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Abstract 

Hyperlattices are a suitable generalization of ordinary lattices. In this paper, we introduce 

two relations  and  on a hyperlattice L, and we let   and   be the transitive closure of  

and . Then, we investigate the connection between two relations and we show that by the first 

relation, the quotient of hyperlattice L is a Boolean and residuated lattice and by the second 

relation and adding distributivity to hyperlattice L, the quotient of hyperlattice L is complete. 

1. Introduction 

Algebraic hyperstructures play a prominent role in mathematics with 

wide ranging applications in many branches such as coding theory, 

topological spaces, graphs, lattices and the like. One of the structures that are 

most extensively used and discussed in mathematics and its applications is 

lattice theory [2, 4]. The concept of a hyperlattice which is based on the 

hyperoperation was introduced by Konstantinidou and Mittas in [7]. Other 

contributor to developing of lattice and hyperlattice theory are Serafimidis 

and Kehagias [12], Varlet [13], Ashrafi [1], Leoreanu-Fotea and Davvaz [9], 

Leoreanu-Fotea et al. [10] and others. 

By the end of 80s the theory of hyperstructures had completed more than 

half of a century. At that time a lot of theory on hyperstructures had been 

achieved, for example, the relation   and   were studied. The main tools in 
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the theory of hyperstructures are the fundamental relations. These relations, 

on the one hand, connect this theory, in some way with the corresponding 

classical theory and on the other hand, introduce new important classes. 

Researchers who studied on the fundamental relations are Corsini [3], Freni 

[5], Vougiouklis [14], and many others. In [11], Rasouli and Davvaz studied 

lattices which is derived from hyperlattices by means of fundamental relation 

in hyperlattices. In this paper, we introduce two strongly regular relations on 

a hyperlattice L and we investigate the structure of the quotient of 

hyperlattice L and we derive three categories of lattices with these quotient 

structures. 

2. Preliminaries 

In this section, we provide background information needed in the paper. 

First, we present some basic definitions and well-known facts about lattices 

and hyperlattices. 

The hyperstructure theory was introduced by Marty [8] in 1934. A 

function f from HH   into the set of all nonempty subsets of H, is called a 

binary hyperoperation, and the pair  fH,  is called a hypergroupoid. If f is 

associative, H is called a semi hypergroup, and it is said to be commutative if 

f is commutative. 

One can see the definition and basic properties of a lattice L in [2]. 

According to [4], the lattice L is distributive if for all Lzyx ,,  one of the 

following conditions hold: 

(1)      ;zxyxzyx   

(2)      .zxyxzyx   

Also, we say L is complete if for every SLS  ,  and S  exist and L is 

Boolean lattice if for each La   there exists La   such that the following 

conditions hold: 

(1)  ,,L  is a distributive lattice; 

(2) aa  0  and ;1 aa   

(3) 1 aa  and .0 aa  
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Definition 2.1[6]. A residuated lattice is a nonempty set L with four 

binary operations  ,,,   and two constants 1,0  such that the following 

conditions hold: 

(1)  1,0,,, L  is a bounded lattice; 

(2)  1,, L  is a commutative monoid; 

(3) for any zyxLzyx  ,,,  if and only if .zyx   

A generalization of the notion of a lattice is hyperlattice which is defined 

as follows: 

Definition 2.2. Let L be a non-empty set,  LLL  :  be a 

hyperoperation, and LLL  :  be an operation. Then,  ,,L  is a join 

hyperlattice if for all Lzyx ,,  the following conditions hold: 

(1) xxx   and ;xxx   

(2)     zyxzyx   and     ;zyxzyx   

(3) xyyx   and ;xyyx   

(4)    .yxxyxxx    

Now, we recall the definition of vH -lattice which is defined already and 

we use it in this paper. 

Definition 2.3.  ,,L  is an vH -lattice if for all Lzyx ,,  we have: 

(1)     ;0 zyxzyx   

(2) ;LxLLx   

(3) xxx   and ;xxx   

(4) xyyx   and ;xyyx   

(5)     .0 zyxzyx   

Let  ,,L  be a join hyperlattice. According to [11], we say that L is a 

strong join hyperlattice if for all yxLux  ,,  implies that .yxx   We 
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say that 0 is a zero element of L, if for all Lx   we have x0  and 1 is a 

unit of L if for all .1,  xLx  We say L is bounded if L has 0 and 1. And y is 

a complement of x if yx 1  and .0 yx   A complemented hyperlattice 

is a bounded hyperlattice which every element has a complement. We say 

that L is distributive if for all      .,,, zxyxzyxLzyx   And 

L is s-distributive if      .zxyxzyx   The map 21: LLf   is 

called a homomorphism if for all 1, Lyx   we have      yfxfyxf   

and      .yfxfyxf   Moreover, f is an isomorphism if it is bijection too. 

