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Abstract 

In this paper, a unified form of the Homotopy perturbation technique, the Yang integral 

transform and J. H. He’s polynomials is proposed to solve some non-linear partial differential 

equations of fractional order. The fact that the nonlinear equations can be easily manipulated 

by J. H. He’s polynomials rather than Adomian’s polynomials, is referred as a benefit of the 

proposed technique. Moreover, the proposed technique gives the solutions in expeditions 

convergent series leading to the closed form solutions without any discretization or limitation on 

assumptions and so is a refinement of the many existing techniques. 

1. Introduction 

Fractional calculus which concerns arbitrary order derivatives and 

integrals plays a prominent role in a variety of science and engineering 

domains. The linear and nonlinear partial differential equations of fractional 

order have broad applications in Acoustic, Analytical chemistry, Biology, 

Signal processing, Fluid mechanics, Electromagnetism and so forth. Most 

nonlinear differential equations do not attain analytical solutions. In the last 
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few decades, several numerical techniques have been devised to solve linear 

and nonlinear partial differential equations of fractional order such as, 

Homotopy analysis technique, Laplace decomposed technique, Adomian 

decomposition technique, Homotopy perturbation sumudu transform 

technique, Jacobi spectral collocation technique, Homotopy perturbation 

technique, Fractional complex transform technique, Yang-Laplace transform 

technique and so forth. Howsoever, due to several shortcomings and 

computational complexities such as discretization of variables, unnecessary 

linearization, transformation or the use of restrictive assumptions, these 

numerical approaches cannot be considered as universal for solving linear 

and nonlinear partial differential equations of fractional order. 

The major goal of this paper is to propose a novel analytical approach 

termed the Homotopy Perturbation Yang Integral Transform Technique 

(HPYITT) for solving linear and nonlinear partial differential equations of 

fractional order without the shortcomings listed above. The proposed 

technique generates a series solutions that converges quickly to an exact 

solution with precise computational parameters. Futhermore, the nonlinear 

equations are enumerated using J. H. He’s polynomials in this novel 

analytical approach. 

The present article is organized as follows. In Section 2, some basic 

definitions, some properties of Yang integral transform and Homotopy 

perturbation technique are discussed. In section 3, the analysis of the 

proposed technique is discussed. In section 4, some examples are illustrated 

to elucidate the applicability and the efficiency of the proposed technique. 

2. Preliminaries 

Definition 2.1. The fractional derivative with order ,0  of a function 

     ,01Lg  in Caputo sense, is defined by 
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The Caputo time fractional derivative of order  of a function 

      ,,0,0, 1  Lyg  is defined by  
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Definition 2.2. If  f  is a function defined for ,0  then the integral 

 


 
0

,0, sdfe s  

is called the Laplace transform of  ,f  assuming that the integral exists and 

is usually denoted by   sfL ;  or  .sF  

Definition 2.3. Let       1
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where N must be a finite constant, while 21, pp  may be finite and need not 

exist simultaneously. 

The Yang integral transform of a function   Ag   is defined by 
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Some important properties of Yang integral transform are listed below. 
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2. Linear property: If     wGgY    and     ,wHhY   then 

        ,2121 wHcwGchcgcY   where 1c  and 2c  are constants. 
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1
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Definition 2.4. Let         1
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 where 

Ny ,  must be a finite constant, while 21, pp  may be finite and need not 

exist simultaneously.  

The Yang integral transform of a function   Byg ,  is defined by 
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Theorem 2.5. If  wG  is the Yang integral transform of a function  ,g  
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Proof. By Laplace-Yang duality property, we have 
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Remark 2.6. The Yang integral transform of Caputo time fractional 

derivative with order  of the function  ,yg  is given by 
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2.1 Homotopy Perturbation Technique (HPT) 

Let us investigate the general nonlinear differential equation 

    ,,0  rrgR Z  (1) 

having the boundary constraints 
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where R is a general differential operator,  rg  is a given analytical function, 

B is a boundary operator,   is the boundary of the domain  and n denotes 

the normal to the boundary .  Now splitting up the differential operator R 

into the linear operator L and the nonlinear operator N, the equation (1) 

becomes 

      .0 rgNL ZZ   (3) 

Using the homotopy technique, we form a homotopy 

     1,0:, Dqrh  satisfying 

               DrqrghRqZLhLqqhP  ,1,001, 0  

(or) 

             ,0, 00  rghNqpLLhLqhP ZZ   (4) 

where the embedding parameter  1,0q  is considered as an extending 

parameter, 0Z  is the initial approximation of (1), which satisfies the 

boundary constraints 

      00, 0  ZLhLhP  

      .01,  rghRhP  (5) 

The process of altering q from 0 to 1 is the same as changing  qrh ,  from 
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0Z  to Z, which is called the deformation in topology and 

       rghRLhL  ,0Z  are known as homotopic. Using classical 

perturbation technique, the power series solution of (4) in q is given as 

 2
2

10 hqqhhh  (6) 

and assuming ,1q  it leads to the approximation solution of (1), that is 




210
1

lim hhhh
q

Z  (7) 

The incorporation of the Homotopy technique and the perturbation 

technique is known as the HPT, which eliminates the limitations of the 

standard perturbation techniques. Moreover, the proposed technique can take 

the full advantage of the standard perturbation techniques. 

