−−+  zSzpzS bb 11
1  

 ( ) ( )  ( ) ( )++−+−+ AzzzUz 1  

( )  ( ) ( ( )   ( )  +−+−−+−+  zAzBBzpSb 11
1

 

 ( )  ( ) ( ) zzUzSpqzzS vv 121
−+−++−   

 ( )  ( )  ( )  ( ) zBBzSzUp b −+−−−  11
11  
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  ( ) ( )  ( )+−++−−++−  zSpqzSzz vv 21
 

 ( ) ( )++−+ Azz  

( ) ( ).12 zDzD =  

We define  

( ) ( ) ( ) ( )
( )

( ) 0,00,0012 0,0,0, Q
zD

zN
QzQzQzQzP

V

V
V =+++=   (51) 

as the probability generating function for the number of customers in the 

orbit when the server is on working vacation period, where  

( ) ( )  ( )  ( ) ( )  zzUzzSzSpzN vvv −++−−+−= 
121

1  

( ) ( )  ( )+−−+++−+  zSAz v1
1  

 ( ) ( )  ( ) ( )  ( )+−+++−+−+  AAzzzUz 11

   ( )  ( ) ( ) zzUzSpqzSzz vv 121
−+−++−+−   

  ( ) ( )  ( )+−++−−++−+  zpSqzSzz vv 11
 

 ( ) ( )++−+ Azz  

( )   ( ) ( )  ( )+−++−−++−=  zpSqzSzzzD vvV 21
 

 ( ) ( ).++−+ Azz  

We define 

( ) ( ) ( ) ( )
( )

( ) 0,0210 0,0,0, Q
zD

zN
zPzPzPzP

B

B
B =++=   (52) 

as the probability generating function for the number of customers in the 

orbit when the server is on not working vacation (normal busy) period, where 

( )   ( )  ( ) ( )  ( ) ( )zNzSzNzSzNzzN bbB 210 21
11 −−+−−+−=   

( )   ( ) ( ) ( )  ( ))  ( ).1
21

zDzBBzSpqzSzzzD VbbB −+−+−−−=   
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We define 

( ) ( ) ( )zPzPzP BV +=  (53) 

as the probability generating function for the number of customers in the 

orbit irrespective of the server state. where ( )zPV  and ( )zPB  are given in 

equation (51) and (52). We shall now use the normalizing condition ( ) 11 =P  

to determine the unknown 0,0Q  which appears in (53). Substituting 1=z  in 

(53) and using L’Hospitals rule, we obtain 

( ) ( ) ( )

( ) ( ) ( )
 

.

21

11

0,0

r

vv

r

D
ASpqS

AzUzU

N
Q















+++−+

++−+



+−

=




 (54) 

Where 

     ( )−−−−= BSEpSEN bbr 11
21

 

      ( )  ( ) ( ).1
2121

−+++=  BSpqSSpEqSED vvbbr  

4. Particular Cases 

Case (i). If no customer receives the second optional service then by 

setting 0=p  and vvbb SSSS ==
11

,  in (53), we get 

( ) ( ) ( )zPzPzP BV +=  (55) 

( )
( )

0,0Q
D

zN
zP

V

V
V =  and ( )

( )

( ) 0,0Q
zD

zN
zP

B

B
B =  

where 

( )  ( )    ( ) ( ) zzUzzSzAzN vV 11 −+−+−+−=   

 ( )+−−+  zSv1  

( ) ( )  ( ) ( )++−+−+ AzzzUz 1  

  ( ) ( )  ( ) ( )++−++−−++−+  AzzzSzz v  
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( )   ( ) ( )  ( ) ( )++−++−−++−=  AzzxSzzzD vV  

( )  ( ) ( ) ( )  ( ) ( )++−+−++−−=  AzzzUzSzzN vB 11  

 ( )  ( ) ( ( )   ( )  +−+−+−+−−  zAzBBzSb 111  

 ( ) ( ) zzUzzSv 1−+−  

  ( )  ( ) ( ( )  ( )1111 zUzBBzSzz v −−−+−−−+   

 +− z  

( ) ( )  ( )+−+−−+  zzzSz v  

  ( )  ( ) ( ( ) zBBzSzz b −+−−−+  11  

( )      ( )  ( ) ( ( )  ( )zzBBzSzzzzD bB +−+−−+−−=  1  

( )  ( ) ( )++−++−−  AzzzSv  

and  

  ( ( ))

( ) ( )  ( )

( )  ( )

 ( ( ) ( ( ))

.

1

11

11

0,0

−+













++−+

++−+
−











+−

−−−
=









BSSE

AS

AzUzU

BSE
Q

vb

v

b  

Equation (55) is well known generating function of the orbit size distribution 

of a single arrival retrial queue with exponentially distributed multiple 

working vacation. 

Case (ii): 

If no customer receives the Second optional service and no retrial then on 

setting ( ) ( ) vv SSpBA ====+ 
1

,0,1  and bb SS =
1

 in (52), we get 

( ) ( ) ( )zPzPzP BV +=  (56) 

( )
( )

( ) 0,0Q
zD

zN
zP

V

V
V =  and 

( )

( )
.0,0Q

zD

zN
P

B

B
B =  
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Where 

( )  ( )  ( )     ( )+−−+−+−+−−=  zSzzzzUzSzN vvV 11  

( )    ( )+−−+−=  zSzzzD vV  

( )  ( )  ( )   ( )zSzzUzzSzzN bvB −−−+−−=  11 1  

( )    ( )    ( )+−−+−−−−=  zSzzzSzzzD vbB  

( )

( ) ( )

( )
 ( ) ( )

.

1

1

1

11

0,0














−

−
−



+−

−
=



 vb

v

b

SSE
S

zUzU

SE
Q  

Equation (56) is well known generating function of the queue size 

distribution of an 1GM  queue with multiple working vacation.  
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