Definition 2.4. Let  be an equivalence relation on a nonempty set L 

and ,, LBA   then 

(1) BA   means that for all ,Aa   there exists Bb   such that ba  

and for all ,Bb   there exists Aa   such that ;ba   

(2) BA  means that for all ,Aa   for all ,Bb   we have .ba  

Definition 2.5[11]. Let  be an equivalence relation on a hyperlattice 

 ,,L  and ., LYX   

(1)  is called a regular relation respect to  (respect to ) if yx   

implies that  ,zyzxzyzx    for all  Lzyx ,,  is called a 

regular relation if it is regular respect to  and , at the same time. 

(2)  is called a strongly regular relation respect to  (respect to ) if 

yx   implies  ,zyzxzyzx    for all  Lzyx ,,  is called a 

strongly regular relation if it is strongly regular respect to  and , at the 

same time. 

Let  be a reflexive and symmetric relation on a nonempty set L. The 

transitive closure of  is denoted by   and defined as follows: 

  .,,,,, 12121 yxxxxxLxxxnyx nn
n

n  
    

The fundamental relations   and   are defined in hypergroups, 
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hyperrings, as the smallest equivalence relations so that the quotient would 

be group and ring. The way to find the fundamental classes is given by 

analogous theorems to the following. 

Theorem 2.6[14]. Let  ,H  be a hypergroup and let us denote by U the 

set of all finite products of elements of H. We define the relation  in H as 

follows:   uyxiffyx  ,  where .Uu   Then, the fundamental relation   

is the smallest equivalence relation on H such that the quotient H  is a 

group. 

3. Boolean and Complete Lattices which is Derived from 

Hyperlattices 

In this section, we introduce two relations  and  on a hyperlattice L, 

and we let   and   be the transitive closure of  and . Then, we 

investigate the connection between two relations and we show that by the 

first relation, the quotient of hyperlattice L is complete, Boolean and 

residuated lattice and by the second relation and adding distributivity to 

hyperlattice L, the quotient of hyperlattice L is complete. Then, we define     

-complete in hyperlattices and we prove some theorems and propositions 

which hold in the special category of hyperlattices such as vH -lattices. 

According to [3], if R is an equivalence relation on a hypergroup H, then 

R is strongly regular if and only if  ,RH  is a group. According to [11], in 

the category of hyperlattices, if  ,,L  is a hyperlattice (superlattice) and R 

be an equivalence relation on ,,L  be hyperoperations of ,L  then, if R 

is strongly regular relation,  ,,L  is a lattice. 

Definition 3.1. If  ,,L  is a hyperlattice, then we set 

  ,|,1 Lxxx   and for every integer nn  ,1  is the relation defined as 

follows  

       .,:,,,,,,,
11

2121 ij

k

j

n

i

n
n

n
ikiin zyxNkkkLzzzyx

i

i 
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Let  1
.

n n  Clearly, the relation  is reflexive and symmetric. 

Denote by   the transitive closure of . 

Proposition 3.2. Let  ,,L  be a distributive hyperlattice. Then,   is 

a strongly regular relation on hyperlattice L. (Notice that if L is a hyperlattice, 

  is a strongly regular relation with respect to ). 

Proof. Let .ba   Then, there exist   1
10 ,,,,  r

r LxxxNr   such 

that bxxax r  ,,, 10   and   r
rqqq ,,, 21   such that for all 

 1,,2,1  ri   we have .1 iqi xx
i

 Let Lz   and ,1 zxu i   

.1 zxv i    We check that .21 uu   From 1 iqi xx
i

 it follows that there  

exist     i
i

i
i

q
q

q
ikii kkkLzzz  ,,,,,,, 2121   such that  1, ii xx  

 .
11 ij

k
j

q
i

zii


  So, we have     ., 111 zzzxzx ij
k
j

q
iii

ii 
  

Therefore, by distributivity of hyperlattice L, we have    zxzx iqi i
  11

 

and we have .vu   Similarly, we can easily show that   is strongly regular 

with respect to  and proof is completed. □ 

The relation  which is defined above is not transitive. Now, we 

investigate under what conditions  is transitive. 