For the most cases, the series solution (7) is convergent. Howsoever, the 

convergent rate depends upon the nonlinear operator  ,hN  whose the second 

derivative of  hN  with respect to h must be small, because the parameter q 

may be relatively large, i.e. 1q  and the norm of 











h

N
L 1  must be 

smaller than one, in order that the series solution is convergent. 

3. Analysis of the Proposed Technique 

3.1 Homotopy Perturbation Yang integral transform technique 

To demonstrate the fundamental idea of the proposed technique, we 

examine a general nonlinear non-homogeneous partial differential equation 

        
 nnnygyNyLyDc ;1,,,,, ZZZ  (8) 

having the initial constraints 

       ,0,0, yfyyhy  ZZ  

where 
Dc  is the caputo fractional differential operator of order L,  is a 

linear differential operator of order less than N,  is a nonlinear differential 

operator and  ,yg  is the given source term. 
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Applying the Yang integral transform on both sides of (8) and using the 

differentiation property, we arrive 
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Performing the inverse Yang integral transform on (9), we attain, 
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arising from the given source term and the initial constraints. 

By the HPT, 
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where  ZnP  are J. H. He’s polynomials that are given by 
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Using (11) and (12) in (10), we get 
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which is the combined form of the Yang integral transform with the HPT 

using He’s polynomials. 
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Comparing the coefficients of similar powers of q on both sides, we attain 
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Then the exact solution  ,yZ  is approximated by the truncated series, 
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4. Applications 

To elucidate the applicability and the efficiency of the proposed 

technique, some nonlinear partial differential equations of fractional order 

involving caputo fractional derivatives are discussed. 

Example 4.1. Let us first examine the nonlinear time fractional gas 

dynamic equation 
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having the initial constraint 
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Taking the Yang integral transform on both sides of (13), we attain 
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Performing the inverse Yang integral transform on (14), we arrive 
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According to HPT, we attain 
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where  ZnP  and  ZnQ  are He’s polynomials whose the first few components 

are given by 

      2
00

2
00 ZZZZ  QP y  

      101101 22 ZZZZZZ  QP y  

      .22 20
2
1220

2
12 ZZZZZZZZ  QP y  

Comparing the coefficients of similar powers of q on both sides of (15), we 
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Then the exact solution in series form is attained by 
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Figure 1. The exact solution 

for 1  of example 4.1 

Figure 2. The approximate 

solution for 1  of example 4.1 

Example 4.2. Let us examine the nonlinear time fractional advection 

equation 
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  10,0, 
 y

c yD ZZZ  (16) 

having the initial constraint 
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Applying the Yang integral transform on both sides of (16), we attain 
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Performing the inverse Yang integral transform on (17), we arrive 
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where  ZnP  are He’s polynomials whose the first few components are given 

by 

  yP 000 ZZZ   

  yyP 01101 ZZZZZ   

  .0211202 yyyP ZZZZZZZ   

Comparing the coefficients of similar powers of q on both sides of (18), we 

attain 

  yyq ,: 0
0 Z  
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and so forth. 

Then the exact solution in series form is attained by 
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When ,1  the exact solution of (16) is attained by 

   





N

n

n
n

yy

0

,lim, ZZ  

     
 

  


































 

2

32

1

2
4

32

2

1
1y  



A NOVEL ANALYTICAL APPROACH FOR SOLVING … 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 11, September 2022 

6601 

  321y  












1

1
y  

 
1

,



y

yZ  

 
 

Figure 3. The exact solution for 

1  of example 4.2. 

Figure 4. The approximate 

solution for 1 of example 4.2 

Example 4.3. Let us examine the nonlinear time fractional Korteweg-De 

Vries equation of the form 

  10,06, 
 yyyy

c yD ZZZZ   (19) 

having the initial constraint 
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Applying the Yang integral transform on both sides of (19), we attain 
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Performing the inverse Yang integral transform on (20), we arrive 
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According to HPT, we attain 
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(21) 

where  ZnP  are He’s polynomials whose the first few components are given 

by 
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and so forth. 

Then the exact solution in series form is attained by 
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When ,1  the exact solution of (19) is attained by 
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5. Conclusion 

This paper develops an elegant incorporation of the HPT, the Yang 

integral transform and J. H. He’s polynomials to solve nonlinear time partial 

differential equations of fractional order. Splitting up the nonlinear terms in 

fractional differential equations using Adomian polynomials is simple but 

computing Adomian polynomials is very complicated. 
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Figure 5. The exact solution 

for 1  of example 4.3. 

Figure 6. The approximate 

solution for 1  of example 4.3. 

This deficiency is overcome by J. H. He polynomials in the proposed 

technique. The proposed technique is also effective in lowering the amount of 

computational work as compared to the traditional approaches while still 

retaining good accuracy of the numerical results. In addition, the proposed 

technique generates solutions in a faster convergent series that yields the 

closed form solutions. 
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