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Abstract 

The ternary homogeneous equation instead of an infinite cone given by 

 134106 222  zyxyx  is analyzed for its non-zero distinctive integer points. Few 

dissimilar patterns of integer points satisfying the infinite cone under deliberation are obtained. 

I. Introduction 

An enormous compact of also arises from the revise of the solutions in 

integers of a polynomial equation   ,0,,, 21 nxxxf   called the 

Diophantine equation. They have slighter number equations than indefinite 

variables and grip integers that work properly for all equations. Quadratic 

Diophantine equationsare awfully significant in number theory. There are 

more than a few Diophantine equationsthat have no solutions, trivial 

solutions, finitely or infinitely several solutions. 

In this manuscript concerns with fascinating ternary quadratic equation
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   0,,,,134106 222  Zzyxzyxyx  representing an infinite 

cone for determining its infinitely many non-zero lattice points.  

II. Method of Analysis 

The ternary quadratic Diophantine equation studied for its non-zero 

distinct integer solutions is given by 

 134106 222  zyxyx  

222 34251096 zyyxx   

    .3453 222
zyx   (1) 

Take .5,3  yx  

222 34z  (2) 

However, we have supplementary patterns of solutions which are 

illustrated as follows:  

Pattern 1. Let vu 53   and .35 vu   Then   222 3434 zvu   

and the equation (2) becomes .222 zvu   

We obtain    ,,2, 2222 nmkzkmnvnmku   for some integers 

mk,  and n with ,nm   hence the solution is 

  31033 22  mnnmkx  

  5655 22  mnnmky  

 .22 nmkz   

Pattern 2. Let vu 53   and .35 vu   Then   222 3434 zvu   

and the equation (2) becomes .222 zvu   

We obtain    ,,2, 2222 nmkzkmnvnmku   for some integers 

mk,  and n with ,nm   therefore the solution is 

  31033 22  mnnmkx  
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  5655 22  mnnmky  

 .22 nmkz   

Pattern 3. Assume 

  ,, 22 babazz 
 
where 0, ba

 
(3) 

and write 

22 5334   as    .535353 22 ii 
 

(4) 

Substituting (3) and (4) in (2) and employing the development of 

factorization, Write 

    .53
2

ibaii   

Equating the real and imaginary parts in the on top of equation, we acquire 

  abba 103 22   

  ,65 22 abba 
 
here ba   and  .0,  Zba  

Hence the solution is 

  3103 22  abbax  

  .565 22  abbay  

Pattern 4. We can also write 

22 5334   as    .353553 22 ii   (5) 

Substituting (3) and (5) in (1) and employing the technique of 

factorization, write     .35
2

ibaii   

Equating the real and imaginary parts in the on top of equation, we get 

  365 22  abbax  

  5103 22  abbay  
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22 baz   

which represents the dissimilar integer points on the cone (1).  

Pattern 5. Equation (4) can also be written in the subsequent technique: 

   .53535334 22 ii   

Proceeding as above, we get 

  3103 22  abbax  

  565 22  abbay  

2222 , babaz 
 
and  .0,  Zba  

Pattern 6. Equation (4) can also be written in the subsequent technique: 

   .35355334 22 ii   

Proceeding as on top of, we get 

  365 22  abbax  

  5103 22  abbay  

2222 , babaz 
 
and  .0,  Zba  

Pattern 7. Equation (1) can be written as 

  .0,say,
3

5

5

3










q

q

p

z

z

z

z
 (6) 

This equation is equal to the following two equations: 

  ,053  zpqpq  

  .053  zqpqp  

By the system of cross multiplication, we get the integral solutions of (1) to be  

3523 22  pqqpx  

5655 22  pqqpy  
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.22 qpz   

Pattern 8. Equation (1) can be written as 

  .0,,
5

3

3

5










qsay

q

p

z

z

z

z
 

This equation is consequent to the following two equations: 

  ,053  zqpqp  

  .053  zpqpq  

By the way of cross multiplication, we get the integral points of (1) to be 

    35353  qpppqqx  

    55353  qpqpqpy  

.22 qpz   

Note 1. Equation (2) can be written as 

  .0,,
3

5

5

3










qsay

q

p

z

z

z

z
 

Proceeding as on top of, we get  

    35353  pqqqppx  

    55353  qpqpqpy  

.22 pqz   

Note 2. Applying the above technique to the case, 

  0,say,
3

5

5

3










q

q

p

z

z

z

z
 

we get hold of the solution of (1) as 

    35353  pqqqppx  

    55353  qpqpqpy  
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.22 pqz   

Pattern 9. Equation (2) can be written as 

  153 22222  az  (7) 

Assume 

  ,53 2222 ba 
 
where 0, ba  (8) 

Write 1 as 

       
.

5

353353
1

2

2222 
  (9) 

Using (8) and (9) in (7) and applying the manner of factorization, 

 
       

.
5

35353
53

22222
22 


ba

z  

Equating the rational and irrational factors, we get hold of  

  353 2222  bax
 

       5532533
5

1 222222  abbay
 

  .653
5

1 2222 abbaz   

Because our concentration centers on decision integral solutions, 

substitute a by A5  and b by B5  in the on top of equations. Consequently the 

equivalent solutions to (1) are given by 

   3535 22222  BAx  

      53423435 22  ABBAy  

  .6345 2 ABBAz   

Note 3. Equation (9) can be written as 

       
.

5

353353
1

2

2222 
  
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Proceeding as beyond, we get hold of  

   3345 222  BAx  

       55323435 2222  ABBAy  

   .3465 22 BAABz   

Pattern 10. Instead of (8) we can also write 1 as 

       
.

3

553553
1

2

2222 
  

Thus the analogous solutions to (1) are agreed for the choice 

BbAa 3,3   by  

   3343 222  BAx  

       53423453 22  ABBAy  

  .10343 22 ABBAz   

Note 4. Equation (8) can be write as 

       
.

3

553553
1

2

2222 
  

Proceeding as on top of, we get  

   3343 222  BAx  

       53423453 22  ABBAy  

   .34103 22 BAABz   

III. Conclusion 

The ternary quadratic Diophantine equations are prosperous in diversity. 

One possibly will search for further choices of Diophantine equations to 

discover their consequent integer solutions. 
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