Definition 3.3. Let  ,,L  be a hyperlattice and LM   be a 

nonempty subset of L. We say M is a -part of L, if for every 

  ,,,,,,,,2,1, 21
i

i

k
ikiii Lzzzknin     we have 

    .0
1111

MzMz ij

k

j

n

i
ij

k

j

n

i

ii




  

Notice that for every ,Lx   we define    .: yxLyxP   

Theorem 3.4. Let  ,,L  be a hyperlattice. Then, the following 

conditions are equivalent: 

(1)  is transitive; 
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(2) for every    ;, xPxLx    

(3) for every  xPLx ,  is a -part of L. 

Proof. (1)  (2): If  ,xPy   then .xy   Thus,  .xy   Also, if 

 ,xy   then by transitivity of , we have  .xy   Thus,  xPy   and 

therefore,    .xxP   

(2)  (3): Let     0
11 
 ij

k
j

n
i zxP i  and    .11 xPzz ij

k
j

n
i

i 
   

Then, for any  ,
11 ij

k
j

n
i zy i

   we have    .,
11 ij

k
j

n
i zzy i

   Thus, 

 .xPzy n   Therefore,    xPxy    and    .
11 xPzij

k
j

n
i

i 
  Thus, 

 xP  is a -part of L and the proof is completed. 

(3)  (1): Let .zyx   We show that .zx   Thus, there exist nn,  

such that yx n  and .zy n  Therefore, there exist   ,,,, 21 nkkk   

  ,,,, 21
n

inii Lzzz   such that    ij
k
j

n
i zyx i

11,
   and similarly      

there exist     n
iniin Lzzzkkk  ,,,,,,, 2121    such that 

   .,
11 ij

k
j

n
i zzy i 





  Thus,    .

11 ij
k
j

n
i zxPx i

    By the hypothesis, 

   .
11 xPzij

k
j

n
i

i 
  Moreover,    ij

k
j

n
i zxPy i 





 11  and by hypothesis 

   .11 xPzij
k
j

n
i

i 




  Thus,  xPz   and .zx   □ 

Theorem 3.5. Let L be a distributive hyperlattice. Then, L  is a 

complete lattice. 

Proof. Since   is strongly regular, thus L  is a lattice. By the 

theorem of [4] it suffices to show that L  has a least element and for every 

SLS  ,  exists. If L  has a least element, the first condition is 

ensumered. Otherwise, the lack of a bottom element can be easily remedied 

by adding one. For every , LS  since   is an equivalence relation and 
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by properties of ,  we have   La i
i

aL


 ,  and if ,  ba  then 

.0  ba   Thus, for every , LS  we have   La i
i

aS


 ,    

such that     0 
ji aa   for every   .Sai   Therefore, 

 .,, yxSxLyS    Since for every ,Sx   we have  ,iax   

for one element ,Lai   thus we consider the union of blocks which is 

contained S by the equivalence relation .  This is the least upper bound of S 

and L  is a complete lattice. □ 

Theorem 3.6. Let L be a finite distributive hyperlattice. Then, the relation 

  is the smallest strongly regular relation on the hyperlattice L such that 

L  is a complete lattice. 

Proof. Let  be a strongly regular relation on hyperlattice L such that 

L  is a complete lattice. Then, consider the canonical map .:  LL  

Suppose that   ., yx  Then, there exist   n
nkkk ,,, 21   and 

  n
inii Lzzz ,,, 21   such that    ., 11 ij

k
j

n
i zyx i

   Thus,     yx  ,  

  .
11 ij

k
j

n
i

zi


  Since the cardinal of  ij
k
j

n
i zi

11    is equal to 1, we 

have    .yx   Therefore,   yx,  and .,    Thus,   is the 

smallest strongly regular relation on finite hyperlattice L such that L  is a 

complete lattice. □ 

Now, we consider the relation  which is introduced in [11], and we 

investigate the quotient of an arbitrary hyperlattice L with this relation is 

what type of lattices. Then, we obtain the connection between this relation 

and the relation  which is defined before. 

Definition 3.7[11]. Let  ,,L  be a hyperlattice. Then, we set 

  Lxxx  |,1  and for every integer nn  ,1  is defined as follows: 

      zyxzzzzLzzzyx n
n

nn  ,,,,,,,,, 2121   

where  nzzz ,,, 21   is the set of all finite combinations of nzzz ,,, 21   
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respect to  and . We set  1


n n  and   is the transitive closure of . 

By theorem of [11]   is a strongly regular relation on a hyperlattice L, and 

therefore L  is a lattice. 

Theorem 3.8. Let  ,,L  be a hyperlattice and   be an equivalence 

relation which is defined above. Then, L  is a Boolean lattice. 

Proof. Let L be a hyperlattice and Lcba ,,  be arbitrary elements. 

Then, we have         .,,, cbacabacba   Therefore, L  is a 

distributive lattice. Now, if L  is bounded, the second condition of Boolean 

lattice is ensumered, otherwise by adding elements such as    1,0    to 

,L  we have a bounded lattice .L  Let   .  La  Then, we have 

   1,1, aaa   and    .0,0, aaa   Therefore,   1 aa  and 

  .0 aa  Thus,      1  aa  and      .0  aa  Hence, the 

complement of every element in L  exists and L  is a Boolean lattice. □ 

Theorem 3.9. Let L be a hyperlattice and   be an equivalence relation 

on L which is defined above. Then, L  is a complete lattice. 

Proof. The proof is similar to the proof of Theorem 3.6. □ 

Corollary 3.10. Let L be a distributive hyperlattice. Then, .   

Proof. Clearly by definitions .   It suffices to prove .   By 

the corollary in [11],   is the smallest equivalence relation such that the 

quotient L  is a lattice. So, by previous theorem, we have 
   and 

proof is complete. □ 

Notice that by [6] a residuated lattice is defined. Now, we show that by 

the relation   which is defined above, we can make this category of lattices 

from an arbitrary hyperlattice L. 

Theorem 3.11. Let L be a hyperlattice and   be the relation which is 

defined above. Then, L  is a residuated lattice. 
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Proof. By the proof of Theorem 3.8, the first condition of residuated 

lattice is ensumered. Now, we define in L  two binary operation  and  

as follows: for any               bacbaLba   ;,,  

 c  and             .; cbacba     For two arbitrary 

sets BA   means that there exist Aa   and Bb   such that .ba   Now, 

by these definitions for any       Lba ,  we have    ba     

   ba     and we can easily prove binary operation  is associative. 

Now, for arbitrary element             .1;1, dxdxLx     

Since  1  xx  and   ,1,1   xx  thus      .1  xx  

Therefore,  ,L  is a commutative monoid. Let       .,,   Lcbb  

We have      .1 cb    Therefore,      .1 cb    Thus, third 

condition of residuated lattice in L  holds and L  is a residuated lattice.□ 

Notice that in all hyperlattices the following proposition is not true. So, in 

the category of vH -lattices, the following proposition is true. 

Proposition 3.12. Let L be an vH -lattice. Then, we have 1 nn  (for 

.1n  

Proof. If yx n  then there exist  inii zzz ,,, 21   and   n
nkkk ,,, 21   

such that    .,
11 ij

k
j

n
i zyx i

   Since Lz
nnk   and L is a vH -lattice, by 

reproduction axiom ,baz
nnk   where ., Lba   Thus, we set for ,,2,1 i  

ijiji zzkjn  ,,,2,1,1   and .,,, ,111 njjnnjnjnnii zzzzkkkk    

Thus,    ij
k
j

n
i zyx i 





 1

1
1,  and therefore .yx n  □ 

Corollary 3.13. Let L be an vH -lattice. Then, for all .,1 nn   

Proof. It suffices to prove that .n  Let .yx   Thus, m  such 

that .yx m  If ,nm   then by the previous proposition we have .nm   If 

nm   then it can easily proved that there exist  ij
k
j

m
i

zs i
11 

  such that 

    ., 1
1
1 szyx ij

k
j

n
i

i 



  Thus, .yx n  □ 
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Definition 3.14. A hyperlattice L is said to be n -complete if 

    ,,,,,,,2,1,,,, 2121
i

i

K
ikii

n
n Lxxxnikkk     we have 

    .
1111

ij

k

j

n

i
ij

k

j

n

i
zz

ii


  

Theorem 3.15. Let L be a n -complete vH -lattice. Then, for all 

     ij
k
j

n
i

k
iki

n
n zLzzkkk ii

i 11121 ,,,,,,,
     is a -part of L. 

Proof. Consider   ,,,, 1
m

mkkn     and   ik
kii Lyy


 ,,1   such 

that the condition     0
1111 




 ij
k
j

n
iij

k
j

m
i zy ii   holds. Thus, there exists 

   .1111 ij
n
j

n
iij

k
j

n
i zyx i




    Let  .
11 ij

k
j

m
i yy i

   Then, we have 

.yx m  Thus, by Corollary 3.13 .yx   Therefore,     ij
k
j

n
i zxy i

11    

ij
k
j

n
i zi

11    and    ,1111 ij
n
j

n
iij

k
j

n
i zyi




   the proof is completed.  □ 
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